Bergwall, A., & Hemmi, K. (2017). The state of proof in Finnish and Swedish mathematics textbooks—Capturing differences in approaches to upper-secondary integral calculus. *Mathematical Thinking and Learning,* *19*(1), 1–18. https://doi.org/10.1080/10986065.2017.1258615

Article
Google Scholar

Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. *Journal of Educational Psychology,* *93*(3), 627. https://doi.org/10.1037/0022-0663.93.3.627

Article
Google Scholar

Boaler, J. (2014). Research suggests that timed tests cause math anxiety. *Teaching Children Mathematics,* *20*(8), 469–474.

Article
Google Scholar

Boli, J. (2014). *New citizens for a new society: The institutional origins of mass schooling in Sweden*. Elsevier.

Google Scholar

Booth, J. L., Barbieri, C., Eyer, F., & Paré-Blagoev, E. J. (2014). Persistent and pernicious errors in algebraic problem solving. *The Journal of Problem Solving,* *7*(1), 3. https://doi.org/10.7771/1932-6246.1161

Article
Google Scholar

Buchbinder, O., Chazan, D., & Fleming, E. (2015). Insights into the school mathematics tradition from solving linear equations. *For the Learning of Mathematics,* *35*, 2–8.

Google Scholar

Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. *The Journal of Mathematical Behavior,* *32*(3), 613–632. https://doi.org/10.1016/j.jmathb.2013.07.002

Article
Google Scholar

Cai, J. (2000). Mathematical thinking involved in US and Chinese students’ solving of process-constrained and process-open problems. *Mathematical Thinking and Learning,* *2*(4), 309–340. https://doi.org/10.1207/S15327833MTL0204_4

Article
Google Scholar

Cai, J. (2004). Why do US and Chinese students think differently in mathematical problem solving?: Impact of early algebra learning and teachers’ beliefs. *The Journal of Mathematical Behavior,* *23*(2), 135–167. https://doi.org/10.1016/j.jmathb.2004.03.004

Article
Google Scholar

Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. *The Journal of Mathematical Behavior,* *21*(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6

Article
Google Scholar

Carr, M., & Taasoobshirazi, G. (2017). Is strategy variability advantageous? It depends on grade and type of strategy. *Learning and Individual Differences,* *54*, 102–108. https://doi.org/10.1016/j.lindif.2017.01.015

Article
Google Scholar

Chen, C., & Stevenson, H. W. (1995). Motivation and mathematics achievement: A comparative study of Asian-American, Caucasian-American, and East Asian high school students. *Child Development,* *66*(4), 1215–1234. https://doi.org/10.1111/j.1467-8624.1995.tb00932.x

Article
Google Scholar

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale.

Google Scholar

De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. *Educational Studies in Mathematics,* *50*(3), 311–334. https://doi.org/10.1023/A:1021205413749

Article
Google Scholar

De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2007). *The illusion of linearity: From analysis to improvement*. Springer.

Google Scholar

Dover, A., & Shore, B. M. (1991). Giftedness and flexibility on a mathematical set-breaking task. *Gifted Child Quarterly,* *35*(2), 99–124. https://doi.org/10.1177/001698629103500209

Article
Google Scholar

Dowker, A. (1992). Computational estimation strategies of professional mathematicians. *Journal for Research in Mathematics Education,* *23*, 45–55. https://doi.org/10.2307/749163

Article
Google Scholar

Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., & Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. *European Journal of Psychology of Education,* *27*(3), 421–438. https://doi.org/10.1007/s10212-011-0087-0

Article
Google Scholar

Flavell, J. H., & Wohlwill, J. F. (1969). Formal and functional aspects of cognitive development. In D. Elkind & J. H. Flavell (Eds.), *Studies in cognitive development: Essays in honor of Jean Piaget* (pp. 67–120). Oxford University Press.

Google Scholar

González Astudillo, M. T., & Sierra Vázquez, M. (2004). Textbook analysis methodology of mathematics: Critical points in secondary education in Spain during the twentieth century. *Science Teaching,* *22*(3), 705. in Spanish.

Google Scholar

Gorgorió, N., Albarracín, L., Laine, A., & Llinares, S. (2018). Alicante-Helsinki-Barcelona: Students’ mathematical background and requirements to enter primary teaching degree. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). *Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education* (Vol. 5, p. 237). Umeå, Sweden: PME.

Hardy, G. H. (1940). *A Mathematician’s apology*. Cambridge University Press.

Google Scholar

Hästö, P., & Palkki, R. (2019). Finnish students’ flexibility and its relation to speed and accuracy in equation solving. *Nordic Studies in Mathematics Education,* *24*(3–4), 43–58.

Google Scholar

Hästö, P., Palkki, R., Tuomela, D., & Star, J. R. (2019). Relationship between mathematical flexibility and success in national examinations. *European Journal of Science and Mathematics Education,* *7*(1), 1–13.

Article
Google Scholar

Hatano, G., & Inagaki, K. (1984). Two courses of expertise. *Research and Clinical Center for Child Development Annual Report,* *6*, 27–36.

Google Scholar

Hemmi, K., & Krzywacki, H. (2014). Crossing the boundaries: Swedish teachers’ interplay with Finnish curriculum materials. In *Conference on Mathematics Textbook Research and Development (ICMT-2014)* (p. 263).

Hemmi, K., & Ryve, A. (2015). Effective mathematics teaching in Finnish and Swedish teacher education discourses. *Journal of Mathematics Teacher Education,* *18*(6), 501–521. https://doi.org/10.1007/s10857-014-9293-4

Article
Google Scholar

Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. *American Psychologist,* *58*, 78–79. https://doi.org/10.1037/0003-066X.58.1.78

Article
Google Scholar

Huntley, M. A., Marcus, R., Kahan, J., & Miller, J. L. (2007). Investigating high-school students’ reasoning strategies when they solve linear equations. *The Journal of Mathematical Behavior,* *26*(2), 115–139. https://doi.org/10.1016/j.jmathb.2007.05.005

Article
Google Scholar

Jiang, C., Hwang, S., & Cai, J. (2014). Chinese and Singaporean sixth-grade students’ strategies for solving problems about speed. *Educational Studies in Mathematics,* *87*(1), 27–50. https://doi.org/10.1007/s10649-014-9559-x

Article
Google Scholar

Jiang, R., Li, X., Fernández, C., & Fu, X. (2017). Students’ performance on missing-value word problems: A cross-national developmental study. *European Journal of Psychology of Education,* *32*(4), 551–570. https://doi.org/10.1007/s10212-016-0322-9

Article
Google Scholar

Joglar, N., Abánades, M., & Star, J. R. (2018). April). Flexibilidad matemática y resolución de ecuaciones lineales. *Uno: Revista De Didáctica De Las Matematicas,* *80*, 51–57.

Google Scholar

Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. *Journal of Experimental Psychology: General,* *124*(1), 83–97. https://doi.org/10.1037/0096-3445.124.1.83

Article
Google Scholar

Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. *The Journal of Mathematical Behavior,* *31*(1), 73–90. https://doi.org/10.1016/j.jmathb.2011.11.001

Article
Google Scholar

Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), *Cognitive skills and their acquisition* (pp. 85–110). Lawrence Erlbaum Associates.

Google Scholar

Li, X., Jiang, R., & Qian, Y. (2014). 5–8 Graders’ overuse of proportionality on missing-value problems. *Journal of Mathematics Education,* *23*(6), 73–77.

Google Scholar

Liu, R., Wang, J., Star, J. R., Zhen, R., Jiang, R., & Fu, X. (2018). Turning potential flexibility into flexible performance: Moderating effect of self-efficacy and use of flexible cognition. *Frontiers in Psychology,* *9*, 646. https://doi.org/10.3389/fpsyg.2018.00646

Article
Google Scholar

López Beltrán, M., Albarracín Gordo, Ll., Ferrando Palomares, I., Montejo-Gámez, J., Ramos Alonso, P, Serradó Bayés, A., Thibaut Tadeo, E., & Mallavibarrena, R. (2020). La educación matemática en las enseñanzas obligatorias y el bachillerato. In D. Martín de Diego (Ed.), *Libro Blanco de las Matemáticas* (pp. 1–94). Real Sociedad Matemática Española y Fundación Ramón Areces. https://www.fundacionareces.es/fundacionareces/es/publicaciones/libro-blanco-de-las-matematicas.html

Lynch, K., & Star, J. R. (2014). Views of struggling students on instruction incorporating multiple strategies in Algebra I: An exploratory study. *Journal for Research in Mathematics Education,* *45*(1), 6–18. https://doi.org/10.5951/jresematheduc.45.1.0006

Article
Google Scholar

Maciejewski, W. (2020). Between confidence and procedural flexibility in calculus. *International Journal of Mathematical Education in Science and Technology*. https://doi.org/10.1080/0020739X.2020.1840639

Article
Google Scholar

Maciejewski, W., & Star, J. (2016). Developing flexible procedural knowledge in undergraduate calculus. *Research in Mathematics Education,* *18*(3), 299–316. https://doi.org/10.1080/14794802.2016.1148626

Article
Google Scholar

Maciejewski, W., & Star, J. R. (2019). Justifications for choices made in procedures. *Educational Studies in Mathematics,* *101*, 325–340. https://doi.org/10.1007/s10649-019-09886-7

Article
Google Scholar

Martin, M. O., Mullis, I. V., Foy, P., & Olson, J. (2008). *TIMSS 2007 International Mathematics Report*. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.

Martin, T., Rayne, K., Kemp, N. J., Hart, J., & Diller, K. R. (2005). Teaching for adaptive expertise in biomedical engineering ethics. *Science and Engineering Ethics,* *11*(2), 257–276.

Article
Google Scholar

McGraw, R., Lubienski, S. T., & Strutchens, M. E. (2006). A closer look at gender in NAEP mathematics achievement and affect data: Intersections with achievement, race/ethnicity, and socioeconomic status. *Journal for Research in Mathematics Education,* *37*(2), 129–150.

Google Scholar

McMullen, J., Brezovszky, B., Hannula-Sormunen, M. M., Veermans, K., Rodríguez-Aflecht, G., Pongsakdi, N., & Lehtinen, E. (2017). Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. *Learning and Instruction,* *49*, 178–187. https://doi.org/10.1016/j.learninstruc.2017.02.001

Article
Google Scholar

Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). *TIMSS 2011 International Results in Mathematics*. Herengracht 487, Amsterdam, 1017 BT, The Netherlands: ERIC.

Muñiz-Rodríguez, L., Alonso, P., Rodríguez-Muñiz, L. J., & Valcke, M. (2016). ¿ Hay un vacío en la formación inicial del profesorado de matemáticas de Secundaria en España respecto a otros países?[Is there a gap in initial secondary mathematics teacher education in Spain compared to other countries?].* Revista de educación, 372*, 106–132. https://doi.org/10.4438/1988-592X-RE-2015-372-317.

Mustonen, V., & Hakkarainen, K. (2015). Tracing two apprentices’ trajectories toward adaptive professional expertise in fingerprint examination. *Vocations and Learning,* *8*(2), 185–211.

Article
Google Scholar

National Council of Teachers of Mathematics. (2014). *Procedural fluency in mathematics: A position of the National Council of Teachers of Mathematics*. Retrieved from https://www.nctm.org/Standards-and-Positions/Position-Statements/Procedural-Fluency-in-Mathematics/.

National Research Council. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), *Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. *National Academy Press.

Google Scholar

Newton, K. J., Lange, K., & Booth, J. L. (2019). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. *The Journal of Experimental Education*. https://doi.org/10.1080/00220973.2019.1586629

Article
Google Scholar

Newton, K., Star, J. R., & Lynch, K. (2010). Understanding the development of flexibility in struggling algebra students. *Mathematical Thinking and Learning,* *12*(4), 282–305. https://doi.org/10.1080/10986065.2010.482150

Article
Google Scholar

Pehkonen, L., Hemmi, K., Krzywacki, H., & Laine, A. (2018). A cross-cultural study of teachers’ relation to curriculum materials. In *Nordic Research in Mathematics Education Papers of NORMA 17 The Eighth Nordic Conference on Mathematics Education Stockholm, May 30-June 2, 2017*. Svensk förening för matematikdidaktisk forskning.

Pirttimaa, M., Husu, J., & Metsärinne, M. (2017). Uncovering procedural knowledge in craft, design, and technology education: A case of hands-on activities in electronics. *International Journal of Technology and Design Education,* *27*(2), 215–231.

Article
Google Scholar

Reyes, L. H., & Stanic, G. M. (1988). Race, sex, socioeconomic status, and mathematics. *Journal for Research in Mathematics Education,* *19*(1), 26–43.

Article
Google Scholar

Rico, L. (1993). Mathematics Assessment in the Spanish Educational System. In M. Niss (Ed.) *Cases of Assessment in Mathematics Education*. New ICMI Study Series, vol 1. Springer. https://doi.org/10.1007/978-94-017-0980-4_2

Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. *Journal of Educational Psychology,* *99*(3), 561–574. https://doi.org/10.1037/0022-0663.99.3.561

Article
Google Scholar

Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. *Journal of Educational Psychology,* *101*(3), 529–544. https://doi.org/10.1037/a0014224

Article
Google Scholar

Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Impact on conceptual and procedural knowledge of equation solving. *Journal of Educational Psychology,* *101*(4), 836–852. https://doi.org/10.1037/a0016026

Article
Google Scholar

Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: When should multiple procedures be introduced? *British Journal of Educational Psychology,* *82*, 436–455.

Article
Google Scholar

Ruiz, N., & Bosch, J. (2007). La educación matemática en España. *Práxis Educativa,* *2*(2), 151–160.

Google Scholar

Sahlberg, P. (2014). *Finnish Lessons 2.0: What Can the World Learn From Educational Change in Finland?*. Teachers College Press.

Shaw, S. T., Pogossian, A. A., & Ramirez, G. (2020). The mathematical flexibility of college students: The role of cognitive and affective factors. *British Journal of Educational Psychology.,* *90*, 981.

Article
Google Scholar

Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. *Current Directions in Psychological Science,* *26*(4), 346–351. https://doi.org/10.1177/0963721417700129

Article
Google Scholar

Star, J., & Madnani, J. (2004). *Which way is best? Students’ conceptions of optimal strategies for solving equations*. Paper presented at the Proceedings of the twenty-sixth annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education.

Star, J. R. (2005). Reconceptualizing procedural knowledge. *Journal for Research in Mathematics Education,* *36*(5), 404–411. https://doi.org/10.2307/30034943

Article
Google Scholar

Star, J., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility for solving equations. *ZDM Mathematics Education,* *41*(5), 557–567. https://doi.org/10.1007/s11858-009-0185-5

Article
Google Scholar

Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students’ gains in flexibility. *Contemporary Educational Psychology,* *41*, 198–208. https://doi.org/10.1016/j.cedpsych.2015.03.001

Article
Google Scholar

Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. *Learning and Instruction,* *18*, 565–579. https://doi.org/10.1016/j.learninstruc.2007.09.018

Article
Google Scholar

Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. *Journal of Experimental Child Psychology,* *102*, 408–426. https://doi.org/10.1016/j.jecp.2008.11.004

Article
Google Scholar

Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. *Contemporary Educational Psychology,* *31*, 280–300. https://doi.org/10.1016/j.cedpsych.2005.08.001

Article
Google Scholar

Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Jump or compensate? Strategy flexibility in the number domain up to 100. *ZDM Mathematics Education,* *41*(5), 581–590. https://doi.org/10.1007/s11858-009-0187-3

Article
Google Scholar

Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? *Current Directions in Psychological Science,* *22*(5), 367–373.

Article
Google Scholar

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. *European Journal of Psychology of Education,* *24*, 335–359. https://doi.org/10.1007/BF03174765

Article
Google Scholar

Xu, L., Liu, R., Star, J. R., Wang, J., Liu, Y., & Zhen, R. (2017). Measures of potential flexibility and practical flexibility in equation solving. *Frontiers in Psychology,* *8*, 1–13. https://doi.org/10.3389/fpsyg.2017.01368

Article
Google Scholar