Scientists engage in a number of practices in their pursuit of understanding. Having students participate in these same practices—and as early as possible—is vital in fostering future generations of scientists and developing a scientifically literate society (ACARA, 2012; American Association for the Advancement of Science, 2011; American Chemical Society, 2015; Joint Task Force on Undergraduate Physics Programs, 2016; NGSS Lead States, 2013). One such practice is effective science communication.
Science communication can take many forms and is typically grouped into one of two types depending on the target audience—either a scientific audience or a non-scientific, general audience. While both types of audience-oriented communication are important for scientists and students, the focus of this study is on communicating science with non-experts (abbreviated as SciComm). In the current study, we describe SciComm as the use of appropriate media, messages, or activities to exchange information or viewpoints of science opinion or scientific information with non-experts. Depending on the goal of SciComm, it can be used for “fostering greater understanding of science and scientific methods or gaining greater insight into diverse public views and concerns about the science related to a contentious issue” (National Academies of Sciences, Engineering, 2017a, p. 14).
SciComm is an important scientific practice that benefits both scientists and the public. With effective SciComm, the public learns about foundational and modern scientific understanding that can guide personal and societal decisions. Additionally, the public can appreciate the credibility of scientists and the scientific process to trust scientific consensus even if the scientific content is not easily understood. Communication also allows scientists to recruit more people to engage with science as well as to collaborate and learn about issues in need of more research.
As such, scientists are being encouraged to engage in SciComm by their scientific communities and the public (Cicerone, 2006; Department of Science and Technology, 2014; European Commission, 2002; Jia & Liu, 2014; Leshner, 2007; National Research Council (U.S.). Committee on Risk Perception and Communication, 1989; Royal Society (Great Britain) & Bodmer, 1985), as well as combat the spread of misinformation (Scheufele & Krause, 2019). Additionally, surveyed scientists report viewing themselves as important components in societal decision-making (Besley & Nisbet, 2013) and commonly communicate with the public (Hamlyn et al., 2015; Rainie et al., 2015). Moreover, support and focus for more effective SciComm across STEM fields has grown. For example, researchers have investigated how to communicate engineering issues and technological perspectives of science, such as genetic engineering (Blancke et al., 2017; Kolodinsky, 2018), nanotechnology (Castellini et al., 2007), and artificial intelligence (Nah et al., 2020).
A pertinent example of scientists practicing effective SciComm was seen throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, where technical experts in virology, epidemiology, data science, etc. took to social media and news media to produce and disseminate evidence-based, accurate health protocols and information about the novel coronavirus (American Society for Biochemistry and Molecular Biology (ASBMB), 2020). During major events, such as the pandemic, scientists are responsible for an important role in communicating emerging science with the public to ease fears, inform decisions, encourage engagement, and give hope to the future.
Because SciComm is an important practice for scientists, it is also essential that undergraduate science students engage with SciComm (Brownell et al., 2013b). All college students are expected to become proficient in interpersonal skills, including communication (National Academies of Sciences, Engineering, 2017b), and this is expressly true for students in STEM fields including biology (American Association for the Advancement of Science, 2011), chemistry (American Chemical Society, 2015), physics (Joint Task Force on Undergraduate Physics Programs, 2016), engineering (Eichhorn et al., 2010; Riemer, 2007), technology (Bielefeldt, 2014), and math (Saxe & Braddy, 2015).
Environmental science is an important context in which to study SciComm skills because it is transdisciplinary—at the intersection of biology, chemistry, physics, and social sciences. Seminal documents in biology (American Association for the Advancement of Science, 2011; Clemmons et al., 2020), chemistry (American Chemical Society, 2015), and physics (Joint Task Force on Undergraduate Physics Programs, 2016) have explicitly stated the need for helping students develop science communication skills. These seminal documents are being used across the sciences to inform curricula and are relevant in guiding curricula and research in environmental science education. Additionally, environmental science encompasses some vital topics relevant to all of society (e.g., climate change) and thus students learning about these important topics should also be learning about how to share that information with the public. Helping a wide range of students develop science communication skills may help students understand scientific concepts, the process of science, and the skills to engage with science after they are out of school regardless of whether they pursue science-related careers. These outcomes are essential in promoting the science literacy of our students and citizens.
Conceptual framework
When aiming to help students develop skills, it is an important first step to operationalize those skills. In the context of undergraduate life sciences, the 2011 Vision and Change report broadly defined the skills, labeled as core competencies, students should develop in their undergraduate programs (AAAS, 2011). Clemmons et al. (2020) unpacked these core competencies into program- and course-level outcomes. Regarding communication, they define that students should be able to “share ideas, data, and findings with others clearly and accurately”; “Use appropriate language and style to communicate science effectively to targeted audiences (e.g., the general public, biology experts, collaborators in other disciplines)”; and “Use a variety of modes to communicate science (e.g., oral, written, visual).” We expanded those definitions, using evidence-based practices and principles of science communication, to define the key elements of SciComm that are appropriate for undergraduate science students. The resulting Essential Elements for Effective Science Communication (EEES) framework (Wack et al., 2021) adapts skills and concepts from the literature (Besley et al., 2018; Mercer-Mapstone & Kuchel, 2017) and organizes them into four strategic categories of storytelling: “who,” “why,” “what,” and “how” (Fig. 1). The full framework is available in Wack et al. (2021).
The framework is further broken down into 13 elements that are organized under these four categories, which we used to assess the students’ baseline SciComm skills. As shown in Fig. 1, the four categories overlap to represent the interrelated nature of the 13 elements. In order to create effective and cohesive SciComm, each element must be considered in relation to the others. Briefly, we describe the categories and the elements they encompass below.
The elements for who science students should communicate science with include identifying and understanding a suitable target audience and considering the levels of prior knowledge in the target audience. The elements for why science students should communicate science include identifying the purpose and intended outcome of the communication; this element is expanded upon by the important SciComm objectives defined by Besley et al. (2018)—including to increase knowledge and awareness, boost interest and excitement, listen and demonstrate openness, prove competence, reframe issues, impart shared values, and convey warmth and respect. Further, science students should understand the theories of science communication and why science communication is important. The elements of what science students should communicate include focusing on narrow, factual content and situating that content in a relevant context that is sensitive to social, political, and cultural factors. Finally, the elements for how science students should communicate science includes encouraging a two-way dialogue with the audience, promoting audience engagement with the science, using appropriate language, choosing a mode and platform to reach the target audience, and adding stylistic elements (e.g., humor, anecdotes, analogies, metaphors, rhetoric, imagery, narratives, and trying to appeal to multiple senses). See Wack et al. (2021) for the full framework.
The EEES framework was originally used to guide the development of a lesson for undergraduate biology students in an introductory lab (Wack et al., 2021). This framework is relevant here because, while biology is only a portion of the course context in this study (i.e., environmental science), this framework was developed to be broadly applicable to any science students in undergraduate programs. Also, the framework describes the best practices for communicating science; through the lens of the backward design process (Wiggins & McTighe, 2005), these best practices can be thought of as learning objectives. Therefore, it is appropriate to then assess student work with the same framework.
Baseline skills
After operationalizing competencies to provide a clear picture of what instructors should help their students attain, it is also important to understand what baseline skills students have at the start of a lesson; that way, a curriculum can be tailored to skim through honed skills and emphasize weaker skills. Identifying baseline skills, therefore, makes helping students learn these skills as efficiently and effectively as possible (Novak, 2010; Quitadamo & Kurtz, 2007). A similar argument is well-established in the context of helping students achieve conceptual understanding with the literature on prior knowledge (e.g., Ausubel, 2012; Bergan-Roller et al., 2018; Binder et al., 2019; Lazarowitz & Lieb, 2006; National Research Council (U.S.) & Committee on Programs for Advanced Study of Mathematics and Science in American High Schools., 2002; Tanner & Allen, 2005; Upadhyay & DeFranco, 2008); however, assessing skills before a lesson is less commonly discussed in the literature, which we designate as baseline skills.
Assessment is required to identify students’ skills, including their baseline skills. However, to our knowledge, there is very little literature that provides insight into the assessment of undergraduate science students on science communication skills. Kulgemeyer and Schecker (2013) examined how students communicate science in the limited context of older secondary students communicating physics phenomena to younger students. In another study, Kulgemeyer (2018) went further by testing older secondary students on audience-oriented SciComm best practices and found that those with more SciComm experience, or more developed baseline skills, were better at discerning an audience’s needs for particular SciComm content than students who had less experience with SciComm but were quite knowledgeable about the content. Other studies related to students and SciComm have measured application of SciComm knowledge with closed-response quiz questions (Wack et al., 2021), perceptions and confidence in communicating science (Brownell et al., 2013a), the value of SciComm (Edmondston et al., 2010a), and perceptions of SciComm skills (Yeoman et al., 2011); but they have not assessed how students demonstrate SciComm skills. More work needs to be done to assess how students communicate science in a variety of contexts (e.g., disciplines, audiences, level of the student) in order to establish a generalized baseline of skills from which to build an effective curriculum.
In this descriptive study, we surveyed baseline SciComm skills of students in an undergraduate environmental science course in order to inform instructors and curriculum designers on how to help similar science students develop SciComm skills. We took an exploratory, qualitative approach to investigate the following research questions:
-
RQ1- How did these students demonstrate their SciComm skills according to the EEES framework?
-
RQ2- How did the way these students planned their SciComm compare to how they executed their SciComm projects?
-
RQ3- Did instructions influence the SciComm skills that these students demonstrated?