The advancement in Science, Technology, Engineering and Mathematics (STEM) through science education is key for socio-economic expansion within developing countries. Although efforts in most developing African countries are being made towards STEM improvement by focusing on education, their performance still lags compared to the rest of the world (Arvanitis, Waast, & Gaillard, 2000; Pouris & Pouris, 2009). This concern about the consistent low performance in STEM disciplines however is also still an issue for many developed countries as it may impede further development. Studies have linked poor performance in STEM subjects to psychological factors including poor attitudes; high achievement anxiety; low interest and motivation, lack of enjoyment, low task value and self-efficacy; and others (Kiwanuka et al., 2017; Muwonge, Ssenyonga, & Kwarikunda, 2018; Opolot-Okurut, 2005) that rapidly increase during the early high school years (Patall, Dent, Oyer, & Wynn, 2013; Reid & Skryabina, 2003).
Also, the consistent gender gaps in physical sciences achievement favouring males continue to be an issue of discussion. Further, compared to males, fewer females are normally willing to undertake physics-related careers and courses at a higher level even when they qualify for them (Goan, Cunningham, & Carroll, 2006; Seba, Ndunguru, & Mkoma, 2013; Sikora & Pokropek, 2012). These gender gaps have been especially attributed to psychological factors of subjective value and control that are shaped by the social environment (Eccles, 2011).
Current research stemming from Pekrun’s (2006) Control Value Theory of Achievement Emotions (CVTAE) focuses on the antecedents and effects of achievement emotions (Liu et al., 2018; Muwonge et al., 2018; Wang et al., 2017). Of particular concern is the relationship between these emotions and students’ perceptions of control and value of the learning activities, that are often structured by the social environment. Among the studies conducted in STEM disciplines, those focusing on mathematics highly dominate (Lazarides & Buchholz, 2019; Liu et al., 2018; Muwonge et al., 2018; Wang et al., 2017). However, unlike the widely studied test anxiety, other negative emotions like boredom and its potential antecedents remain relatively unexplored (Pekrun, Goetz, Daniels, Stupinsky, & Perry, 2010). Learning-related boredom is a negative emotion characterized by feelings of low arousal, unpleasantness, dullness, constraint, and repetitiveness experienced during performance of a task (Larson & Richards, 1991). Hence, a student who feels bored by the learning activity is likely to (1) show no desire to participate in the activity, (2) feel unreasonably tired while dealing with the activity and (3) perceive the activity’s material as dull or monotonous (Mulligan & Scherer, 2012; Pekrun et al., 2010). Boredom is a common experience during learning activities that are thought to have no value and are difficult (Pekrun, 2006). In Uganda, where learning physics at lower secondary is compulsory and not dependent on perceived ability or interest, boredom is quite likely among students. Previous studies associated high occurrences of boredom among students with low autonomy support received from significant others like the teachers. Teacher autonomy-supportive behaviours relate to the interpersonal behaviours that promote a learner’s “sense of unpressured willingness to engage in learning” (Deci, Ryan, & Williams, 1996, p.1). They include providing choice, providing a meaningful rationale for learning certain material, listening to students’ views, expressing perspective-taking, responding appropriately to students’ concerns, allowing students to work independently, acknowledging negative affect and providing students opportunities to work on activities that interest them (Patall et al., 2013). Boredom and its effects among students have been linked to learning environments where the teachers offer high emotional, social and autonomy support (Tze, Klassen, & Daniels, 2014; Wang et al., 2017). However, among the STEM domains, studies seem to focus more on the mathematics domain and rarely on physics despite the reported domain specificity of achievement emotions (Goetz, Cronjager, Frenzel, Ludtke, & Hall, 2010; Pekrun et al., 2010). Further, the few known studies on gender differences in teacher autonomy support, cognitive appraisals (i.e. self-efficacy and task value) and boredom in physics learning in addition to being based on studies in a few developed countries, also present mixed findings with some studies finding differences, that favour the males and others finding no differences at all (Limprecht, Janko, & Glaser-Zikuda, 2013; Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 2011; Piko & Pinczes, 2015; Sierens et al., 2010; Tucker et al., 2002; Vansteenkiste et al., 2012).
Although there is evidence to confirm that boredom can be beneficial in stimulating creativity, this creativity will normally be focused on another task irrelevant to the task at hand (Schubert, 1978). Studies have found that when learners find a task boring, their performance in that task is negatively affected (Haager, Kuhbandner, & Pekrun, 2016; Pekrun et al., 2010). Boredom impedes the learners’ abilities to effectively channel their cognitive resources into accomplishing such tasks being considered as boring. This way, their attention, engagement, motivation, self-regulation and use of learning strategies are compromised which affect achievement (Pekrun, 2006; Pekrun et al., 2010). The meta-analysis by Tze, Daniels, and Klassen (2015) found that boredom experienced during lessons rather than that experienced during studying was more negatively associated with motivation, use of learning strategies and achievement among students. Also, the effects of learning-related boredom have been studied in many contexts. In all cases, the general findings project boredom as impeding learning and achievement (Sanchez-Rosas & Esquivel, 2016; Tze et al., 2014; Tze et al., 2015; Wang et al., 2017).
Knowing the potential impact of boredom, a clear understanding of the role of learning environmental factors in shaping learners’ emotional experiences may be a crucial step in ensuring better student achievement in STEM domains. For example, boredom has been associated with several external factors shaped by teachers, parents and peers (like the quality of instruction, reinforcement, parental expectations and support and peer attitudes) that later translate into several internal beliefs about control and value (Pekrun, 2006). Often, if these external factors are gender-biased, then the resulting cognitive beliefs and emotions present variations based on gender. Further, even after controlling for achievement, females experience more boredom and low subjective control in physical science domains than males (Goetz, Frenzel, Hall, & Pekrun, 2008). Knowing the associations of perceived teacher autonomy support (PTAS) with cognitive appraisals and boredom especially as they shape gender differences can be helpful in further understanding the gender gap in STEM. Hence, this study sought to explore the gender differences and nature of relationships between perceived teacher autonomy support, cognitive appraisals and boredom during physics learning among lower secondary school students in Uganda. The findings of this study provide not just physics teachers but also those individuals involved in teacher training valuable information regarding instructional practices to improve students’ self-efficacy, guide students into valuing physics and reduce boredom in the physics classroom for students at the lower secondary school level. This may also apply to other STEM disciplines. Understanding the role of gender in students’ self-reported self-efficacy, task value, perceived teacher autonomy support and boredom in physics also provides important information that may help design instruction to reduce the gender gap in STEM achievement. Besides, the study provides empirical evidence for support of some assumptions of the CVTAE (Pekrun, 2006) across the Ugandan cultural context.
Physics education in Uganda
Physics is learnt as one of the compulsory STEM subjects (including biology, chemistry and mathematics) with in the first 4 years (that is 8th to the 11th year of formal schooling) of lower secondary school education. At the advanced secondary school level (that is 12th and 13th year of formal schooling), studying physics is optional and students can choose to do it in combination with other subjects such as mathematics, chemistry and economics among others. However, the decision to study physics at this level may also be either influenced by the school based on an individual’s previous performance at the ordinary level or by the parental preferences. At the end of each secondary school level, learners sit national examinations and results obtained from these examinations provide the basis for entry to higher levels.
For many learners, learning physics at lower secondary is not a choice but rather a means to fulfill curriculum requirements whether the learners consider themselves capable of succeeding in physics and/or whether they value physics or not. Perhaps this explains some of the reasons why most learners tend to obtain low grades in STEM domains at national examinations. Furthermore, the choice to offer physics at an advanced level is mostly based on the role of the subject in helping learners attain substantial grades to qualify for various programs at university, and rarely is this choice a matter of sheer interest in the discipline. To incentivise secondary students to select physics, the government invests more resources in science through government sponsorship to students offering physics-related programs at the tertiary level and subsequently better wages for scientific professions and future employment opportunities. Hence, there are extrinsic sources of motivation for taking on physics beyond the ordinary secondary level. These incentives have been made even more available for female scientists. For example, following persistent low numbers of females in science careers, in 1990, a government policy was passed that awards each female an extra 1.5 points when competing for government scholarships into tertiary institutions. Despite the above efforts, physics has remained the worst-performing science subject in the final examination at lower secondary school in Uganda since 2015 (Uganda National Examinations Board, 2015, 2016, 2017, 2018). Besides, the wider gender gap favouring males than females in STEM domains still exists as evidenced in the national examination results.
Further, the learning environment in most Ugandan secondary schools is predominantly teacher-centred. This is especially attributed to inadequate teacher training on effective teaching practices, inadequate teaching and learning resources, high student-teacher ratios and increases teacher workload that limit time for effective lesson preparation (Black et al., 1998; Bwire, Huang, Masingila, & Ayot, 2011). Uganda is a developing country, socio-economic levels could be thought of a likely cause of learners’ negative attitudes and low motivation in STEM. However, Kiwanuka, Van Damme, Van Den Noortgate, Anumendem, and Namusisi’s (2015) study found that classroom climate, parental support and previous mathematics achievement and not the socioeconomic status of students significantly influenced achievement. Further, Kiwanuka et al. (2017) in an effort to try and understand the relationship between the social environment and psychological attributes found that learners who reported more enjoyment of and greater self-confidence in mathematics also perceived teacher’s behaviour to promote more classroom interaction through questioning and modeling through supporting learners in developing their way of handling math tasks without the need for constant directions from the teacher. Researchers have found that learner-related variables like low motivation, low self-efficacy, low task value and poor attitudes towards science to be associated with low achievement in STEM (See Muwonge et al., 2018; Opolot-Okurut, 2005). Hence, the teaching-learning environment mostly structured by teacher behaviours towards learners influences learners’ classroom experiences that eventually structure their cognitive appraisals and emotional experiences. However, research efforts to link teachers’ behaviours particularly autonomy support to negative learning-related emotions like boredom in Uganda are non-existent despite low achievement that has been linked through several studies to boredom.
In the following sections, we discuss the literature related to the study beginning with the theoretical framework, followed by a description of cognitive appraisals and then relationships between the study variables, before describing the present study’s methodology.
Theoretical framework—the control value theory of achievement emotions
The hypotheses of this study were largely grounded in the assumptions of the CVTAE (Pekrun, 2006). Achievement emotions relate to emotional experiences either due to being part of certain learning activities and/or their outcomes (such as boredom or enjoyment during a lesson, hope to succeed in a test, anxiety during a test). The theory explains the distal (social environment) and proximal (cognitive appraisals) antecedents of achievement emotions and the effects of these emotions on learning and achievement (Fig. 1).
Particularly, achievement emotions are directly influenced by an individual’s cognitive appraisals of perceived control and value related to the activity or its outcomes (anticipated or realised). The structuring of a learner’s cognitive appraisals influences the development of particular achievement emotions (Pekrun, 2006). For example, a student’s lack of value in the task being learnt coupled with either extremely low or extremely high perceived control in the same task results in experiences of boredom during learning well as a combination of high subjective value and control results in enjoyment of the same learning task (Pekrun et al., 2011). Achievement emotions are also influenced by the social environment either directly or indirectly through their effect on cognitive appraisals (Pekrun, 2006; Pekrun & Stephens, 2010). Indirectly, students’ perceived classroom environments mostly structured by peers, parents and teachers that communicate control and value influence the development of different achievement emotions (Frenzel, Pekrun, & Goetz, 2007b). For example, teachers who often communicate the rationale for learning certain concepts or topics promote learners’ subjective value which makes learners feel more interested while engaged in learning such concepts. Alternatively, different teacher behaviours can directly result in different emotional experiences within a student (Robinson, 1975). Teachers who express enthusiasm facilitate learners to enjoy or develop an interest in a subject unlike those who express no such enthusiasm (Goetz, Pekrun, Hall, & Haag, 2006).
Different achievement emotions have varying influences on the learning and achievement of students. Commonly, negative emotions (e.g. anxiety, boredom and hopelessness) and positive emotions (e.g. enjoyment, pride, relief and hope) have negative and positive effects respectively. Pekrun, Goetz, Titz, and Perry (2010) observed that positive emotions of enjoyment, pride and hope in general were positively correlated with students’; interest, motivation, task effort, use of effective learning strategies and perceived self-regulation; and negatively correlated with task-irrelevant thinking, perceived external learning-related regulation and achievement. For most of the negative emotions particularly boredom and hopelessness, their effects were generally reversed. These findings have been confirmed by several other studies (Pekrun et al., 2010; Sanchez-Rosas & Esquivel, 2016; Tze et al., 2015).
Cognitive appraisals
Cognitive appraisals relate to the internally held beliefs of an individual about the value of and their control over certain tasks or situations (Pekrun, 2006). Subjective control cognitions may either be prospective as in the case of self-efficacy (the belief in one’s ability to adequately perform a given task as may be expected; Bandura, 1977), focusing on how current abilities relate to future outcomes or retrospective as in causal attributions focusing on reasons for certain outcomes. For example, a learner may attribute present test success to either luck, hard work or intelligence or a combination of any of such reasons. The adapted pattern of perceived attributional causes has an impact on their motivational and emotional state. Also, students with high self-efficacy express confidence about their abilities to succeed in future physics tasks like tests or classroom exercises. Constructs like self-confidence, perceived competence or ability, self-efficacy and self-concept in a domain reflect a certain component of subjective control of an individual (Skinner, 1996). Subjective value or task value as used in this study relates to the perceived importance attached to a task and/or its potential outcomes (Eccles & Wigfield, 1995). Task value can be either extrinsic being motivated by external factors like anticipated attainment of a job in the future, or intrinsic, with the value derived from internal resources of interest in the activity not dependent on anticipated long-term goals (Putwain et al., 2018). For example, a student who considers learning physics as highly valuable attaches great importance in understanding the material, is interested and enjoys learning physics-related material and/or considers it to be beneficial in achieving other related long-term goals like a physics-related career.
Cognitive appraisals and boredom
According to Pekrun (2006), the relationship between perceived control and boredom is curvilinear. Hence, boredom will likely occur if a learner either feels significantly over-challenged or significantly under-challenged by the task demands which in both cases the learner will likely withdraw their cognitive resources (Acee et al., 2010). Although this is logically reasonable, most studies have noted a linear relationship (Pekrun et al., 2010; Putwain et al., 2018). For example, Pekrun et al. (2010) revealed a linear relationship between subjective control and boredom. This relation was attributed to the nature of achievement situations in the learning setting that will most often present some level of challenge even to the high ability students who represent a small number of learners in a class. For STEM subjects at any given grade level, it is likely that the majority of the students will often find the tasks to be either over-challenging or moderately challenging but rarely under-challenging. In fact, studies confirm that high perceived control and ability shield learners from boredom (Fogelman, 1976; Kanevsky & Keighley, 2003; Robinson, 1975).
Studies conducted in academic settings suggest a negative linear association between cognitive appraisals and boredom. Hence, a learner is most likely to feel bored by the learning activity if they feel considerably incapable of succeeding in it and do not consider it to be of much value to their present or future life. This negative association has been confirmed in different contexts including China (Liu et al., 2018; Wang et al., 2017), Germany (Goetz et al., 2006; Pekrun et al., 2010), North America (Pekrun et al., 2010), Argentina (Sanchez-Rosas & Esquivel, 2016) and England (Putwain et al., 2018).
Teacher autonomy support and cognitive appraisals
As postulated in the CVTAE, the development of cognitive appraisals may be influenced by the social environment created by teachers. Particularly, autonomy-supportive teacher behaviours in the classroom structure learners’ perceptions about their control and value of the tasks being learnt. These behaviours eventually have a significant bearing on the psychological functioning of the learner in the classroom especially concerning what they believe they are capable of doing on their own and how valuable they perceive what they learn. Several studies focusing on STEM subjects especially within mathematics suggest that perceived teacher autonomy support is positively associated with students’ control appraisals (Painter, 2011; Wang et al., 2017). Painter’s (2011) study involving 8th grade students (n = 6,946) from the USA found that students’ perceived teacher autonomy support was negatively and indirectly associated with science achievement through their reported competence beliefs. The study also found that teacher autonomy support was the strongest predictor of students’ perceived science competence. Different teacher autonomy-supportive behaviours directly or indirectly also influence the development of students’ subjective value of the learning material (d'Ailly, 2003; Joussemet, Koestner, Lekes, & Houlfort, 2004; Patall et al., 2013; Piko & Pinczes, 2015; Ryan & Grolnick, 1986). For instance, a study by Patall et al. (2013) among 9th through 12th graders in the USA noted that teacher behaviours like providing students with choices on how activities were run and engaging in perspective-taking were correlated to course value through autonomy-need satisfaction, whereas clear and reasonable communication of the importance or usefulness of the course material was directly correlated with course value. The association between teacher autonomy support and task value was especially stronger for students in lower grade levels than those in higher grade levels.
Teacher autonomy support and boredom
Correlational studies confirm that teacher autonomy-supportive behaviors are negatively correlated with boredom and this relation operates at both individual and class levels (Tze et al., 2014). Goetz et al. (2013b) found that learners who perceived their teachers as demonstrating an effort to help them understand the material (like using easily understandable vocabulary and using illustration) were less likely to feel bored during physics lessons.
Mediating effects of cognitive appraisals
In line with the CVTAE, studies have confirmed the mediational role of cognitive appraisals on the relation between social environmental factors and achievement emotions (Goetz et al., 2006; Liu et al., 2018; Sanchez-Rosas & Esquivel, 2016; Wang et al., 2017). The study by Wang et al. (2017) among Chinese middle school students found cognitive appraisals to fully mediate the relationship between students’ perceived teacher autonomy support and boredom in mathematics. The mediation effect was also found by Liu et al. (2018) who looked at autonomy support and positive emotions and Goetz et al. (2006) looking at parental influences on enjoyment and anxiety. In contrast, Sanchez-Rosas and Esquivel’s (2016) study supported a partial mediation model where cognitive appraisals partially mediated the influence of instructional quality on boredom. Hence, it is unclear whether cognitive appraisals either fully or partially mediate the effects of the social envoronment on development of acheivement emotions.
The CVTAE’s assumptions about the relationships among these variables have generally demonstrated universality across some cultures and contexts, between genders and among different subject domains (Goetz et al., 2008; Pekrun et al., 2010; Wang et al., 2017). However, most studies were conducted within the developed countries with a focus on the mathematics domain. These issues bring into question the generalisability of these findings to other domains like physics and other contexts especially within the low- and middle-income countries.
Gender differences
Teacher autonomy support
Due to previous general trends in achievement and occupational choices in STEM subjects that have been dominated by males, a false image about these disciplines as better suited for males has been created (Gunderson, Ramirez, Levine, & Beilock, 2012; Nosek, Banaji, & Greenwald, 2002). Hence, gender differences in several aspects of STEM education have been linked to gender stereotypes that influence parents’ and teachers’ behaviours towards different genders. Through their conscious and unconscious behaviour towards learners, teachers are in a strong position to provide learners with various kinds of information regarding their autonomy in learning a subject (Pekrun, 2006). Differential treatment of boys and girls especially in STEM education is evident in the literature (Gunderson et al., 2012). For example, teacher-student academic interactions tend to be biased in favour of males who generally receive more questions (often of higher-order) from the teacher (Altermatt, Jovanovic, & Perry, 1998; Becker, 1981) and less non-academic positive feedback about performance compared to females. Also, questions raised by male students are given more attention compared to those raised by female students. Hence, males participate receive more learning attention, and therefore perceive more control in science classes than the females (Samuelsson & Samuelsson, 2016).
On the other hand, some studies seem to find that females perceive a more favourable emotional support learning environment than males (Fisher, Fraser, & Rickards, 1997; Goh & Fraser, 1998). For example, in Fisher et al.’s (1997) study, females tended to perceive more helping, understanding and friendly tendencies from their science and mathematics teachers than the males. Females attach more value to receiving teacher emotional and appraisal support in the form of free sharing, expressing concern for their challenges, fair treatment and sensitive reactions to mistakes made (Tennant et al., 2014).
However, only a few recent studies have examined the influence of gender on perception of teacher behaviour in any of the STEM domains more commonly in mathematics (Ahmed, Minnaert, van der Werf, & Kuyper, 2010; Gherasim, Butnaru, & Mairean, 2013; Liu et al., 2018). Both Liu et al.’s study involving Chinese elementary and middle school students and Ahmed et al.’s study involving lower secondary Dutch students found no correlation between gender and perceived teacher support in Mathematics. These studies contradicted Gherasim et al. (2013) who found that females perceived their mathematics teachers to be more supportive than males. Other studies that have examined gender differences within the general classroom environment also found that females students reported higher levels of teacher autonomy support than the male students. For example, Vansteenkiste et al.’s (2012) study among 7th through 13th grade students (n = 1036) in Belgium found that females perceived their teachers’ behaviours as being more autonomy-supportive than the males. This was consistent with a study in Belgium by Sierens et al. (2010) involving 11th through 12th graders (n = 526). On the contrary, the Hungarian study by Piko and Pinczes (2015) and the study by Tucker et al. (2002) among African American elementary and high school students (n = 109) showed no significant differences in PTAS. More recent STEM education literature on gender differences in TAS is however scarce and yet, it may be necessary for the understanding of the current trends in girls’ and boys’ experiences in STEM classroom environments. Knowing the association between autonomy support and cognitive appraisals, substantial gender variations in PTAS are likely to translate into gender variations in cognitive appraisals (Eccles, 2011; Pekrun, 2006).
Cognitive appraisals
Most research on gender differences in subjective control and value in STEM subjects point to variations that favour the males even after controlling for achievement levels (Goetz et al., 2008; Hyde, Fennema, Ryan, Frost, & Hopp, 1990; Sikora & Pokropek, 2012). The recent study by Nissen (2019) involving over 4816 high school students in the USA found that although both genders experienced low self-efficacy in physics and other science subjects, the girls still reported significantly lower levels of self-efficacy than the boys. Lower subjective control and value of mathematics was found among girls compared to boys. This relation was also found among German elementary mathematics students and become more pronounced from the second to the third grade (Lichtenfeld, Pekrun, Stupnisky, Reiss, & Murayama, 2012). This gender gap is also consistent with other studies (Opolot-Okurut, 2005; Piko & Pinczes, 2015). One particular study by Opolot-Okurut (2005) involving 254 (52% females) Ugandan 9th grade students found that the females were less confident about their mathematics skills than the males. These findings contradicted with a later larger study by Kiwanuka et al. (2017) involving Ugandan mathematics 7th grade students (n = 4819, 55% females) and a recent study by Kwarikunda, Schiefele, Ssenyonga, and Muwonge (2020) involving Ugandan Physics 9th grade students (n = 374, 56% females) in which no significant gender differences in subjective control were reported. This study was also consistent with Majere, Role, and Makewa’s (2012) study among Kenyan physics students. However, in both these studies, girls still viewed the subjects to be more useful than the boys did. In their study, Picho and Stephens (2012) examined the influence of communicated gender stereotypes on self-efficacy and achievement levels of 10th grade mathematics female Ugandan students (n = 89) who initially had approximately equal achievement levels from mixed-sex schools and single-sex schools. Results showed that females from the single-sex schools had significantly higher self-efficacy, identification with mathematics and achievement scores than those from the former schools. Verbal messages that communicated gender differences had a great influence on females’ perception of ability. If such verbal messages are constantly communicated by significant others, then such beliefs are further reinforced.
Boredom
As is hypothesised in the CVTAE, gender differences in emotional experiences originate from differences among males and females in cognitive appraisals (Pekrun, 2006). Hence, according to the theory, the tendency for girls to feel low control and a lack of value over their learning results in more experiences of negative emotions than boys (Frenzel, Pekrun, & Goetz, 2007a; Lichtenfeld et al., 2012). For example, Daschmann, Goetz, and Stupnisky (2011) found that males attributed their boredom in mathematics to being under-challenged and females to being over-challenged. These gender differences are consistent with studies that examined math anxiety—a commonly studied emotion (Else-Quest, Hyde, & Linn, 2010; Goetz, Bieg, et al., 2013; Ma & Cartwright, 2003). Also, intervention studies focusing on improvement of the instructional environment to regulate achievement emotions among female students have proved effective. For instance, in an intervention study with German 8th grade (n = 161) students, females as compared to males initially reported higher levels of boredom which was linked to gender differences in self-concept and interest in the subject (Limprecht et al., 2013). However, after a portfolio intervention program involving physics instruction characterized by continuous teacher feedback, cooperation and self-reflection and self-regulation in learning, females’ self-reports on boredom during instruction reduced in the treatment group after controlling for self-concept and interest. However, some non-domain-specific studies and those studies outside STEM domains seem to find no significant gender differences in boredom (Pekrun et al., 2011; Piko & Pinczes, 2015) while others seem to find cross-cultural variations in gender differences (Lichtenfeld et al., 2012). While Lichtenfeld et al. found that within the German sample of elementary students, females reported low perceived control and high boredom, in the American sample, there were no significant differences among both females and males in perceived control and value but significant differences in boredom that favoured the males. Therefore, in addition to the studies on gender differences in boredom experienced during studying of STEM disciplines being scarce and contradictory, most of the findings on gender differences in learning-related boredom are based on studies in mathematics.