Albert, M., & Beatty, B. J. (2014). Flipping the classroom applications to curriculum redesign for an introduction to management course: Impact on grades. Journal of Education for Business, 89(8), 419–424. https://doi.org/10.1080/08832323.2014.929559.
Article
Google Scholar
Baker, J. W. (2000, April 12-15). The ‘‘classroom flip’’: Using web course management tools to become the guide by the side [Paper presentation]. The 11th international conference on college teaching and learning 2000, Jacksonville, FL.
Becker, W. E., & Powers, J. R. (2001). Student performance, attrition, and class size given missing student data. Economics of Education Review, 20(4), 377–388. https://doi.org/10.1016/S0272-7757(00)00060-1.
Article
Google Scholar
Bishop, J., & Verleger, M. (2013). Testing the flipped classroom with model-eliciting activities and video lectures in a mid-level undergraduate engineering course. Proceedings of Frontiers in Education Conference, FIE, 161–163. https://doi.org/10.1109/FIE.2013.6684807.
Bland, L. (2006, June 18-21). Applying flip/inverted classroom model in electrical engineering to establish life-long learning [Paper presentation]. American Society of Engineering Education Conference and Exposition 2006, Chicago.
Bongey, S. B., Cizadlo, G., & Kalnbach, L. (2005). Using a course management system (CMS) to meet the challenges of large lecture classes. Campus-Wide Information Systems, 22(5), 252–262. https://doi.org/10.1108/10650740510632172.
Boose, M. (2001). Web-based instruction: Successful preparation for course transformation. Journal of Applied Business Research, 17(4), 69–81.
Google Scholar
Cuseo, J. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development, 21(1), 5–21.
Google Scholar
Davies, R. S., Dean, D. L., & Ball, N. (2013). Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course. Educational Technology Research and Development, 61(4), 563-580.
Deci, E. L., & Ryan, R. M. (Eds.) (2002). Handbook of self-determination research. University of Rochester Press.
Google Scholar
Dollar, A., & Steif, P. (2009). Web-based statics course used in an inverted classroom. Proceedings of ASEE Annual Conference and Exposition. https://doi.org/10.18260/1-2--4822.
Drab-Hudson, D. L., Whisenhunt, B. L., Shoptaugh, C. F., Newman, M. C., Rost, A., & Fondren-Happel, R. N. (2012). Transforming introductory psychology: A systematic approach to course redesign. Psychology Learning and Teaching, 11(2), 146–157. https://doi.org/10.2304/plat.2012.11.2.146.
Article
Google Scholar
Fedesco., H. N. & Cary, T. (2016, June 26-29). Why this flip wasn’t a flop: What the numbers don’t tell you about flipped classes [Paper presentation]. ASEE Annual Conference & Exposition 2016, New Orleans, Louisiana. https://doi.org/10.18260/p.27203.
Fulton, K. P. (2012). 10 reasons to flip. Phi Delta Kappan, 94(2), 20–24. https://doi.org/10.1177/003172171209400205.
Article
Google Scholar
Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing student engagement using the flipped classroom. Journal of Nutrition Education and Behavior, 47(1), 109–114. https://doi.org/10.1016/j.jneb.2014.08.008.
Article
Google Scholar
Graves, W., & Twigg, C. (2006). The future of course redesign and the national center for academic transformation: An interview with Carol A Twigg. Innovate, 2(3). http://www.innovateonline.info/index.php?view=article&id=218.
Haerens, L., Aelterman, N., Vansteenkiste, M., Soenens, B., & Van Petegem, S. (2015). Do perceived autonomy-supportive and controlling teaching relate to physical education students’ motivational experiences through unique pathways? Distinguishing between the bright and dark side of motivation. Psychology of Sport and Exercise, 16(P3), 26–36. https://doi.org/10.1016/j.psychsport.2014.08.013.
Article
Google Scholar
Herried, C. F., & Schiller, N. A. (2013). Case studies and the flipped classroom. Journal of College Science Teaching, 42(5), 62–66.
Herrmann, N., Popyack, J. L., Char, B., Zoski, P., Cera, C. D., Lass, R. N., & Nanjappa, A. (2003). Redesigning introductory computer programming using multi-level online modules for a mixed audience. SIGCSE Bulletin (Association for Computing Machinery, Special Interest Group on Computer Science Education), 196–200. https://doi.org/10.1145/792548.611967.
Google Scholar
Hoult, R., Peel, M., & Duffield, C. (2020). Lessons from flipping subjects in engineering: effectiveness of student learning in a flipped environment at the university level. Journal of Civil Engineering Education, 147(1), 04020012. https://doi.org/10.1061/(ASCE)EI.2643-9115.0000028.
Article
Google Scholar
Hudson, D. L., Whisenhunt, B. L., Shoptaugh, C. F., Rost, A. D., & Fondren-Happel, R. N. (2014). Redesigning a large enrollment course: The impact on academic performance, course completion and student perceptions in introductory psychology. Psychology Learning and Teaching, 13(2), 107–119. https://doi.org/10.2304/plat.2014.13.2.107.
Article
Google Scholar
Hudson, D. L., Whisenhunt, B. L., Shoptaugh, C. F., Visio, M. E., Cathey, C., & Rost, A. D. (2015). Change takes time: Understanding and responding to culture change in course redesign. Scholarship of Teaching and Learning in Psychology, 1(4), 255–268. https://doi.org/10.1037/stl0000043.
Article
Google Scholar
Jang, H., Reeve, J., & Deci, E. L. (2010). Engaging students in learning activities: It is not autonomy support or structure but autonomy support and structure. Journal of Educational Psychology, 102(3), 588–600. https://doi.org/10.1037/a0019682.
Article
Google Scholar
Jensen, J. L., Holt, E. A., Sowards, J. B., Heath Ogden, T., & West, R. E. (2018). Investigating strategies for pre-class content learning in a flipped classroom. Journal of Science Education and Technology, 27(6), 523–535. https://doi.org/10.1007/s10956-018-9740-6.
Article
Google Scholar
Johnston, A. N. B., Massa, H., & Burne, T. H. J. (2013). Digital lecture recording: A cautionary tale. Nurse Education in Practice, 13(1), 40–47. https://doi.org/10.1016/j.nepr.2012.07.004.
Article
Google Scholar
Kanelopoulos, J., Papanikolaou, K. A., & Zalimidis, P. (2017). Flipping the classroom to increase students’ engagement and interaction in a mechanical engineering course on machine design. International Journal of Engineering Pedagogy (IJEP), 7(4), 19-34. https://doi.org/10.3991/ijep.v7i4.7427.
Kaner, C., & Fielder, R. L. (2005). Inside out: A computer science course gets a makeover. Proceedings of The National Convention of the Association for Educational Communications and Technology, 2, 254-264.
Karabulut-Ilgu, A., Jaramillo Cherrez, N., & Jahren, C. T. (2018). A systematic review of research on the flipped learning method in engineering education. British Journal of Educational Technology, 49(3), 398–411. https://doi.org/10.1111/bjet.12548.
Article
Google Scholar
Kerr, B. (2015). The flipped classroom in engineering education: A survey of the research. Proceedings of the International Conference on Interactive Collaborative Learning (ICL). 815–818. https://doi.org/10.1109/ICL.2015.7318133.
Google Scholar
Kim, M. K., Kim, S. M., Khera, O., & Getman, J. (2014). The experience of three flipped classrooms in an urban university: An exploration of design principles. Internet and Higher Education, 22, 37–50. https://doi.org/10.1016/j.iheduc.2014.04.003.
Article
Google Scholar
Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the classroom: A gateway to creating an inclusive learning environment. Journal of Economic Education, 31(1), 30–43. https://doi.org/10.1080/00220480009596759.
Article
Google Scholar
Lax, N., Morris, J., & Kolber, B. J. (2017). A partial flip classroom exercise in a large introductory general biology course increases performance at multiple levels. Journal of Biological Education, 51(4), 412–426. https://doi.org/10.1080/00219266.2016.1257503.
Article
Google Scholar
Levesque, C., Stanek, L. R., Zuehlke, A. N., & Ryan, R. M. (2004). Autonomy and competence in German and American university students: A comparative study based on self-determination theory. Journal of Educational Psychology, 96(1), 68–84. https://doi.org/10.1037/0022-0663.96.1.68.
Article
Google Scholar
Levesque-Bristol, C., Flierl, M., Zywicki, C., Parker, L.C., Connor, C., Guberman, D., Nelson, D., Maybee, C., Bonem, E., & FitzSimmons, J. & Lott, E. (2019). Creating student-centered learning environments and changing teaching culture: Purdue University’s IMPACT program. National Institute for Learning Outcomes Assessment. https://www.learningoutcomesassessment.org/wp-content/uploads/2019/05/OccasionalPaper38.pdf.
Levesque-Bristol, C., Maybee, C., Parker, L. C., Zywicki, C., Connor, C., & Flierl, M. (2019). Shifting culture: Professional development through academic course transformation. Change: The Magazine of Higher Learning, 51(1), 35–41. https://doi.org/10.1080/00091383.2019.1547077.
Article
Google Scholar
Levesque-Bristol, C., Richards, K. A. R., Zissimopoulous, A., Wang, C., & Yu, S. (2020). An evaluation of the integrative model for learning and motivation in the college classroom. Current Psychology. https://doi.org/10.1007/s12144-020-00671-x.
Mason, G. S., Shuman, T. R., & Cook, K. E. (2013). Comparing the effectiveness of an inverted classroom to a traditional classroom in an upper-division engineering course. IEEE Transactions on Education, 56(4), 430–435. https://doi.org/10.1109/TE.2013.2249066.
Article
Google Scholar
McLaughlin, J. E., Roth, M. T., Glatt, D. M., Gharkholonarehe, N., Davidson, C. A., Griffin, L. M., Esserman, D. A., & Mumper, R. J. (2014). The flipped classroom: A course redesign to foster learning and engagement in a health professions school. Academic Medicine, 89(2), 236–243. https://doi.org/10.1097/ACM.0000000000000086.
Office of International Students and Scholars (2015). Enrollment & Statistical Report Fall 2015. Purdue University. https://www.purdue.edu/IPPU/ISS/_Documents/EnrollmentReport/ISS_StatisticalReportFall15.pdf
O’Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. Internet and Higher Education, 25, 85–95. https://doi.org/10.1016/j.iheduc.2015.02.002.
Article
Google Scholar
Patterson, B., Kilpatrick, J., & Woebkenberg, E. (2010). Evidence for teaching practice: The impact of clickers in a large classroom environment. Nurse Education Today, 30(7), 603–607. https://doi.org/10.1016/j.nedt.2009.12.008.
Article
Google Scholar
Reeve, J. (2006). Teachers as facilitators: What autonomy‐supportive teachers do and why their students benefit. Elementary School Journal, 106(3), 225-236. https://doi.org/10.1086/501484.
Reeve, J. (2009). Why teachers adopt a controlling motivating style toward students and how they can become more autonomy supportive. Educational Psychologist, 44(3), 159–175. https://doi.org/10.1080/00461520903028990.
Article
Google Scholar
Reeve, J., & Jang, H. (2006). What teachers say and do to support students’ autonomy during a learning activity. Journal of Educational Psychology, 98(1), 209–218. https://doi.org/10.1037/0022-0663.98.1.209.
Article
Google Scholar
Riffell, S. K., & Sibley, D. F. (2004). Can hybrid course formats increase attendance in undergraduate environmental science courses? Journal of Natural Resources and Life Sciences Education, 33(1), 16–20. https://doi.org/10.2134/jnrlse.2004.0016.
Article
Google Scholar
Roach, T. (2014). Student perceptions toward flipped learning: New methods to increase interaction and active learning in economics. International Review of Economics Education, 17, 74–84. https://doi.org/10.1016/j.iree.2014.08.003.
Article
Google Scholar
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020.
Article
Google Scholar
Ryan, R. M., & Deci, E. L. (2017). Self-determination theory. Guilford Press.
Google Scholar
Simpson, V., & Richards, E. (2015). Flipping the classroom to teach population health: Increasing the relevance. Nurse Education in Practice, 15(3), 162–167. https://doi.org/10.1016/j.nepr.2014.12.001.
Smith, R. (2020). Flipped learning during a global pandemic: Empowering students with choice. International Journal of Multidisciplinary Perspectives in Higher Education, 5(1), 100–105. https://doi.org/10.32674/jimphe.v5i1.2428.
Article
Google Scholar
Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning Environments Research, 15(2), 171–193. https://doi.org/10.1007/s10984-012-9108-4.
Article
Google Scholar
Talbert. R. (2021, April 2). Flipped learning can be a key to transforming teaching and learning post-pandemic. EdSurge. https://www.edsurge.com/news/2021-04-02-flipped-learning-can-be-a-key-to-transforming-teaching-and-learning-post-pandemic
Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best “blend” of lectures and guiding questions with feedback. Computers and Education, 107, 113–126. https://doi.org/10.1016/j.compedu.2017.01.003.
Article
Google Scholar
Thorne, K. (2003). Blended learning: How to integrate online and traditional learning. London: Kogan Page.
Google Scholar
Toth, L. S., & Montagna, L. G. (2002). Class size and achievement in higher education: A summary of current research. College Student Journal, 36(2), 253–261.
Google Scholar
Twigg, C. A. (2009). Using asynchronous learning in redesign: Reaching and retaining the at-risk student. Journal of Asynchronous Learning Networks, 13(3), 147–155.
Google Scholar
Vansteenkiste, M., Sierens, E., Goossens, L., Soenens, B., Dochy, F., Mouratidis, A., Aelterman, N., Haerens, L., & Beyers, W. (2012). Identifying configurations of perceived teacher autonomy support and structure: Associations with self-regulated learning, motivation and problem behavior. Learning and Instruction, 22(6), 431–439. https://doi.org/10.1016/j.learninstruc.2012.04.002.
Article
Google Scholar
Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences, 15(3), 398-405.
Velegol, S. B., Zappe, S. E., & Mahoney, E. (2015). The evolution of a flipped classroom: Evidence-based recommendations. Advances in Engineering Education, 4, 1–37.
Google Scholar
Yough, M., Merzdorf, H. E., Fedesco, H. N., & Cho, H. J. (2019). Flipping the classroom in teacher education: Implications for motivation and learning. Journal of Teacher Education, 70(5), 410–422. https://doi.org/10.1177/0022487117742885.
Article
Google Scholar
Zappe, S., Leicht, R., Messner, J., Litzinger, T., & Lee, H. (2009). “Flipping” the classroom to explore active learning in a large undergraduate course. Proceedings of the 2009 American Society for Engineering Education Annual Conference and Exhibition.
Book
Google Scholar