Integrated approaches to STEM (science, technology, engineering, and mathematics) education are increasingly popular, but remain challenging and elusive. There is much hope that integrated approaches to STEM education can help the next generation of students to solve real-world problems by applying concepts that cut across disciplines as well as capacities of critical thinking, collaboration, and creativity (Burrows and Slater 2015). However, most teachers have received training in only one discipline (Honey et al. 2014), and most schools and classes at all levels still have separate departments and class periods for the STEM subjects. Therein lies a significant challenge for educators and administrators interested in promoting integrated STEM.
In this article, we present phase 1 of a two-phase integrated STEM education and teacher professional development (PD) needs assessment study to identify challenges and needs of promoting integrated STEM education. The study focuses on challenges of fostering integrated STEM education and potential supports needed to overcome them in an unidentified state on the East Coast of the USA. We sought to learn what supports would be most helpful in the effort to integrate STEM disciplines in curricula and instruction, especially in terms of pre-service education and continuing professional development (e.g., teacher “in-service” workshops). Needs assessments are important for data-driven decision making to benefit a maximum number of districts, schools, teachers, and students with available resources (Nagle and Gagnon 2008). A primary motivator of the present study was to inform the resource allocation of STEM education centers and the state Department of Education (DoE) in the state examined. The study occurred in the context of a partnership between one such center and the state DoE.
In phase 1 of the study, we interviewed a selection of K-12 STEM teachers and math/science supervisors throughout the state who participated in a state-sponsored initiative in integrated STEM. These key informant interviews are intended to inform a larger, statewide questionnaire in phase 2 of the study to be reported subsequently upon completion.
Why integrated STEM now?
Education in science, mathematics, engineering, and technology (STEM) is widely recognized as a pressing state and national priority (Honey et al. 2014). Excellence in STEM education can impact jobs, productivity, and competitiveness in multiple sectors and fields including health, technological innovation, manufacturing, the distribution of information, political processes, and cultural change (Asunda 2014; Peters 2006). Innovation in STEM fields drives not only economic growth, but also the quality of life. STEM-related jobs are expected to grow at 17% compared to 9.8% for non-STEM jobs (Langdon et al. 2011). At the same time, the pipeline into STEM jobs can be described as leaky: in the USA, only 75% of students who focus or excel in STEM subjects in K-12 enter STEM majors; 38% of STEM majors do not graduate with a STEM degree; 43% of STEM graduates do not go on to work in a STEM occupation; and 46% of STEM workers with a bachelors in STEM leave STEM fields for higher paying managerial roles (Georgetown University Center on Education and the Workforce, n. d.). While there are different perspectives on the extent to which shortages in qualified STEM workers are real or perceived (Charette 2013; The Royal Society Science Policy Centre 2014), there is increasing and nearly universal concern over the quality of education and skill development in STEM subjects.
While these factors have led to dramatic gains in focus on STEM education, the vision of STEM education has also evolved. A new vision calls for STEM to be learned and taught in integrated ways with interdisciplinary methods (US Department of Education and Office of Innovation and Improvement 2016). Because solutions to most global challenges concerning energy, health, and the environment (e.g., climate change, sustainability) require an interdisciplinary (and frequently, international) perspective involving math, science, and technology, recent reforms such as the Next Generation Science Standards (NGSS) and Common Core State Standards for Mathematics (CCSSM) advocate for intentionally integrating instruction and curricula by providing stronger connections among the STEM disciplines. The NGSS is being adopted by many states in the USA including the state in which our study is conducted, and calls for students to learn concepts cutting across the STEM disciplines, science and engineering practices, as well as disciplinary core ideas. It also elevates the need for teaching engineering in K-12, which can drive the solving of problems requiring science and mathematics. Supported by empirical evidence that the engineering design process can be an effective way to facilitate and sustain the integration of concepts from multiple STEM disciplines (e.g., Estapa and Tank 2017; Guzey et al. 2016), the NGSS recognizes the engineering design process as both an important practice and disciplinary core idea that students should master (Moore et al. 2014).
Thus, integrated STEM education has quickly become a meta-discipline, one with a focus on innovation, designing solutions, and leveraging technology (Kelley and Knowles 2016). Students are expected to engage in a rigorous curriculum, with instruction and assessment in math and science inquiry, as well as engineering design (Kelley and Knowles 2016). There is hope that such approaches, which are frequently project-based and engaging, will motivate more students into pursuing STEM careers (Stohlmann et al. 2012). For many, “STEM education” has now come to mean “integrated STEM” education.
Defining integrated STEM education
In this study, we seek to solicit the current understandings and definitions of integrated STEM in the educational community in order to better understand the need for definitional clarity. A variety of definitions of integrated STEM education have been proposed, but there remains little clear consensus. Most definitions revolved around the integration of one or more STEM disciplines in the teaching and learning process. For example, Sanders (2009) defined integrated STEM education as “approaches that explore teaching and learning between/among any two or more of the STEM subject areas, and/or between a STEM subject and one or more other school subjects” (p. 21). Moore et al. (2014) add that the combining of disciplines is “based on connections between the subjects and real world problems," and more specifically entails, “an effort by educators to participate in engineering design as a means to develop technologies that require meaningful learning and an application of mathematics and/or science” (p. 38). In addition to the teaching of two or more STEM domains, Kelley and Knowles (2016) further characterize integrated STEM as “bound by STEM practices within an authentic context for the purpose of connecting these subjects to enhance student learning” (p. 3). Stohlmann et al. (2012) suggest that integrated STEM education is an effort to combine the STEM disciplines into one class, but clarify that it can involve multiple classes and need not involve all four STEM disciplines. This is not a trivial clarification, because one common question is whether all four STEM disciplines need be integrated for instruction to be considered integrated STEM.
Other definitions include a more expanded “vision” of what good integrated STEM education would “look like,” far transcending the integration of disciplines. For example, the Dayton Regional STEM Center (2011) has promoted a principle-based framework for defining quality STEM and integrated STEM education based on 10 components. In addition to some principles of STEM discipline integration, they include principles, such as “the potential for engaging students from diverse backgrounds,” “quality of the cognitive tasks,” and “connections to STEM careers.”
Many schools focusing on integrated STEM also integrate non-STEM disciplines such as social studies/science into STEM disciplines and vice versa. When integration includes the arts, this has been referred to as STEAM or integrated STEAM. This study was confined to integrated STEM education for the primary reason that it was situated in a STEM academy hosted by the state’s Department of Education (DoE) in the summer of 2016, which did not incorporate the integration of non-STEM subjects. The state DoE’s current conceptualization of STEM education is characterized by integrated approaches. At the STEM Academy, the DoE crafted and offered the following definition to its participants: “STEM education is the use of science, technology, engineering, mathematics, and their associated practices, to create student-centered learning environments in which students investigate and engineer solutions to problems, and construct evidence-based explanations of real world phenomena. Evidence-based STEM education promotes creativity and innovation while developing critical thinking, collaboration, and communication skills while students seek explanations about the natural world to improve the built world”. This was a common conceptualization of integrated approaches to STEM education that was offered to all participants of the present study. However, it should be noted that the same state has assembled a growing task force, led by its School Boards Association, in iSTEAM (i.e., “integrated STEAM”). Thus, the desire to include other subjects in integrated STEM approaches is very much the current trend within the state, but it was not addressed in the current study.
A conceptual framework for integrated STEM
For supports of integrated STEM education to gain sufficient momentum, a conceptual framework that goes beyond a simple definition is needed and should include the rationale, goals, intended outcomes, components, and how the components interact. A conceptual framework can also help to build a research agenda to inform stakeholders and to realize the full potential of integrated STEM education (Kelley and Knowles 2016).
A variety of useful conceptual frameworks for integrated STEM have been offered (e.g., see Asunda 2014; Asunda and Mativo 2016; Kelley and Knowles 2016; and English 2016). Moore and colleagues (e.g., Glancy et al. 2014; Guzey et al. 2016; Moore and Smith 2014; Moore et al. 2014) provide empirical support for the proposition that engineering is an essential bond or connector that can integrate STEM disciplines in K-12 education, as well as a facilitator of problem solving, creative thinking, communication and teamwork skills, and positive motivation and attitudes towards STEM careers. Engineering can be a motivator as a natural way to learn how to integrate STEM concepts, because real world engineering problems are often complex and require the application of mathematics and science. Ideally, this integration would go beyond the blending of “traditional types of understanding,” and therefore, “new models of instruction including curricular models must be developed if STEM integration is to lead to meaningful learning” (Moore et al. 2014, p. 41). For example, engineering design challenges are frequently taught through project-based learning (PBL) and collaborative learning activities. For many teachers, this would require adequate teacher PD, institutional structures that support integration, and integrated curricula (Glancy et al. 2014).
Perhaps most comprehensively, the National Academy of Engineering and National Research Council presented a framework for integrated STEM education in STEM integration in K-12 education: Status, prospects, and an agenda for research (Honey et al. 2014). The framework is comprised of four features: (1) goals, (2) outcomes, (3) nature and scope, and (4) implementation of integrated STEM education. Goals of integrated STEM education include STEM literacy, 21st century competencies, STEM workforce readiness, and interest and engagement of students in STEM subjects. Outcomes of integrated STEM education include outcomes for students such as learning and achievement and 21st century competencies and outcomes for teachers such as changes in practice, improved understanding of STEM content, and increased pedagogical content knowledge (PCK). Three important elements were identified that characterize the nature and scope of integrated STEM education: (1) type of connections among the STEM disciplines, (2) disciplinary emphasis or dominant discipline, and (3) duration, size, and complexity of the initiative (e.g., a single project, single course, curricular program, or entire school). The committee identified three important factors impacting implementation of integrated STEM education: instructional design, educator supports, and adjustments to the learning environment.
Conceptual frameworks such as these make increasingly clear that integrated STEM is not only about the STEM disciplines. It is frequently rooted in project- and problem-based learning, student-centered pedagogy, and 21st century transferrable skills. It promotes students as active learners; inventiveness, creativity, and critical thinking are fundamental aims.
Research has found that integrated STEM teaching encourages student-centered pedagogies (Roehrig et al.2012) and a more authentic treatment of mathematics and science content (Stohlmann et al. 2012). To some extent, STEM education (as with inclusive STEM schools) has focused on interdisciplinary, authentic, and contextualized problems (LaForce et al. 2016)—even before more contemporary movements towards NGSS and integrated STEM. What appears to be new is the serious pursuit of “STEM classes” and “STEM teachers”—i.e., classes that teach STEM subjects together in an integrated way, by “STEM teachers” rather than single-subject specialists. This possibility can lead to new “STEM” degrees, certifications, endorsements, and teacher PD, meaning specifically an integrated approach to teaching STEM. Indeed, this activity has already started (see Glancy et al. 2014). In keeping with common practice, the implied meaning of “STEM education” throughout this article is typically “integrated STEM education.”
Evidence of STEM effectiveness
Many benefits have been associated with STEM education, such as providing opportunities for more student-centered, meaningful, engaging, and less fragmented learning experiences involving higher-level thinking and problem solving skills (Stohlmann et al. 2012). Students receiving education in STEM are thought to be capable of thinking logically and utilizing technology independently to solve problems, innovate, and invent. Integrating STEM disciplines has been associated with positive effects on attitudes in school (Bragow et al. 1995), achievement (Hurley 2001), and learning (Becker and Park 2011). Studies have also found that students exhibit higher levels of motivation and performance within STEM disciplines when engaged in activities such as prototyping, designing solutions, and utilizing technology like 3D printers (Tillman et al. 2014). This may be because integrated approaches lead to student perceptions of instruction being more relevant, active, challenging, meaningful, and competency-supportive, all perceptions related to greater student engagement (Shernoff 2013). Becker and Park’s (2011) meta-analysis of 28 studies on the effect of integrated STEM efforts on student learning reported mostly positive effects on student learning, with the largest effect sizes in elementary education and the smallest in college education. The meta-analysis demonstrated that integrated approaches can provide a rich context for interest development in addition to cognitive benefits.
The research on student outcomes has been regarded as inconclusive, however, especially from a long-term perspective (English 2016). For example, while a major hope for integrated STEM is the encouragement of engagement, motivation, and perseverance, these outcomes are rarely measured in evaluations of integrated STEM initiatives (Honey et al. 2014). Moreover, as English (2016) has pointed out, integrated STEM education is an embryonic field, and research to date raises more questions than it answers. From our perspective, chief among these questions is that of feasibility. So long as public schools continue to teach STEM, and indeed all subjects separately, challenges of implementing integrated STEM approaches in K-12 education promise to be significant. What is the realistic potential to implement integrated STEM education on a wide scale? Research suggests that teachers struggle to implement new and learner-centered paradigms of STEM education effectively even after demonstrating a deepened conceptual understanding through teacher professional development (Han et al. 2015). On a broader scale, recent STEM education reform efforts supporting inclusive STEM-focused schools, although introduced with great fanfare, have frequently dissolved due to a variety of contextual, policy, teacher, and student factors sorely underestimated (Weis et al. 2015). Integrated approaches to STEM education such as that propagated by the NGSS require a fundamentally different instructional approach in which the teacher assumes a facilitator role of student-directed and sustained investigations for challenges. The following are some of the related barriers that have been identified to advancing STEM education as an interdisciplinary study in K-12: (a) poor preparation and shortage in supply of qualified teachers, (b) lack of investment in teacher PD, (c) poor preparation and inspiration of students, (d) lack of connection with individual learners, (e) lack of support from the school system, (f) lack of research collaboration across STEM fields, (g) poor content preparation, (h) poor content delivery and methods of assessment, (i) poor conditions and facilities, and (j) lack of hands-on training for students (Ejiwale 2013). Most of these barriers go far beyond the challenges of conceptual integration among the STEM disciplines.
Teachers’ content and pedagogical knowledge
Implementation of integrated STEM involves the inherent challenge of supporting a strong conceptual and foundational understanding of key concepts within multiple disciplines. Additionally, constructivist pedagogies including exploration and discovery may require teacher education both in educational foundations, science-focused principles, and pedagogical knowledge (Honey et al. 2014; Stohlmann et al. 2012). Pedagogical knowledge also plays a large role in teacher efficacy, which has been found to be very important for effective teaching (Stohlmann et al. 2012).
A central premise of this study is that it is important to give voice to the teachers and school administrators who actually have the needs and experience potential barriers in their ability to move towards integrated approaches in STEM. Although teachers are at the center of K-12 education’s expansion into integrated STEM approaches, many of the policies shaping K-12 education are formed with little to no input from teachers (National Academies of Sciences, Engineering, and Medicine 2017).
The current study
In phase 1 of the study, we interviewed a limited, purposive sample of key teacher and administrator informants, asking them questions centered on primary research questions designed to inform a phase 2 statewide questionnaire study. Our research questions were as follows:
-
1.
What are the greatest challenges to effectively implementing integrated approaches to STEM education? What supports would be most helpful to overcome these challenges?
-
2.
What recommendations for pre-service education could help teachers better integrate STEM subjects? What recommendations for in-service or continuing professional development would help support integrated STEM education?
This second research question is not based on a supposition or opinion that integrated approaches to STEM are a direction that teacher education should take. Rather, it is based on the acknowledgement that delivering integrated projects, classes, and programs in K-12 schools is the present major agenda for STEM education of the Department of Education within the state examined—a direction heavily driven by industry and business for the perceived benefits towards desirable qualities of the work force. Given that K-12 schools will be increasingly called on to deliver integrated STEM, our research questions merely seek to identify teachers’ current needs and the supports that would need to be in place for this goal to be realized. This study was designed to illuminate the many factors that would need to be considered to enable teachers to be successful in integrating STEM subjects, including enabling skills and practices such as project-based and collaborative learning teaching methods. We intentionally left these questions open-ended, encouraging participants to expand on their answers in semi-structured interviews in order to inform item and response development in the phase 2 questionnaire.