Advanced Distributed Learning. (2016). xAPI technical specification. https://www.adlnet.gov/adl-research/performance-tracking-analysis/experience-api/xapi-technicalspecifications/
Aleven, V, Mclaren, BM, Sewall, J, Koedinger, KR. (2009). A new paradigm for intelligent tutoring systems: example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.
Google Scholar
Atkinson, RK. (2002). Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology, 94, 416.
Article
Google Scholar
Baker, RS (2015). Big data and education, (2nd ed., ). New York: Teachers College, Columbia University.
Google Scholar
Baylor, AL, & Kim, Y. (2005). Simulating instructional roles through pedagogical agents. International Journal of Artificial Intelligence in Education, 15(2), 95–115.
Google Scholar
Beck, JE, & Gong, Y (2013). Wheel-spinning: students who fail to master a skill. In HC Lane, K Yacef, J Mostow, P Pavlik (Eds.), Proceedings of the 16
th International Conference on Artificial Intelligence in Education, (pp. 431–440). Berlin, Heidelberg: Springer.
Google Scholar
Biswas, G, Jeong, H, Kinnebrew, J, Sulcer, B, Roscoe, R. (2010). Measuring self-regulated learning skills through social interactions in a teachable agent environment. Research and Practice in Technology-Enhanced Learning, 5, 123–152.
Article
Google Scholar
Bjork, RA, & Allen, TW. (1970). The spacing effect: consolidation or differential encoding? Journal of Verbal Learning and Verbal Behavior, 9(5), 567–572.
Article
Google Scholar
Cai, Z, Graesser, AC, Forsyth, C, Burkett, C, Millis, K, Wallace, P, Halpern, D, Butler, H (2011). Trialog in ARIES: user input assessment in an intelligent tutoring system. In W Chen, S Li (Eds.), Proceedings of the 3rd IEEE International Conference on Intelligent Computing and Intelligent Systems, (pp. 429–433). Guangzhou: IEEE Press.
Google Scholar
Cai, Z, Graesser, AC, Hu, X (2015). ASAT: AutoTutor script authoring tool. In R Sottilare, AC Graesser, X Hu, K Brawner (Eds.), Design recommendations for intelligent tutoring systems: authoring tools, (vol. 3, pp. 199–210). Orlando: Army Research Laboratory.
Google Scholar
Chan, TW, & Baskin, AB (1990). Learning companion systems. In C Frasson, G Gauthier (Eds.), Intelligent tutoring systems: at the crossroads of artificial intelligence and education, chapter 1. New Jersey: Ablex Publishing Corporation.
Google Scholar
Chi, M, & VanLehn, K. (2010). Meta-cognitive strategy instruction in intelligent tutoring systems: how, when and why. Journal of Educational Technology and Society, 13(1), 25–39.
Google Scholar
Chi, MT, & Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243.
Article
Google Scholar
Chi, MTH. (2009). Active-constructive-interactive: a conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73–105.
Article
Google Scholar
Chipman, SF (2015). Obtaining department of defense funding for research in the behavioral sciences. In R Sternberg (Ed.), Writing successful grant proposals from the top down and bottom up. Thousand Oaks: Sage Publishers.
Google Scholar
Cohen, PA, Kulik, JA, Kulik, CC. (1982). Educational outcomes of tutoring: a meta-analysis of findings. American Educational Research Journal, 19, 237–248.
Article
Google Scholar
Collins, A, & Ferguson, W. (1993). Epistemic forms and epistemic games: structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42.
Article
Google Scholar
Craig, SD, Gholson, B, Brittingham, JK, Williams, JL, Shubeck, K. (2012). Promoting vicarious learning of physics using deep questions with explanations. Computers & Education, 58, 1042–1048.
Article
Google Scholar
Craig, SD, Gholson, B, Driscoll, D. (2002). Animated pedagogical agents in multimedia educational environments: effects of agent properties, picture features and redundancy. Journal of Educational Psychology, 94, 428.
Article
Google Scholar
Craig, SD, Twyford, J, Irigoyen, N, Zipp, SA. (2015). A test of spatial contiguity for virtual human’s gestures in multimedia learning environments. Journal of Educational Computing Research, 53(1), 3–14.
Article
Google Scholar
D’Mello, S, Lehman, S, Pekrun, R, Graesser, AC. (2014). Confusion can be beneficial for learning. Learning and Instruction, 29, 153–170.
Article
Google Scholar
D’Mello, SK, Craig, SD, Graesser, AC. (2009). Multi-method assessment of affective experience and expression during deep learning. International Journal of Learning Technology, 4, 165–187.
Article
Google Scholar
D’Mello, SK, & Graesser, AC. (2012). AutoTutor and affective AutoTutor: learning by talking with cognitively and emotionally intelligent computers that talk back. ACM Transactions on Interactive Intelligent Systems, 2(23), 1–38.
Article
Google Scholar
Dillenbourg, P, & Self, J (1992). People power: a human–computer collaborative learning system. In C Frasson, G Gauthier, G McCalla (Eds.), The 2nd International Conference of Intelligent Tutoring Systems, Lecture Notes in Computer Science, (vol. 608, pp. 651–660). Springer-Verlag.
Dodds, PVW, & Fletcher, JD. (2004). Opportunities for new “smart” learning environments enabled by next generation web capabilities. Journal of Education Multimedia and Hypermedia, 13, 391–404.
Google Scholar
Doerr, HM. (1996). Stella ten-years later: a review of the literature. International Journal of Computers for Mathematical Learning, 1, 201–224.
Article
Google Scholar
Dynarsky, M, Agodina, R, Heaviside, S, Novak, T, Carey, N, Campuzano, L, … Sussex, W (2007). Effectiveness of reading and mathematics software products: findings from the first student cohort. Washington, DC: U.S. Department of Education, Institute of Education Sciences.
Google Scholar
Dzikovska, M, Steinhauser, N, Farrow, E, Moore, J, Campbell, G. (2014). BEETLE II: deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. International Journal of Artificial Intelligence in Education, 24, 284–332.
Article
Google Scholar
Falmagne, J, Albert, D, Doble, C, Eppstein, D, Hu, X (2013). Knowledge spaces: applications in education. Berlin-Heidelberg: Springer.
Book
Google Scholar
Fletcher, JD, & Morrison, JE (2012). DARPA Digital Tutor: assessment data (IDA Document D-4686). Alexandria: Institute for Defense Analyses.
Google Scholar
Gholson, B, Witherspoon, A, Morgan, B, Brittingham, JK, Coles, R, Graesser, AC, Sullins, J, Craig, SD. (2009). Exploring the deep-level reasoning questions effect during vicarious learning among eighth to eleventh graders in the domains of computer literacy and Newtonian physics. Instructional Science, 37, 487–493.
Article
Google Scholar
Goodman, B, Soller, A, Linton, F, Gaimari, R. (1998). Encouraging student reflection and articulation using a learning companion. International Journal of Artificial Intelligence in Education, 9, 237–255.
Google Scholar
Graesser, A, & McNamara, D. (2010). Self-regulated learning in learning environments with pedagogical agents that interact in natural language. Educational Psychologist, 45(4), 234–244.
Article
Google Scholar
Graesser, AC. (2016). Conversations with AutoTutor help students learn. International Journal of Artificial Intelligence in Education, 26, 124–132.
Article
Google Scholar
Graesser, AC, Cai, Z, Baer, WO, Olney, AM, Hu, X, Reed, M, Greenberg, D (2016). Reading comprehension lessons in AutoTutor for the Center for the Study of Adult Literacy. In SA Crossley, DS McNamara (Eds.), Adaptive educational technologies for literacy instruction, (pp. 288–293). New York: Taylor & Francis Routledge.
Google Scholar
Graesser, AC, Hu, X, Sottilare, R (in press). Intelligent tutoring systems. In F Fisher, CE Hmelo-Silver, SR Goldman, P Reimann (Eds.), International handbook of the learning sciences. New York: Taylor & Francis.
Graesser, A. C., Langston, M. C., & Baggett, W. B. (1993). Exploring information about concepts by asking questions. In G. V. Nakamura, R. M. Taraban, & D. Medin (Eds.), The psychology of learning and motivation: Vol. 29. Categorization by humans and machines (pp. 411–436). Orlando, FL: Academic Press.
Graesser, AC, Li, H, Forsyth, C. (2014). Learning by communicating in natural language with conversational agents. Current Directions in Psychological Science, 23, 374–380.
Article
Google Scholar
Graesser, AC, Lu, S, Jackson, GT, Mitchell, H, Ventura, M, Olney, A, Louwerse, MM. (2004). AutoTutor: a tutor with dialogue in natural language. Behavioral Research Methods, Instruments, and Computers, 36, 180–193.
Article
Google Scholar
Graesser, AC, McNamara, DS, VanLehn, K. (2005). Scaffolding deep comprehension strategies through Point&Query, AutoTutor, and iSTART. Educational Psychologist, 40, 225–234.
Article
Google Scholar
Graesser, AC, & Olde, BA. (2003). How does one know whether a person understands a device? The quality of the questions the person asks when the device breaks down. Journal of Educational Psychology, 95, 524–536.
Article
Google Scholar
Graesser, AC, & Person, NK. (1994). Question asking during tutoring. American Educational Research Journal, 31, 104–137.
Article
Google Scholar
Halpern, DF, Millis, K, Graesser, AC, Butler, H, Forsyth, C, Cai, Z. (2012). Operation ARA: a computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity, 7, 93–100.
Article
Google Scholar
Heffernan, N, & Heffernan, C. (2014). The ASSISTments ecosystem: building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24, 470–497.
Article
Google Scholar
Heffernan, N., & Heffernan, C. (2016) Presentation at the White House Dec 7, 2016. Retrieved from https://www.youtube.com/watch?v=Ij2J8YJEeh0
Jackson, GT, & McNamara, DS. (2013). Motivation and performance in a game-based intelligent tutoring system. Journal of Educational Psychology, 105, 1036–1049.
Article
Google Scholar
Johnson, LW, & Valente, A. (2009). Tactical language and culture training systems: using artificial intelligence to teach foreign languages and cultures. AI Magazine, 30, 72–83.
Article
Google Scholar
Johnson, WL, & Lester, JC. (2016). Face-to-face interaction with pedagogical agents, twenty years later. International Journal of Artificial Intelligence in Education, 26(1), 25–36.
Article
Google Scholar
Johnson, WL, Rickel, JW, Lester, JC. (2000). Animated pedagogical agents: face-to-face interaction in interactive learning environments. International Journal of Artificial Intelligence in Education, 11(1), 47–78.
Google Scholar
Jurafsky, D, & Martin, J (2008). Speech and language processing. Englewood: Prentice Hall.
Google Scholar
Kim, Y, & Baylor, AL. (2016). Research-based design of pedagogical agent roles: a review, progress, and recommendations. International Journal of Artificial Intelligence in Education, 26(1), 160–169.
Article
Google Scholar
Kim, Y, Baylor, AL, Shen, E. (2007). Pedagogical agents as learning companions: the impact of agent emotion and gender. Journal of Computer Assisted Learning, 23(3), 220–234.
Article
Google Scholar
Koedinger, KR, Anderson, JR, Hadley, WH, Mark, M. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30–43.
Google Scholar
Koedinger, KR, Baker, RS, Cunningham, K, Skogsholm, A, Leber, B, Stamper, J (2010). A data repository for the EDM community: the PSLC DataShop. In C Romero, S Ventura, M Pechenizkiy (Eds.), Handbook of educational data mining, (vol. 43). Boca Raton: CRC Press.
Google Scholar
Koedinger, KR, Corbett, AC, Perfetti, C. (2012). The Knowledge-Learning-Instruction (KLI) framework: bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798.
Article
Google Scholar
Kopp, K, Britt, A, Millis, K, Graesser, A. (2012). Improving the efficiency of dialogue in tutoring. Learning and Instruction, 22(5), 320–330.
Article
Google Scholar
Kulik, JA, & Fletcher, JD. (2015). Effectiveness of intelligent tutoring systems: a meta-analytic review. Review of Educational Research, 85, 171–204.
Article
Google Scholar
Landauer, T, McNamara, DS, Dennis, S, Kintsch, W (2007). Handbook of latent semantic analysis. Mahwah: Erlbaum.
Google Scholar
Lane, HC, Noren, D, Auerbach, D, Birch, M, Swartout, W (2011). Intelligent tutoring goes to the museum in the big city: a pedagogical agent for informal science education. In G Biswas, S Bull, J Kay, A Mitrovic (Eds.), International journal of artificial intelligence in education, (pp. 155–162). Heidelberg: Springer.
Chapter
Google Scholar
Lesgold, A, Lajoie, SP, Bunzo, M, Eggan, G (1992). SHERLOCK: a coached practice environment for an electronics trouble-shooting job. In JH Larkin, RW Chabay (Eds.), Computer assisted instruction and intelligent tutoring systems: shared goals and complementary approaches, (pp. 201–238). Hillsdale: Erlbaum.
Google Scholar
Lintean, M, Rus, V, Cai, Z, Witherspoon-Johnson, A, Graesser, AC, Azevedo, R (2012). Computational aspects of the intelligent tutoring system MetaTutor. In P McCarthy, C Boonthum-Denecke (Eds.), Applied natural language processing: identification, investigation, and resolution, (pp. 247–260). Hershey: IGI Global.
Chapter
Google Scholar
Ma, W, Adesope, OO, Nesbit, JC, Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: a meta-analytic survey. Journal of Educational Psychology, 106, 901–918.
Article
Google Scholar
McCarthy, P, & Boonthum-Denecke, C (Eds.) (2012). Applied natural language processing: identification, investigation, and resolution. Hershey: IGI Global.
Google Scholar
McNamara, DS, O’Reilly, T, Best, R, Ozuru, Y. (2006). Improving adolescent students’ reading comprehension with iSTART. Journal of Educational Computing Research, 34, 147–171.
Article
Google Scholar
Millis, K, Forsyth, C, Wallace, P, Graesser, AC, Timmins, G. (in press). The impact of game-like features on learning from an intelligent tutoring system. Technology, Knowledge, and Learning.
Mitrovic, A, Martin, B, Suraweera, P. (2007). Intelligent tutors for all: the constraint-based approach. IEEE Intelligent Systems, 22, 38–45.
Article
Google Scholar
Moreno, R, Mayer, RE, Spires, HA, Lester, JC. (2001). The case for social agency in computer-based teaching: do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19(2), 177–213.
Article
Google Scholar
Murray, T, Blessing, S, Ainsworth, S (2003). Authoring tools for advanced technology learning environments. Dordrecht: Kluwer Academic Publishers.
Book
Google Scholar
NGSS (2013). Next generation science standards: for states, by states. The National Academies.
Nye, B. D. (2016). Generalized learning utilities-SuperGLU. github.com/GeneralizedLearningUtilities/SuperGLU.
Nye, BD, Graesser, AC, Hu, X. (2014a). AutoTutor and family: a review of 17 years of natural language tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427–469.
Article
Google Scholar
Nye, BD, Graesser, AC, Hu, X. (2014b). AutoTutor in the cloud: a service-oriented paradigm for an interoperable natural-language ITS. Journal of Advanced Distributed Learning Technology, 2(6), 35–48.
Google Scholar
Olney, A, D’Mello, SK, Person, N, Cade, W, Hays, P, Williams, C, Lehman, B, Graesser, AC (2012). Guru: a computer tutor that models expert human tutors. In S Cerri, W Clancey, G Papadourakis, K Panourgia (Eds.), Proceedings of intelligent tutoring systems (ITS) 2012, (pp. 256–261). Berlin: Springer.
Google Scholar
Pashler, H, McDaniel, M, Rohrer, D, Bjork, R. (2008). Learning styles concepts and evidence. Psychological Science in the Public Interest, 9(3), 105–119.
Article
Google Scholar
Person, NK, Graesser, AC, Magliano, JP, Kreuz, RJ. (1994). Inferring what the student knows in one-to-one tutoring: the role of student questions and answers. Learning and Individual Differences, 6, 205–229.
Article
Google Scholar
PowerSim. (2015). Retrieved from http://www.powersim.com/
Ritter, S, Anderson, JR, Koedinger, KR, Corbett, A. (2007). Cognitive tutor: applied research in mathematics education. Psychonomic Bulletin & Review, 14, 249–255.
Article
Google Scholar
Rochelle, J, Feng, M, Murphy, R, Mason, C. (2016). Online mathematics homework increases student achievement. AERA OPEN, 2(4), 1–12. https://doi.org/10.1177/2332858416673968.
Google Scholar
Rohrer, D, & Pashler, H. (2012). Learning styles: where’s the evidence? Medical Education, 46, 34–35.
Article
Google Scholar
Rowe, JP, Shores, LR, Mott, BW, Lester, JC. (2011). Integrating learning, problem solving, and engagement in narrative-centered learning environments. International Journal of Artificial Intelligence in Education, 21, 115–133.
Google Scholar
Rus, V, D’Mello, S, Hu, X, Graesser, AC. (2013). Recent advances in intelligent systems with conversational dialogue. AI Magazine, 34, 42–54.
Article
Google Scholar
Rus, V, Lintean, M, Graesser, AC, McNamara, DS (2012). Text-to-text similarity of statements. In P McCarthy, C Boonthum-Denecke (Eds.), Applied natural language processing: identification, investigation, and resolution, (pp. 110–121). Hershey: IGI Global.
Chapter
Google Scholar
Sabo, KE, Atkinson, RK, Barrus, AL, Joseph, SS, Perez, RS. (2013). Searching for the two sigma advantage: evaluating algebra intelligent tutors. Computers in Human Behavior, 29(4), 1833–1840.
Article
Google Scholar
Schroeder, NL, Adesope, OO, Gilbert, RB. (2013). How effective are pedagogical agents for learning? A meta-analytic review. Journal of Educational Computing Research, 49(1), 1–39.
Article
Google Scholar
Schroeder, NL, & Gotch, CM. (2015). Persisting issues in pedagogical agent research. Journal of Educational Computing Research, 53(2), 183–204.
Article
Google Scholar
Sleeman, D, & Brown, JS (Eds.) (1982). Intelligent tutoring systems. New York: Academic Press.
Google Scholar
Sottilare, R, Graesser, AC, Hu, X, Brawner, K (Eds.) (2015). Design recommendations for intelligent tutoring systems: authoring tools, (vol. 3). Orlando: Army Research Laboratory.
Google Scholar
Sottilare, R, Graesser, AC, Hu, X, Goldberg, B (Eds.) (2014). Design recommendations for intelligent tutoring systems: instructional management, (vol. 2). Orlando: Army Research Laboratory.
Google Scholar
Sottilare, R, Graesser, AC, Hu, X, Holden, H (Eds.) (2013). Design recommendations for intelligent tutoring systems: learner modeling, (vol. 1). Orlando: Army Research Laboratory.
Google Scholar
Spiro, RJ, Feltovich, PJ, Jacobson, MJ, Coulson, RL (1992). Cognitive flexibility, constructivism and hypertext: random access instruction for advanced knowledge acquisition in ill-structured domains. In T Duffy, D Jonassen (Eds.), Constructivism and the technology of tnstruction, (pp. 57–75). Hillsdale: Erlbaum.
Google Scholar
Stamper, J, Koedinger, K, Pavlik Jr, PI, Rose, C, Liu, R, Eagle, M, … Veeramachaneni, K (2016). Educational data analysis using LearnSphere workshop. In J Rowe, E Snow (Eds.), Proceedings of the EDM 2016 workshops and tutorials co-located with the 9th International Conference on Educational Data Mining. Raleigh.
Steenbergen-Hu, S, & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106, 331–347.
Article
Google Scholar
Steenbergen-Hu, S, & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on K-12 students’ mathematical learning. Journal of Educational Psychology, 105, 971–987.
Google Scholar
Swartout, W, Nye, BD, Hartholt, A, Reilly, A, Graesser, AC, VanLehn, K, Wetzel, J, Liewer, M, Morbini, F, Morgan, B, Wang, L, Benn, G, Rosenberg, M (2016). Designing a personal assistant for life long learning (PAL3). In Z Markov, I Russel (Eds.), Proceedings of the 29
th International Florida Artificial Intelligence Research Society Conference, (pp. 491–496). Palo Alto: Association for the Advancement of Artificial Intelligence.
Google Scholar
U.S. Navy (1998). Navy electricity and electronics training series, (vol. 1–24). Pensacola: Naval Education and Training Professional Development and Technology Center.
Google Scholar
VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16, 227–265.
Google Scholar
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring systems. Educational Psychologist, 46, 197–221.
Article
Google Scholar
VanLehn, K. (2013). Model construction as a learning activity: a design space and review. Interactive Learning Environments, 21(4), 371–413.
Article
Google Scholar
VanLehn, K, Chung, G, Grover, S, Madni, A, Wetzel, J. (2016). Learning science by constructing models: can Dragoon increase learning without increasing the time required? International Journal of Artificial Intelligence in Education, 26(4), 1–36.
Article
Google Scholar
VanLehn, K, Graesser, AC, Jackson, GT, Jordan, P, Olney, A, Rose, CP. (2007). When are tutorial dialogues more effective than reading? Cognitive Science, 31, 3–62.
Article
Google Scholar
VanLehn, K, Wetzel, J, Grover, S, van de Sande, B. (2016). Learning how to construct models of dynamic systems: the effectiveness of the Dragoon intelligent tutoring system. IEEE Transactions on Learning Technologies.
Veeramachaneni, K, Dernoncourt, F, Taylor, C, Pardos, Z, O’Reilly, U-M (2013). MOOCdb: developing data standards for MOOC data science. In E Walker, C-K Looi (Eds.), AIED 2013 workshops proceedings volume, (pp. 17–24).
Google Scholar
VentanaSystems. (2015). Retrieved from http://vensim.com/
Ward, W, Cole, R, Bolaños, D, Buchenroth-Martin, C, Svirsky, E, Weston, T. (2013). My science tutor: a conversational multimedia virtual tutor. Journal of Educational Psychology, 105, 1115–1125.
Article
Google Scholar
Wetzel, J, VanLehn, K, Chaudhari, P, Desai, A, Feng, J, Grover, S, … van de Sande, B. (2016). The design and development of the Dragoon intelligent tutoring system for model construction: lessons learned. Interactive Learning Environments. https://doi.org/10.1080/10494820.2015.1131167.
Woolf, BP (2009). Building intelligent interactive tutors. Burlington: Morgan Kaufmann Publishers.
Google Scholar
Zapata-Rivera, D, Jackson, GT, Katz, I (2015). Authoring conversation-based assessment scenarios. In R Sottilare, AC Graesser, X Hu, K Brawner (Eds.), Design recommendations for intelligent tutoring systems: authoring tools, (vol. 3, pp. 169–178). Orlando: Army Research Laboratory.
Google Scholar
Zhang, L, VanLehn, K, Girard, S, Burleson, W, Chavez-Echeagaray, M-E, Gonzalez-Sanchez, J, Hidalgo Pontet, Y. (2014). Evaluation of a meta-tutor for constructing models of dynamic systems. Computers & Education, 75, 196–217.
Article
Google Scholar