Bergwall, A., & Hemmi, K. (2017). The state of proof in Finnish and Swedish mathematics textbooks—Capturing differences in approaches to upper-secondary integral calculus. Mathematical Thinking and Learning, 19(1), 1–18. https://doi.org/10.1080/10986065.2017.1258615
Article
Google Scholar
Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93(3), 627. https://doi.org/10.1037/0022-0663.93.3.627
Article
Google Scholar
Boaler, J. (2014). Research suggests that timed tests cause math anxiety. Teaching Children Mathematics, 20(8), 469–474.
Article
Google Scholar
Boli, J. (2014). New citizens for a new society: The institutional origins of mass schooling in Sweden. Elsevier.
Google Scholar
Booth, J. L., Barbieri, C., Eyer, F., & Paré-Blagoev, E. J. (2014). Persistent and pernicious errors in algebraic problem solving. The Journal of Problem Solving, 7(1), 3. https://doi.org/10.7771/1932-6246.1161
Article
Google Scholar
Buchbinder, O., Chazan, D., & Fleming, E. (2015). Insights into the school mathematics tradition from solving linear equations. For the Learning of Mathematics, 35, 2–8.
Google Scholar
Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. The Journal of Mathematical Behavior, 32(3), 613–632. https://doi.org/10.1016/j.jmathb.2013.07.002
Article
Google Scholar
Cai, J. (2000). Mathematical thinking involved in US and Chinese students’ solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2(4), 309–340. https://doi.org/10.1207/S15327833MTL0204_4
Article
Google Scholar
Cai, J. (2004). Why do US and Chinese students think differently in mathematical problem solving?: Impact of early algebra learning and teachers’ beliefs. The Journal of Mathematical Behavior, 23(2), 135–167. https://doi.org/10.1016/j.jmathb.2004.03.004
Article
Google Scholar
Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6
Article
Google Scholar
Carr, M., & Taasoobshirazi, G. (2017). Is strategy variability advantageous? It depends on grade and type of strategy. Learning and Individual Differences, 54, 102–108. https://doi.org/10.1016/j.lindif.2017.01.015
Article
Google Scholar
Chen, C., & Stevenson, H. W. (1995). Motivation and mathematics achievement: A comparative study of Asian-American, Caucasian-American, and East Asian high school students. Child Development, 66(4), 1215–1234. https://doi.org/10.1111/j.1467-8624.1995.tb00932.x
Article
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale.
Google Scholar
De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. Educational Studies in Mathematics, 50(3), 311–334. https://doi.org/10.1023/A:1021205413749
Article
Google Scholar
De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2007). The illusion of linearity: From analysis to improvement. Springer.
Google Scholar
Dover, A., & Shore, B. M. (1991). Giftedness and flexibility on a mathematical set-breaking task. Gifted Child Quarterly, 35(2), 99–124. https://doi.org/10.1177/001698629103500209
Article
Google Scholar
Dowker, A. (1992). Computational estimation strategies of professional mathematicians. Journal for Research in Mathematics Education, 23, 45–55. https://doi.org/10.2307/749163
Article
Google Scholar
Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., & Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 27(3), 421–438. https://doi.org/10.1007/s10212-011-0087-0
Article
Google Scholar
Flavell, J. H., & Wohlwill, J. F. (1969). Formal and functional aspects of cognitive development. In D. Elkind & J. H. Flavell (Eds.), Studies in cognitive development: Essays in honor of Jean Piaget (pp. 67–120). Oxford University Press.
Google Scholar
González Astudillo, M. T., & Sierra Vázquez, M. (2004). Textbook analysis methodology of mathematics: Critical points in secondary education in Spain during the twentieth century. Science Teaching, 22(3), 705. in Spanish.
Google Scholar
Gorgorió, N., Albarracín, L., Laine, A., & Llinares, S. (2018). Alicante-Helsinki-Barcelona: Students’ mathematical background and requirements to enter primary teaching degree. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, p. 237). Umeå, Sweden: PME.
Hardy, G. H. (1940). A Mathematician’s apology. Cambridge University Press.
Google Scholar
Hästö, P., & Palkki, R. (2019). Finnish students’ flexibility and its relation to speed and accuracy in equation solving. Nordic Studies in Mathematics Education, 24(3–4), 43–58.
Google Scholar
Hästö, P., Palkki, R., Tuomela, D., & Star, J. R. (2019). Relationship between mathematical flexibility and success in national examinations. European Journal of Science and Mathematics Education, 7(1), 1–13.
Article
Google Scholar
Hatano, G., & Inagaki, K. (1984). Two courses of expertise. Research and Clinical Center for Child Development Annual Report, 6, 27–36.
Google Scholar
Hemmi, K., & Krzywacki, H. (2014). Crossing the boundaries: Swedish teachers’ interplay with Finnish curriculum materials. In Conference on Mathematics Textbook Research and Development (ICMT-2014) (p. 263).
Hemmi, K., & Ryve, A. (2015). Effective mathematics teaching in Finnish and Swedish teacher education discourses. Journal of Mathematics Teacher Education, 18(6), 501–521. https://doi.org/10.1007/s10857-014-9293-4
Article
Google Scholar
Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. American Psychologist, 58, 78–79. https://doi.org/10.1037/0003-066X.58.1.78
Article
Google Scholar
Huntley, M. A., Marcus, R., Kahan, J., & Miller, J. L. (2007). Investigating high-school students’ reasoning strategies when they solve linear equations. The Journal of Mathematical Behavior, 26(2), 115–139. https://doi.org/10.1016/j.jmathb.2007.05.005
Article
Google Scholar
Jiang, C., Hwang, S., & Cai, J. (2014). Chinese and Singaporean sixth-grade students’ strategies for solving problems about speed. Educational Studies in Mathematics, 87(1), 27–50. https://doi.org/10.1007/s10649-014-9559-x
Article
Google Scholar
Jiang, R., Li, X., Fernández, C., & Fu, X. (2017). Students’ performance on missing-value word problems: A cross-national developmental study. European Journal of Psychology of Education, 32(4), 551–570. https://doi.org/10.1007/s10212-016-0322-9
Article
Google Scholar
Joglar, N., Abánades, M., & Star, J. R. (2018). April). Flexibilidad matemática y resolución de ecuaciones lineales. Uno: Revista De Didáctica De Las Matematicas, 80, 51–57.
Google Scholar
Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124(1), 83–97. https://doi.org/10.1037/0096-3445.124.1.83
Article
Google Scholar
Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. The Journal of Mathematical Behavior, 31(1), 73–90. https://doi.org/10.1016/j.jmathb.2011.11.001
Article
Google Scholar
Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 85–110). Lawrence Erlbaum Associates.
Google Scholar
Li, X., Jiang, R., & Qian, Y. (2014). 5–8 Graders’ overuse of proportionality on missing-value problems. Journal of Mathematics Education, 23(6), 73–77.
Google Scholar
Liu, R., Wang, J., Star, J. R., Zhen, R., Jiang, R., & Fu, X. (2018). Turning potential flexibility into flexible performance: Moderating effect of self-efficacy and use of flexible cognition. Frontiers in Psychology, 9, 646. https://doi.org/10.3389/fpsyg.2018.00646
Article
Google Scholar
López Beltrán, M., Albarracín Gordo, Ll., Ferrando Palomares, I., Montejo-Gámez, J., Ramos Alonso, P, Serradó Bayés, A., Thibaut Tadeo, E., & Mallavibarrena, R. (2020). La educación matemática en las enseñanzas obligatorias y el bachillerato. In D. Martín de Diego (Ed.), Libro Blanco de las Matemáticas (pp. 1–94). Real Sociedad Matemática Española y Fundación Ramón Areces. https://www.fundacionareces.es/fundacionareces/es/publicaciones/libro-blanco-de-las-matematicas.html
Lynch, K., & Star, J. R. (2014). Views of struggling students on instruction incorporating multiple strategies in Algebra I: An exploratory study. Journal for Research in Mathematics Education, 45(1), 6–18. https://doi.org/10.5951/jresematheduc.45.1.0006
Article
Google Scholar
Maciejewski, W. (2020). Between confidence and procedural flexibility in calculus. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2020.1840639
Article
Google Scholar
Maciejewski, W., & Star, J. (2016). Developing flexible procedural knowledge in undergraduate calculus. Research in Mathematics Education, 18(3), 299–316. https://doi.org/10.1080/14794802.2016.1148626
Article
Google Scholar
Maciejewski, W., & Star, J. R. (2019). Justifications for choices made in procedures. Educational Studies in Mathematics, 101, 325–340. https://doi.org/10.1007/s10649-019-09886-7
Article
Google Scholar
Martin, M. O., Mullis, I. V., Foy, P., & Olson, J. (2008). TIMSS 2007 International Mathematics Report. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.
Martin, T., Rayne, K., Kemp, N. J., Hart, J., & Diller, K. R. (2005). Teaching for adaptive expertise in biomedical engineering ethics. Science and Engineering Ethics, 11(2), 257–276.
Article
Google Scholar
McGraw, R., Lubienski, S. T., & Strutchens, M. E. (2006). A closer look at gender in NAEP mathematics achievement and affect data: Intersections with achievement, race/ethnicity, and socioeconomic status. Journal for Research in Mathematics Education, 37(2), 129–150.
Google Scholar
McMullen, J., Brezovszky, B., Hannula-Sormunen, M. M., Veermans, K., Rodríguez-Aflecht, G., Pongsakdi, N., & Lehtinen, E. (2017). Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. Learning and Instruction, 49, 178–187. https://doi.org/10.1016/j.learninstruc.2017.02.001
Article
Google Scholar
Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 International Results in Mathematics. Herengracht 487, Amsterdam, 1017 BT, The Netherlands: ERIC.
Muñiz-Rodríguez, L., Alonso, P., Rodríguez-Muñiz, L. J., & Valcke, M. (2016). ¿ Hay un vacío en la formación inicial del profesorado de matemáticas de Secundaria en España respecto a otros países?[Is there a gap in initial secondary mathematics teacher education in Spain compared to other countries?]. Revista de educación, 372, 106–132. https://doi.org/10.4438/1988-592X-RE-2015-372-317.
Mustonen, V., & Hakkarainen, K. (2015). Tracing two apprentices’ trajectories toward adaptive professional expertise in fingerprint examination. Vocations and Learning, 8(2), 185–211.
Article
Google Scholar
National Council of Teachers of Mathematics. (2014). Procedural fluency in mathematics: A position of the National Council of Teachers of Mathematics. Retrieved from https://www.nctm.org/Standards-and-Positions/Position-Statements/Procedural-Fluency-in-Mathematics/.
National Research Council. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. National Academy Press.
Google Scholar
Newton, K. J., Lange, K., & Booth, J. L. (2019). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. The Journal of Experimental Education. https://doi.org/10.1080/00220973.2019.1586629
Article
Google Scholar
Newton, K., Star, J. R., & Lynch, K. (2010). Understanding the development of flexibility in struggling algebra students. Mathematical Thinking and Learning, 12(4), 282–305. https://doi.org/10.1080/10986065.2010.482150
Article
Google Scholar
Pehkonen, L., Hemmi, K., Krzywacki, H., & Laine, A. (2018). A cross-cultural study of teachers’ relation to curriculum materials. In Nordic Research in Mathematics Education Papers of NORMA 17 The Eighth Nordic Conference on Mathematics Education Stockholm, May 30-June 2, 2017. Svensk förening för matematikdidaktisk forskning.
Pirttimaa, M., Husu, J., & Metsärinne, M. (2017). Uncovering procedural knowledge in craft, design, and technology education: A case of hands-on activities in electronics. International Journal of Technology and Design Education, 27(2), 215–231.
Article
Google Scholar
Reyes, L. H., & Stanic, G. M. (1988). Race, sex, socioeconomic status, and mathematics. Journal for Research in Mathematics Education, 19(1), 26–43.
Article
Google Scholar
Rico, L. (1993). Mathematics Assessment in the Spanish Educational System. In M. Niss (Ed.) Cases of Assessment in Mathematics Education. New ICMI Study Series, vol 1. Springer. https://doi.org/10.1007/978-94-017-0980-4_2
Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574. https://doi.org/10.1037/0022-0663.99.3.561
Article
Google Scholar
Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101(3), 529–544. https://doi.org/10.1037/a0014224
Article
Google Scholar
Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Impact on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852. https://doi.org/10.1037/a0016026
Article
Google Scholar
Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: When should multiple procedures be introduced? British Journal of Educational Psychology, 82, 436–455.
Article
Google Scholar
Ruiz, N., & Bosch, J. (2007). La educación matemática en España. Práxis Educativa, 2(2), 151–160.
Google Scholar
Sahlberg, P. (2014). Finnish Lessons 2.0: What Can the World Learn From Educational Change in Finland?. Teachers College Press.
Shaw, S. T., Pogossian, A. A., & Ramirez, G. (2020). The mathematical flexibility of college students: The role of cognitive and affective factors. British Journal of Educational Psychology., 90, 981.
Article
Google Scholar
Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351. https://doi.org/10.1177/0963721417700129
Article
Google Scholar
Star, J., & Madnani, J. (2004). Which way is best? Students’ conceptions of optimal strategies for solving equations. Paper presented at the Proceedings of the twenty-sixth annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education.
Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411. https://doi.org/10.2307/30034943
Article
Google Scholar
Star, J., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM Mathematics Education, 41(5), 557–567. https://doi.org/10.1007/s11858-009-0185-5
Article
Google Scholar
Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students’ gains in flexibility. Contemporary Educational Psychology, 41, 198–208. https://doi.org/10.1016/j.cedpsych.2015.03.001
Article
Google Scholar
Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18, 565–579. https://doi.org/10.1016/j.learninstruc.2007.09.018
Article
Google Scholar
Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408–426. https://doi.org/10.1016/j.jecp.2008.11.004
Article
Google Scholar
Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31, 280–300. https://doi.org/10.1016/j.cedpsych.2005.08.001
Article
Google Scholar
Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Jump or compensate? Strategy flexibility in the number domain up to 100. ZDM Mathematics Education, 41(5), 581–590. https://doi.org/10.1007/s11858-009-0187-3
Article
Google Scholar
Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373.
Article
Google Scholar
Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335–359. https://doi.org/10.1007/BF03174765
Article
Google Scholar
Xu, L., Liu, R., Star, J. R., Wang, J., Liu, Y., & Zhen, R. (2017). Measures of potential flexibility and practical flexibility in equation solving. Frontiers in Psychology, 8, 1–13. https://doi.org/10.3389/fpsyg.2017.01368
Article
Google Scholar