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Abstract 

Background:  Many institutional and departmentally focused change efforts have sought to improve teaching in 
STEM through the promotion of evidence-based instructional practices (EBIPs). Even with these efforts, EBIPs have not 
become the predominant mode of teaching in many STEM departments. To better understand institutional change 
efforts and the barriers to EBIP implementation, we developed the Cooperative Adoption Factors Instrument (CAFI) 
to probe faculty member characteristics beyond demographic attributes at the individual level. The CAFI probes mul-
tiple constructs related to institutional change including perceptions of the degree of mutual advantage of taking an 
action (strategic complements), trust and interconnectedness among colleagues (interdependence), and institutional 
attitudes toward teaching (climate).

Results:  From data collected across five STEM fields at three large public research universities, we show that the 
CAFI has evidence of internal structure validity based on exploratory and confirmatory factor analysis. The scales have 
low correlations with each other and show significant variation among our sampled universities as demonstrated 
by ANOVA. We further demonstrate a relationship between the strategic complements and climate factors with EBIP 
adoption through use of a regression analysis. In addition to these factors, we also find that indegree, a measure of 
opinion leadership, correlates with EBIP adoption.

Conclusions:  The CAFI uses the CACAO model of change to link the intended outcome of EBIP adoption with per-
ception of EBIPs as mutually reinforcing (strategic complements), perception of faculty having their fates intertwined 
(interdependence), and perception of institutional readiness for change (climate). Our work has established that the 
CAFI is sensitive enough to pick up on differences between three relatively similar institutions and captures significant 
relationships with EBIP adoption. Our results suggest that the CAFI is likely to be a suitable tool to probe institutional 
change efforts, both for change agents who wish to characterize the local conditions on their respective campuses to 
support effective planning for a change initiative and for researchers who seek to follow the progression of a change 
initiative. While these initial findings are very promising, we also recommend that CAFI be administered in different 
types of institutions to examine the degree to which the observed relationships hold true across contexts.
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Introduction
Evidence-based instructional practices (EBIPs) are tech-
niques that have been reported in the literature to con-
sistently improve students’ academic performance and 
affective outcomes in a wide variety of STEM disciplines 
(Freeman et al., 2014; Schroeder et al., 2007; Stains et al., 
2018; Theobald et al., 2020). While EBIPs show promise 
in attracting and retaining more students in STEM, they 
have yet to become the predominant mode of instruction 
in college STEM courses (Borrego et  al., 2010; Durham 
et al., 2017; Henderson & Dancy, 2009; López et al., 2022; 
Stains et al., 2018). Within the literature on institutional 
change efforts designed to promote the use of EBIPs in 
STEM education, several researchers have noted that dis-
cussions about teaching among faculty members impact 
practice (Kezar, 2014; Sachmpazidi et  al., 2021). Some 
of these studies have examined departments within a 
university to map out patterns of social interactions to 
characterize how faculty talk about teaching among each 
other (Andrews et al., 2016; Knaub et al., 2018; Ma et al., 
2018; McConnell et al., 2019; Mestre et al., 2019; Middle-
ton et al., 2022; Quardokus & Henderson, 2015). Others 
have considered wider patterns of influence in teaching 
practice by looking at different universities across a dis-
cipline (Hayward & Laursen, 2018) or examining more 
specialized national initiatives such as The POGIL Pro-
ject (Shadle et  al., 2018). Members from our team have 
reported evidence that faculty members are influenced in 
their teaching practice by their discussion partners (Lane 
et al., 2019) and that faculty members who use EBIPs are 
more likely to seek conversations with other faculty who 
use EBIPs (Lane et al., 2020).

It is our goal to supplement this investigation of how 
faculty member’s discussion of teaching affects their 
teaching practice with aspects of how individual faculty 
members perceive aspects of their local environment 
and institutional structures. For the theoretical basis of 
our research, we use the CACAO (Change–Adopter–
Change Agents–Organization) model by Dormant (2011) 
to describe three constructs of interest to institutional 
change along with a description of adoption of a new 
behavior. The constructs include conceptualizations of 
the self-perception of mutually beneficial actions (Jack-
son & Zenou, 2015), the interconnectedness of success 
(Aktipis et al., 2018) and a faculty member’s perception of 
institutional readiness for change (Landrum et al., 2017). 
As individual faculty members’ perceptions of these 
constructs will likely be affected by their peers, we will 
consider these constructs in the context of investigating 

the social connections and networks of the faculty. As 
our goal is to better understand how faculty approach 
instructional practice in undergraduate STEM, we 
desired to characterize a large sample of faculty over sev-
eral institutions according to these constructs. To accom-
plish this task, we developed the Cooperative Adoption 
Factors Instrument (CAFI), a tool that can efficiently 
and simultaneously measure each of these constructs. 
This report details the steps in the development, internal 
structure analysis, and interpretation of scores for our 
instrument.

Theoretical framework
Institutional change
In order to characterize adoption of EBIPs, we start by 
considering the CACAO model by Dormant (2011). The 
CACAO model combines several aspects of the change 
literature, including Roger’s diffusion of innovations 
(Rogers, 2003) and the purposeful implementation of 
Kotter (Kotter & Cohen, 2002), to provide a useful frame-
work for those designing change initiatives (Shadle et al., 
2017; Viskupic et  al., 2022). The model also emphasizes 
the importance of considering change at several levels 
as suggested in the name of the model itself: Change 
(the new system, process, etc., that is desired), Adopters 
(the ones who will be implementing the change), Change 
Agents (the ones promoting the change), and Organiza-
tion (the institution in which the others exist).

When considering the adoption of an innovation, the 
CACAO model describes a series of discrete steps taken 
by individuals: (1) awareness, (2) curiosity, (3) mental 
tryout, (4) hands-on tryout, and (5) adoption (Dormant 
& Lee, 2011). This characterization draws from several 
sources including Diffusion of Innovations (Gibbons 
et  al., 2017; Rogers, 2003), the Concerns-Based-Adop-
tion-Model (Anderson, 2014; Hall & Hord, 1987; Hord 
et al., 1987), and Lewin’s 3-stage model of change (Lewin, 
1947). Landrum et  al. (2017) has previously used the 
CACAO characterization of steps to develop a Gutt-
man scale of an individual faculty member’s level of 
EBIP adoption in post-secondary education. This Gutt-
man scale uses self-report from faculty on their degree of 
knowledge and use of EBIPs in their classrooms through 
a series of items matching an expected progression as 
informed by the steps of adoption in the CACAO model. 
In the development of the CAFI, we used this scale in 
order to characterize EBIP adoption among faculty.

The CACAO model also emphasizes understand-
ing eventual adopters of change and enabling change 
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agents within their institutional context. Within this 
framework, the ideal organizational change is charac-
terized by “relative advantage”, positive “social impact”, 
“compatibility”, “simplicity”, and “adaptability”, all from 
the perspective of the adopter (Dormant & Lee, 2011) 
as illustrated in Fig. 1. In this scheme, relative advan-
tage refers to the benefits of using the new method 
over the old way of doing things. If a change offers 
little benefit over the status quo, it is unlikely to see 
wide adoption. Social impact describes how imple-
menting a change can affect the social relations of the 
potential adopter. A change which may result in harm 
to an adopter’s social relationships is less likely to be 
implemented than a change with a perceived neutral 
or positive effect. Compatibility refers to how well a 
change fits into current practices, with more compat-
ible changes being more easily adopted. Simplicity is a 
direct characteristic of the change. Complex changes 
are less likely to be implemented than simpler ones 
which potential adopters can more easily comprehend. 
Finally, adaptability is another direct characteristic 
of the change, referring to the degree to which adop-
ters may customize it to the particular context. Here, 
changes which are adaptable are more likely to be 
implemented than more rigidly structured ones.

Using this framework, we seek to analyze STEM 
instructional reform efforts by characterizing relative 
advantage, social impact, and compatibility. In the interest 
of increasing the utility of the CAFI in a variety of con-
texts, we did not incorporate simplicity and adaptability, 
as these features are strongly dependent on the particular 
EBIP reform being implemented. For relative advantage, 
social impact, and compatibility, we have operational-
ized a particular element of each as a target of measure-
ment, namely strategic complements, interdependence, 
and campus climate, respectively. These operationaliza-
tions are conceptualized in a way that acknowledges the 
embeddedness of faculty members in a social network.

Strategic complements
The concept of strategic complementarity describes how 
a faculty member views the relative advantage of taking 

on an action or behavior based on the actions or behav-
iors of other faculty around them. This terminology was 
originally coined by Bulow et  al. (1985) and expanded 
into social networks by Jackson and Zenou (2015). The 
underlying foundation for strategic complements is 
within game theory, a theoretical framework developed 
in the mid-twentieth century (von Neumann & Morgen-
stern, 2007), and this concept has been applied to prob-
lems ranging from environmental dilemmas (Hardin, 
1968) to Cold War nuclear deterrence (Schelling, 1966) 
and food sharing among traditional hunter-gatherers 
(Hames & McCabe, 2007; Ziker & Schnegg, 2005). In 
our context, we will consider how strategic complements 
apply to faculty determining the relative advantage of 
applying EBIPs in their practice. When EBIP adoption 
by others is a strategic complement, adoption has a rela-
tive advantage over not adopting. This relative advantage 
comes from the perception that use of EBIPs has greater 
benefits and/or reduced cost than if fewer faculty were 
using them.

Interdependence
If adoption of a new behavior may affect the social 
relationships of the adopter, the potential adopter will 
consider the positive or negative impact before adopt-
ing the new behavior. The CACAO model refers to this 
consideration as the social impact of change (Dormant 
& Lee, 2011). Adoption of EBIPs by faculty requires 
they first know about EBIPs. This knowledge can come 
from the exchange and sharing of ideas and experience 
between change agents and potential adopters of EBIPs. 
López et al. (2022) stress that network expansion is an 
important driver for the change process. When indi-
vidual faculty members expand their social networks, 
they have the potential to gain access to resources, 
including knowledge of and support for using EBIPs. 
However, the sharing of ideas and experience among 
faculty members is likely to depend on the “comfort 
level” faculty have about sharing their teaching experi-
ences and whether they feel they have some influence 
on the outcomes of others. When faculty do not have 
this “comfort level” with their peers, adoption of EBIPs 

Fig. 1  Components of ideal change according to the CACAO model. The CAFI explicitly explores Relative Advantage, Social Impact, and 
Compatibility, while Simplicity and Adaptability are not considered in order to improve utility for a variety of potential instructional practices
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or conversations about implementing EBIPs could 
result in a negative social impact. The resulting silence 
among peers interrupts the process of institutional 
change. The tendency of faculty to make trust-based 
decisions is supported by others in the institutional 
change literature (e.g., Kezar, 2014), and we identify 
trust as another key change-readiness metric relevant 
to planning successful higher education change initia-
tives. However, directly measuring trust is difficult, and 
widely used trust scales have garnered criticism (Naef 
& Schupp, 2009). To characterize this aspect of fac-
ulty relationships, we focus on interdependence, the 
idea that people see each other’s success or failure as 
intertwined, which is commonly used in the majority 
of definitions of interpersonal trust (Boon & Holmes, 
1991). We adapted a scale of interdependence (Aktipis 
et  al., 2018) that was designed to be modified for use 
in a variety of settings. Using this scale of interdepend-
ence, Aktipis et  al. (2018) found that interdependence 
can predict helping behaviors more strongly than other 
common measures, such as kinship.

Climate
Another consideration for faculty adopting EBIPs is 
whether a faculty member perceives EBIPs as compat-
ible with their current classroom practice and/or with 
the climate regarding teaching on the campus as a 
whole (Walter et al., 2021). A faculty member’s percep-
tion of the campus climate toward teaching is shaped 
by the faculty member’s interactions with peers, and 
the interactions can have an impact on the imple-
mentation of innovative practices (McConnell et  al., 
2019). If a faculty member perceives the campus cli-
mate as supportive of teaching, then it is possible the 
faculty member will invest more time and energy into 
teaching and potentially adopting EBIPs (Sturtevant & 
Wheeler, 2019). A positive campus climate might also 
suggest that greater experimentation with teaching 
methods would be allowed and rewarded, while a nega-
tive climate might deter experimentation. Landrum 
et al. (2017) developed an instructional climate survey 
with the understanding that both climate and personal 
change characteristics can be helpful to campus change 
agents in assessing the current STEM landscape of fac-
ulty practices. Through this project, we seek to inves-
tigate how a faculty member’s perception of climate in 
our contexts is related to the use of EBIPs.

Research questions
Each of the constructs discussed (strategic comple-
ments, interdependence, and campus climate) can have 
an impact on willingness to adopt a reformed teaching 

practice. Therefore, a goal of this research is to investi-
gate the connection between these constructs and the 
measure of EBIP adoption. This study aims to provide an 
initial insight into the interplay between these constructs 
and EBIP adoption among faculty teaching undergradu-
ate STEM. Additionally, as social connections can impact 
teaching practices (Kezar, 2014; Lane et al., 2019, 2020), 
we also want to consider how network measures predict 
EBIP adoption. As previous work has shown that STEM 
faculty members who have more extensive social connec-
tions tend to teach in more learner-centered ways than 
their peers (Middleton et  al., 2022), understanding how 
faculty members are connected to each other is impor-
tant to understand the diffusion of EBIP adoption. If the 
faculty who use EBIPs are serving as opinion leaders in 
their departments, this is promising for the future spread 
of EBIPs in the departments. While formal positions like 
department chair can serve as proxy for identifying opin-
ion leaders, we want to better understand with whom 
faculty are having conversations outside the formal struc-
ture of their departments. Therefore, we included in 
our survey a prompt asking the respondent with whom 
they interacted about teaching matters. We then used 
the amount that a faculty member was identified as a 
target for teaching discussion as a measure of opinion 
leadership.

Discussion of theory related to institutional change 
in higher education generally falls into one of two cat-
egories, namely “change theory” or “theory of change” 
(Reinholz & Andrews, 2020). A change theory applies 
understanding from several theoretical and empiri-
cal reports over time to describe the process of change 
beyond a particular project or location. In contrast, a the-
ory of change is generally project-specific and is focused 
on how to effect change within a specific context. It is our 
intention that our instrument, grounded in the change 
theories that are incorporated into the CACAO model, 
can serve as a starting point for change agents to build a 
theory of change within their institution. The constructs 
measured by our instrument all link to ideas around 
institutional change, and this instrument is intended to 
allow change agents to monitor a change initiative as it 
progresses at their institution.

The implementation of an instrument allows research-
ers to quickly and easily characterize a sample based 
on many constructs of interest. To optimize response 
rates, we prioritized making the instrument relatively 
short while incorporating multiple scales. As part of 
the development process, it is important to consider 
aspects of validity before interpreting scores (AERA, 
2014; Arjoon et al., 2013) Additionally, this report seeks 
to provide some baseline levels for these constructs that 
future researchers can use as a reference point when 



Page 5 of 18McAlpin et al. International Journal of STEM Education            (2022) 9:48 	

interpreting their own data. Here, we detail the steps we 
took to provide evidence for content and internal struc-
ture validity for the instrument along with some pre-
liminary observations based on the observed outcomes. 
Specifically, we address:

1.	 To what extent are we able to provide evidence of 
content validity and internal structure validity for our 
instrument simultaneously measuring perception of 
strategic complements, interdependence, campus cli-
mate, and EBIP adoption?

2.	 Do the factor scores cover a range of values in their 
construct, enabling characterization of a range of fac-
ulty perceptions?

3.	 How do these factor scores and opinion leadership 
relate to EBIP adoption for this sample?

Methods
Instrument development and administration
Sampling frame
The sampling frame for our study consists of five STEM 
disciplines (biological sciences, chemistry, earth sciences, 
mathematics, and physics) at three large public research 
universities. The universities will be referred to as Uni1, 
Uni2, and Uni3. Each university is in a different region 
of the United States and has a Carnegie classification of 
high or very high research activity. Undergraduate enroll-
ment ranges from around 20,000 to around 40,000. Insti-
tutional change initiatives designed to increase adoption 
of EBIPs were ongoing at each university at the time of 
data collection. All faculty with a teaching role in the 
semester of administration were considered eligible par-
ticipants. Institutional Review Board approvals from each 
institution were obtained to conduct the research.

Instrument development
We piloted an initial version of the CAFI at Uni1 in Octo-
ber 2017. The pilot instrument included scales for stra-
tegic complements, interdependence, and EBIP adoption 
but not climate. We also included items addressing EBIP 
knowledge and use from a previous report on social 
influence (Lane et  al., 2019) on this pilot version. The 
sample for the pilot was composed of faculty in depart-
ments that were not targets for the final version of the 
CAFI. Eligible participants received email invitations to 
respond to the pilot instrument administered via Qual-
trics. This pilot administration received results from 154 
respondents with 148 complete responses.

The first set of items in this pilot was designed to probe 
faculty members’ perceptions of types of strategic inter-
actions based on game theory. We originally constructed 
a series of 14 seven-point Likert-scale items in the fall 

of 2017 describing a variety of possible strategic inter-
actions between faculty over EBIPs, including strategic 
complements, strategic supplements, and competitive 
exclusion (Jackson & Zenou, 2015). From the received 
responses, we conducted iterated factor analyses and 
reliability analysis using SPSS 24 on the 14 items. We 
examined all items together, each subscale separately, and 
then tested combinations of items from the different sub-
scales. This analysis showed that items aimed at strate-
gic complements and strategic supplements loaded onto 
two factors, but those two factors crosscut the groups 
of items. We also found that items originally aimed at a 
competitive exclusion subscale loaded onto one factor 
but had low reliability (α < 0.5, Tavakol & Dennick, 2011). 
For the final version of the CAFI, we settled on four items 
originally tagged as strategic complements, one item 
originally tagged as a strategic supplement, and one item 
focused on the value of EBIPs for student learning into a 
scale that loaded onto one factor and had high reliability 
(0.7 < α < 0.9, Tavakol & Dennick, 2011).

The next set of items was designed to probe percep-
tions of interdependence, a component of trust. These 
items were developed as part of the Human Generosity 
Project (Aktipis et al., 2018) and have been shown to pre-
dict helping behavior better than kinship or reciprocity. 
For these items, “your closest department colleague” was 
used as the person of reference. These items are scored 
on a 7-point Likert scale. Analysis of data collected in this 
pilot suggested no adjustments were necessary for these 
items.

In addition to collecting data on EBIP adoption 
through a Guttman style scale (Landrum et al., 2017), we 
supplemented the pilot of the CAFI with another set of 
items previously used to characterize EBIP knowledge 
and EBIP use separately (Lane et  al., 2019). When ana-
lyzing the EBIP adoption scale relative to the separate 
EBIP knowledge and EBIP use scales, we see a correla-
tion of 0.608 for EBIP adoption and EBIP knowledge and 
a correlation of 0.708 for EBIP adoption and EBIP use. 
These values are large enough to suggest we are charac-
terizing similar constructs but not so strong to suggest 
redundancy.

All items and analyzed data from the pilot were then 
reviewed by an external advisory board composed of 
experts with respect to institutional change within higher 
education or social networks in educational contexts. 
Based on feedback from this board, items to address the 
campus climate were added. These items were added to 
help us consider the influence of the faculty member’s 
perception of the compatibility between EBIP adoption 
and the faculty member’s perception of the general cam-
pus climate for teaching. This section included six items 
to characterize the perception of campus climate toward 
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teaching. These items were chosen from analysis of data 
collected by Landrum et al (2017) by performing a factor 
analysis and reliability analysis of the original data from 
Landrum et al. We chose the items that contributed most 
strongly to one factor and contributed to the strongest 
reliability score. The items for this scale were answered 
on a 7-point semantic differential ranking perception 
between two opposing statements.

Before finalization of the CAFI, a section to collect data 
on faculty members’ social networks was also added. 
For network data, each respondent was asked to identify 
individuals that satisfied the following prompt: “During 
the most recent academic year, I discussed instructional 
activities (e.g., teaching strategies, student learning, grad-
ing, student achievement) with the following colleagues.” 
This prompt was provided for colleagues fitting three dif-
ferent descriptions: within department, outside depart-
ment but within university, and outside university. To 
identify faculty members within department, respond-
ents were provided a list of faculty members within 
their department whom they could check off as satisfy-
ing the prompt. For the other categories, respondents 
were allowed up to seven open responses for each as the 
nature of these categories do not allow for a prepopu-
lated list. Relatively few respondents filled in all seven 
open response opportunities suggesting that limiting 
responses to seven did not meaningfully limit our data.

The final version of the CAFI as seen by participants 
is included as Additional file  1. During the Spring 2018 
semester, 488 faculty were invited by email to participate 
by completing the CAFI administered via Qualtrics. A 
representative from our research team attended a depart-
mental meeting in most of the sampled departments to 
encourage participation. As an incentive for completion, 
faculty at Uni1 received a $10 remuneration on the cam-
pus identification card for completing the survey in addi-
tion to a lunch being provided for all departments which 
reached 80% response or higher. At Uni2, faculty who 
completed the survey were given a $20 gift card for Tar-
get stores. Faculty at Uni3 received no compensation for 
completing the instrument. These differences reflect IRB 
interpretations of the allowability of incentives.

A total of 296 faculty gave complete or partial 
responses to the instrument. The response rate by cam-
pus ranged from 75% for Uni1, 62% for Uni2, and 50% for 
Uni3. From each of the three universities, we received a 
similar number of responses, meaning that each contrib-
uted about a third of the data (33%, 33%, and 34%, respec-
tively). Breaking down our total responses by academic 
discipline, we saw fairly even representation from biology 
(22%), chemistry (25%), geology (20%), and mathemat-
ics (22%) with a smaller percentage coming from physics 
(12%); this suggests the data represent perspectives from 

a range of STEM disciplines (numbers add to greater 
than 100% due to rounding). The sample had more male 
(68%) than female (32%) respondents which is reflective 
of the demographics of the eligible faculty being 72% 
male. Additionally, we received responses from a mixture 
of tenured/tenure-track (75%) and other faculty ranks 
(25%). The median time to complete the survey across all 
participants was just under 12 min.

The items used in our instrument represent both newly 
developed items and sets of items that have not previ-
ously been explored together. Therefore, we chose to use 
an exploratory factor analysis (EFA) to investigate how 
to explain the observed variance parsimoniously fol-
lowed by confirmatory factor analysis to further support 
the internal structure (Brown, 2015). Based on simula-
tion studies, a three-factor instrument with six indicators 
per factor requires between 100 and 190 respondents to 
achieve appropriate statistical power with the range rep-
resenting high to low factor loadings (Wolf et al., 2013). 
Therefore, we expect analyzing around 150 responses will 
provide appropriate statistical power for each factor anal-
ysis. From the received 296 responses, we randomly split 
them into two halves of 148 responses. After completing 
the EFA on the first set of data, we performed confirma-
tory factor analysis (CFA) on the reserved portion to see 
if the data matches a prespecified model.

Statistical analysis
For analysis, responses to all scale items were coded on 
a 1–7 scale with 4 representing a neutral response, and 
negatively phrased items were reverse coded for ease of 
interpretation. Both EFA and CFA were run in Mplus 
7 (Muthén & Muthén, 2012). In both EFA and CFA, a 
full-information maximum likelihood (FIML) estimator 
was used as it is robust in estimating factor loadings for 
most analyses and can be used in cases with missing data 
without requiring listwise deletion. For EFA, a Geomin 
oblique rotation was used to improve interpretability 
while considering potential correlation among factors. 
While there is no absolute cutoff in loading for determin-
ing a factor, we chose a loading of 0.32 to indicate that a 
particular item loaded into a factor (Brown, 2015). After 
results were obtained for the EFA, a CFA was performed 
on the reserved data. Details about the steps taken to 
address model fit are addressed in the results section.

One way to support results from a factor analysis is 
measures of internal consistency. While Cronbach’s 
alpha (Cronbach, 1951) is popular and included in this 
report, it is calculated under the assumption of an essen-
tially tau-equivalent model which is rarely observed 
(Komperda et al., 2018). Therefore, we also report values 
for omega (also referred to in literature as McDonald’s 
omega or hierarchical omega (McDonald, 2013)) and 
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Raykov’s rho (also seen in literature as Bollen or Raykov’s 
omega (Bollen, 1980; Raykov, 2001). These supplemental 
measures have a similar interpretation with values closer 
to one being good and no absolute cutoff available.

Items to measure EBIP adoption were adapted from 
previous work in the development of a Guttman style 
scale (Landrum et al., 2017) and were analyzed separately 
from the other items. On this EBIP adoption scale, the 
respondent was presented with a series of items where 
agreement on later items suggests agreement with pre-
vious statements (e.g., use of EBIPs implies knowledge 
of EBIPs). Deviations from the pattern, where agree-
ment on later items is accompanied by disagreement on 
earlier items, would indicate a lack of reliability in the 
scale. The number of ‘yes’ responses on this scale were 
added together to produce an EBIP adoption score. In 
characterizing the quality of results from a Guttman 
scale, recommended statistics include the coefficient of 
reproducibility (CR), minimal marginal reproducibility 
(MMR), percent improvement (PI), and coefficient of 
scalability (CS) (McIver & Carmines, 2011). These sta-
tistics would flag deviations from the pattern and can be 
used to support that a particular Guttman scale is func-
tioning as a unidimensional measure of the intended 
construct. The CR helps describe the percentage of data 
that matches the expected response pattern with values 
above 0.9 generally recommended for interpreting data 
as unidimensional. In calculating scale errors for our 
data, we use the Goodenough–Edwards method (Good-
enough, 1955). The value from MMR helps in interpret-
ing the CR by considering how many expected response 
patterns would occur by chance with lower values being 
desired for interpretation. The PI is simply the differ-
ence between CR and MMR with larger values indicat-
ing more evidence of validity to interpretation of scores. 
Finally, the coefficient of scalability is similar to CR, but 
the observed errors are divided by the marginal errors 
instead of total responses. Values above 0.6 are generally 
recommended for CS.

In order to test if our instrument was capable of see-
ing differences among our populations, we sought to 
compare universities based on factor scores. To make 
this comparison, we used an ANOVA to see if a measure 
showed significant difference among our sampled univer-
sities. In cases where we observed a significant difference, 
we followed ANOVA with a Tukey test to determine 
which universities were statistically different. Addition-
ally, Cohen’s f was calculated as a measure of effect size 
to understand the meaningfulness of these differences 
(Chen & Chen, 2012). All ANOVA procedures were per-
formed in R (R Core Team, 2021).

In addition to seeing if our data showed differences 
among universities, we wanted to understand how these 

scales we measured related to the outcome of EBIP adop-
tion. In order to accomplish this goal, we performed a 
regression analysis in R with each measured construct 
predicting EBIP adoption. Additionally, to test hypoth-
eses relating to the impact of social networks in teach-
ing practice, we also used indegree, a measure of opinion 
leadership (Valente & Pumpuang, 2007), to test whether 
faculty who are seen as opinion leaders are themselves 
using EBIPs. The regression with and without indegree 
were run separately to evaluate the utility of adding inde-
gree into the regression model. Among the faculty who 
completed the instrument, indegree ranged from a mini-
mum of zero to a maximum of 24 with a median value of 
6.

Results
Testing assumptions
Before running factor analysis, the data were summa-
rized by item descriptives (Additional file  2: Table  S1), 
inter-item correlation tables (Additional file 2: Table S2), 
and item response rates (Additional file 2: Table S3) and 
tested for assumptions utilized in factor analysis (e.g., 
normality). Results from these summaries are included in 
the Additional file 2. The results warranted no changes to 
the data or analysis plan.

Exploratory factor analysis
An EFA of one-half of the data was used to determine the 
underlying factor structure of items in the instrument. 
For determining the appropriate number of factors, best 
practices suggest combining multiple methods in addi-
tion to comparison with originally established theory. For 
our analysis, we combined Kaiser’s criterion, Scree analy-
sis, and parallel analysis. Kaiser’s criterion, parallel analy-
sis, and our intended design converge on a three-factor 
instrument underlying the data while Scree analysis sug-
gests a four-factor instrument is reasonable (Fig. 2). Using 
these findings, we calculated three- and four-factor EFA 
solutions. Upon inspecting the four-factor solution, it 
split the six items for strategic complements into two 
factors based on standard and reverse wording of items. 
We chose to keep three factors, in alignment with our 
intended design, Kaiser’s criterion, and parallel analysis.

Item pattern loadings into the three-factor solu-
tion are summarized in Additional file  2: Table  S4, as 
are the factor correlations (Additional file 2: Table S5) 
for this model. These initial results are generally con-
sistent with our intended design; however, one item 
intended to describe climate did not load into any fac-
tor. This item was worded in a way unlike the other cli-
mate items starting with “my teaching is…” while the 
rest of the items to address climate started with “the 
campus culture is…”. Therefore, we decided it was best 
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to remove the item and rerun the EFA. After repeat-
ing the analysis with this item removed, we observed 
a similar three-factor solution. Item pattern loadings 
(Table 1) are generally strong within a single factor with 
no substantive cross-loading. Additionally, the factors 
show insignificant or small correlations with each other 
(Table 2). Based on our intended design, we named the 
factors “perception of strategic complements”, “percep-
tion of interdependence”, and “perception of campus 
climate toward teaching”. For simplicity, the factors will 
be referred to as “complements”, “interdependence”, and 
“climate”, respectively.

Confirmatory factor analysis
The factor structure suggested by EFA was then used 
to conduct a CFA on the reserved portion of the data. 

CFA allows us to determine if the reserved data are 
consistent with a proposed model by analyzing the 
data with a predefined model. Without any modifica-
tions to the model, the fit statistics from this CFA were 
χ2 (116, N = 150) = 303.297, p < 0.0001; RMSEA = 0.104; 
CFI = 0.822; and SRMR = 0.072 (see Additional file  2: 
Fig. S1 for the structure and standardized loadings for 
this model). The χ2 indicates significant misfit between 
the proposed model and observed data, and the other 
fit statistics are not within generally accepted levels 
(RMSEA < 0.06, CFI > 0.95, and SRMR < 0.08; (Hu & 
Bentler, 1999)) indicating the proposed model is not an 
adequate approximation of the observed data.

One method to improve model fit is using a bifac-
tor model as it can model instrument level effects in the 
measurement (Brown, 2015; Xu et al., 2016). When sub-
jecting the current data to a bifactor analysis, the calcula-
tion failed to converge and increasing iterations beyond 
default levels simply resulted in greater divergence. This 
behavior was observed in both Mplus and R suggesting 
that the bifactor model is a poor fit for our data.

To account for misfit in the model, the potential for 
correlated error among the items was evaluated. These 
correlated error terms allow us to explain variance among 
items that goes beyond what is suggested by the factor 
structure. Based on modification indices from Mplus and 
inspection of individual items, two sources of correlated 
error within the Interdependence factor were proposed. 
First, the items were written in pairs which contained 
similar wording but with opposing sets of adjectives 
(good/bad, succeed/fail, and gain/loss). Similarly worded 
items are a common source of correlated error (Brown, 
2015), and these three correlated errors were included 
in the model. Additionally, within the Interdependence 
factor, three items have standard wording (good, suc-
ceed, gain) while the other three have reverse wording 
(bad, fail, loss). Sets of items with reverse wordings have 
been known to have correlated error with each other 
(Brown, 2015). Therefore, correlated error was also mod-
eled among the reverse-worded items (bad, fail, and loss) 
accounting for three more error terms. Modification 
indices and theoretical considerations for other pairs of 
items were not large enough to support further restrict-
ing the model.

Fig. 2  Scree plot and parallel analysis from EFA

Table 1  Pattern loadings for EFA, item loadings < 0.4 suppressed, 
N = 150

Item Complements Interdependence Climate

comp1 0.876

comp2 0.805

comp3 0.603

comp4 0.757

comp5 0.545

comp6 0.718

interd1 0.762

interd2 0.767

interd3 0.589

interd4 0.580

interd5 0.853

interd6 0.858

clim2 0.782

clim3 0.855

clim4 0.699

clim5 0.868

clim6 0.570

Table 2  Correlation of factors from the EFA

*p < 0.05

Item 1 2 3

1. Complements

2. Interdependence 0.138

3. Climate 0.146 0.284*
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The standardized model produced after these modifi-
cations is shown in Fig. 3. All paths show strong stand-
ardized loading coefficients (0.427–0.878). The model 
produced a significant χ2 (110, n = 150) = 152.580, 
p = 0.0045 indicating significant misfit, but less misfit 
than previously seen. Comparing to the earlier model 
which produced χ2 (116, N = 150) = 303.297, we see that 
the change in χ2, 150.717, over 6 degrees of freedom 
demonstrates a large, statistically significant fit improve-
ment (p < 0.0001). Using the other fit indices, we observe 
RMSEA = 0.051, CFI = 0.960, and SRMR = 0.067 which 
indicate that our model produces a reasonable approxi-
mation of the observed data based on accepted standards 
(Hu & Bentler, 1999). Additionally, the factors are not 
strongly correlated to each other (see labeled double-
headed arrows between latent constructs in Fig. 3) sug-
gesting the scales are measuring independent constructs.

Internal consistency
Internal consistency is a description of how well differ-
ent items intended to describe the same measure relate to 
each other. Table  3 reports values for Cronbach’s alpha, 
Omega, and Raykov’s rho to show evidence for internal 
consistency. Cronbach’s alpha suggests good internal 
consistency (0.785–0.802), and Omega (0.694–0.816) 
and Raykov’s rho (0.696–0.816) similarly support that the 
scales are reasonable with improvement on the comple-
ments and climate scales and a decrease in the interde-
pendence scale.

The fit of the model suggests that it is reasonable to 
produce factor scores for interpretation. There are two 
standard methods of computing scores from items in a 
factor. A simple version is to simply take an average of 
each item in the factor. A more sophisticated method is 
to use the measurement model to estimate values based 
on the loading of each item and correlation among terms 
in the model. In addition to the ease of computation, 
the advantage to a simple average is that it can easily be 
compared to the scale that produced it to help interpret 
the score. So on a 7-point scale, an average of 4 would 
represent a neutral attitude with < 4 being below neutral 
and > 4 being greater than neutral. These averages also 
allow for future researchers to make direct comparisons 
to previously published data.

In contrast, using factor scores produced by the 
measurement model allows for more meaningful rela-
tive comparisons among individuals. This advantage 
for comparison comes in part from the fact that factor 
scores are calculated based on the difference from the 
average response relative to the standard deviation of 
responses. Factor scores are also helpful in that they can 
model effects of items contributing to the factor in dif-
ferent weights and compute the removal of measurement 

error terms. As both types of score (simple average and 
factor score) have value in different ways of looking at 
the data, both will be used in discussing the responses 
we received with care to mention which score is being 
used in a particular analysis. In the analysis and visu-
alization of typical responses, the scores are based on 
simple average responses. These values are used as their 
simplicity in calculation makes the results more accessi-
ble to a broader audience of potential users of the CAFI. 
Additionally, the values are easier to interpret in terms 
of the construct as the alternative of basing the score on 
the average response would limit interpretation into how 
faculty members compare to each other and not how the 
construct is perceived on the campus as a whole. In con-
trast, ANOVA and regression analysis will use computed 
factor scores as in these cases, it is the differences among 
individual faculty members that we seek to explore.

EBIP adoption
To support the reliability of the Guttman scale to meas-
ure EBIP adoption, we explored a range of statistics 
designed to support the ability to interpret the data as 
unidimensional (McIver & Carmines, 2011). These statis-
tics; CR, MMR, PI, and CS; along with their method of 
calculation are presented in Table 4. From these data, we 
have evidence that our items are functioning as a unidi-
mensional scale, and it is appropriate to interpret scores 
as such.

Analyzing scores from the CAFI
Figure 4 shows the box plot of simple average responses 
to all the factors and the EBIP adoption score. This visual-
ization is chosen to help visualize the range of responses 
and potentially see any outliers. For EBIP adoption, we 
see that the median is at or above 4 on each campus with 
Uni1 appearing to have higher adoption on average.

In the Complements factor, the average across all par-
ticipants is 5.10 which is close to a “Somewhat agree” 
response. In terms of the range of responses, we see they 
tend to vary from 3 (somewhat disagree) to 7 (strongly 
agree). There appears to be variation across the three 
sampled universities while the median faculty is in all 
cases above a neutral response of 4. For the Interdepend-
ence factor, the average score of 5.77 indicates a fairly 
positive response suggesting feelings of cooperation and 
trust among faculty. In terms of the range of responses, 
scores tend to range from 4 (neutral) all the way to 7 
(strong interdependence). Among the sampled universi-
ties, there does not appear to be a strong difference is the 
distribution of interdependence scores. In the Climate 
factor, the average score is a 4.74. On this scale, we see 
the full range of responses with faculty from Uni3 report-
ing the lowest possible score of 1 while faculty from all 
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Fig. 3  Standardized CFA. Gray arrows represent non-significant paths (> 0.05), blue arrows represent correlated error between similarly worded 
pairs, red arrows represent correlated error among reverse-worded items
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universities reported the highest possible score of 7. 
Comparing the universities in our sample, we see that 
Uni1 has a median above a 5 while the others are lower 
than 5 but above 4 suggesting some difference in percep-
tions of climate. These climate scores also have a wide 
range both below and above the neutral response of 4.

One observation from these boxplots is that faculty at 
Uni2 had a few outlier responses and situations where the 
median and 75 percentile responses were identical (rep-
resented visually with no ‘box’ to the right of the median 
line). Based on this observation, regression analyses were 

run both with and without Uni2 due to concerns in how 
the distribution of responses might affect analysis. The 
results presented will highlight those that came from 
analyzing all three campuses as a whole while comment-
ing whenever the removal of Uni2 resulted in a change in 
interpretation of results.

Institutional comparisons
ANOVA was then used to determine if any of the possible 
differences in responses reached levels of statistical sig-
nificance. For each ANOVA that demonstrated evidence 
of significance difference, subsequent Tukey testing to 
determine the source for the difference is summarized 
in Table 5. For EBIP adoption, we see a significant differ-
ence among universities. For effect size, this difference 
has a Cohen’s f of 0.22, close to a medium effect size, 
which suggests that this difference can be fairly substan-
tial (Chen & Chen, 2012). After the ANOVA, follow-up 
Tukey tests show Uni1 has higher adoption than the oth-
ers while there was not a significant difference between 
Uni2 and Uni3.

For the factor scores, variation was seen on the obser-
vation of significant difference and the magnitude of that 
difference. Here, we see that the Climate scale shows one 
of the largest differences among the universities. ANOVA 
showed evidence of significant difference with an effect 
size (Cohen’s f ) of 0.26. This medium effect size suggests 
this difference among these campuses is substantial. Fol-
low-up Tukey tests show that Uni3 had a lower Climate 
score than the other campuses with no evidence of sig-
nificant difference between Uni1 and Uni2.

Table 3  Measures of internal consistency

Factor Cronbach’s alpha Omega Raykov’s rho

Complements 0.785 0.805 0.794

Interdependence 0.873 0.694 0.696

Climate 0.802 0.816 0.816

Table 4  Summary of statistics to support reliability of EBIP 
adoption scale

CR coefficient of reproducibility, MMR minimal marginal reproducibility, PI 
percent improvement, CS coefficient of scalability, TR total responses, SE scale 
errors, ME marginal errors

Statistic Formula Observed Recommended 
thresholds

CR (TR − SE)/TR 0.975 > 0.9

MMR (TR − ME)/TR 0.703 Lower better

PI CR − MMR 0.273 Larger better

CS (ME − SE)/ME 0.917 > 0.6

Fig. 4  Box plots of average item responses to each scale. Outliers (individuals with scores separated from either end of the interquartile range by a 
distance more than 1.5 times the length of interquartile range) are represented by dots
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The next largest difference observed would be for the 
complements factor. This difference was significant and 
had a Cohen’s f of 0.18 (between small and medium effect 
size). Follow-up Tukey tests show Uni1 has higher com-
plements than Uni2 or Uni3 while there is not a signifi-
cant difference between Uni2 and Uni3.

For interdependence, we do not see a significant differ-
ence among universities from an ANOVA. The difference 
that is observed has a Cohen’s f of 0.08 (small) which sup-
ports the similarity among the three institutions on this 
scale.

Regression analysis
Another consideration for our theory-based instrument 
is how the three scales relate to our outcome of inter-
est, namely EBIP adoption. Regression analysis allows 
us to examine how each scale predicts EBIP adoption 
compared to the other scales. Furthermore, we want to 
examine the robustness of scale prediction when opin-
ion leadership is also a predictor of EBIP adoption in the 
model. As noted earlier, opinion leadership is measured 
by the number of times a faculty member is nominated by 
other faculty as a teaching discussion partner (referred to 
as indegree), with higher values suggesting the individual 

is an opinion leader whose ideas are valued. Hence, we 
performed a regression analysis with the computed fac-
tor scores of complements, interdependence, and climate 
and with and without indegree predicting the score on 
the EBIP adoption scale.

The results of the two regressions are in Table  6. By 
comparing the nested models, with and without inde-
gree as a predictor, we see that adding indegree produces 
a significant improvement to the model. The important 
point, however, is that the CAFI scale effects are robust 
even when indegree is introduced as a predictor. The 
significance of indegree produces an additional finding, 
worth future research attention, that faculty who receive 
more teaching discussion ties are more likely to be EBIP 
users than faculty who receive fewer.

Looking at the other terms from the regression, we 
see a significant effect that higher scores on the com-
plements scale predict higher levels of adoption of 
EBIPs. We also find climate to be a significant, but neg-
ative, predictor of EBIP adoption. However, this finding 
of significance is not robust to removal of Uni2 from 
the regression as running the model with just Uni1 and 
Uni3 results in a significance of 0.078 which is outside 
the conventional range of < 0.05.

Table 5  Tukey results indicating significance of pairwise comparisons

ANOVA for interdependence factor did not provide evidence of significant difference

Variable Measured Pairwise comparison Mean diff Std error p value

University EBIP adoption Uni1 Uni2 0.70 0.34 0.037

Uni1 Uni3 1.04 0.34 0.001

Uni2 Uni3 0.34 0.34 0.457

Complements Uni1 Uni2 0.36 0.17 0.023

Uni1 Uni3 0.37 0.16 0.017

Uni2 Uni3 0.01 0.16 0.997

Climate Uni1 Uni2 0.19 0.19 0.470

Uni1 Uni3 0.66 0.19 < 0.001

Uni2 Uni3 0.48 0.19 0.007

Table 6  Comparison of regression analysis predicting EBIP adoption score based on factor scores both with and without indegree

b represents unstandardized regression weight, and beta indicates standardized regression weights

*indicates p < 0.05. **indicates p < 0.01

Model b Std error Beta t Sig Fit Difference

1 (Intercept) 3.87 0.10 40.353 < 0.001**

Complements 1.20 0.10 0.58 12.044 < 0.001**

Interdependence − 0.10 0.15 − 0.03 -0.681 0.496

Climate − 0.16 0.09 − 0.09 -1.832 0.068 R2 = 0.333**

2 (Intercept) 3.19 0.19 17.108 < 0.001**

Complements 1.06 0.10 0.51 10.414 < 0.001**

Interdependence − 0.13 0.15 − 0.04 -0.888 0.375

Climate − 0.17 0.09 − 0.10 -1.973 0.049*

Indegree 0.10 0.02 0.21 4.258 < 0.001** R2 = 0.372** ΔR2 = 0.039**
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Discussion
Validity and internal structure
We developed the CAFI to measure factors related 
to institutional change in STEM education based on 
our understanding of the CACAO model. We con-
sider faculty’s perception of the relative advantage of 
taking the same action as their colleagues (strategic 
complements), feelings of trust and altruism within 
a department (interdependence), and perceptions of 
the institutional attitudes toward teaching (climate). 
In order to support any conclusions based on analysis 
of scores produced by the CAFI, we sought to collect 
evidence of validity and evidence that the scales can 
show variance in a population (AERA 2014; Arjoon 
et  al., 2013). One source of validity evidence is con-
tent validity which looks for consistency between the 
intended construct and the items used to measure it. 
For the CAFI, scale items started with a foundation in 
academic literature as described in the introduction. 
Additionally, our use of an external expert panel further 
supports the content validity of our instrument by pro-
viding an outsider perspective (AERA 2014).

Another aspect of evidence for an instrument is inter-
nal structure, which relates to how well similarly themed 
items covary. To support the internal structure of this 
instrument, we performed EFA and CFA on separate data 
sets. The EFA along with our established change theory 
provided strong evidence of a three-factor structure with 
all but one item loading onto its respective factor. The 
single item was removed from the analysis and repeat-
ing the EFA without the single item resulted in strong 
evidence for the structure that divided items into factors 
related to strategic complements, interdependence, and 
climate. This result suggests that the three-factor solution 
is an appropriate and parsimonious way to describe our 
data.

This EFA was followed by CFA on a reserved portion 
of the data to see how well the reserved data matched the 
predefined model. The initial CFA showed promise but 
did not reach the accepted standards desired for factor 
structure fit in measures (Hu & Bentler, 1999). By mod-
eling correlated errors between some similarly worded 
items and among reverse-worded items on the inter-
dependence scale, we saw improvements in the fit indi-
ces reaching to values that meet the typically accepted 
thresholds suggesting the model is a reasonable approxi-
mation of our data. These findings support the inter-
nal structure of the CAFI and give us evidence that it is 
appropriate to calculate factor scores (Brown, 2015).

Examination of scores from scales
Within the CACAO model, adoption of an innova-
tive practice is separated into a series of discrete steps 

(Dormant & Lee, 2011). From the scale for EBIP adop-
tion implemented in this study, a score of zero represents 
preawareness, 1–3 represent levels of knowledge, and 
scores 4–6 represent levels of adoption (Landrum et al., 
2017; Viskupic et al., 2022). Looking at the median scores 
in each university, we observed a value greater than or 
equal to 4 suggesting that most survey respondents used 
EBIPs. This is a promising finding as all three universities 
in this sample engaged in campus-wide activities to pro-
mote adoption of EBIPs among STEM faculty. It is also 
noteworthy to consider that a tenth of the respondents 
(~ 30) had a score of zero on this scale suggesting these 
faculty are not aware of EBIPs. Based on this finding, the 
instrument can be used to directly detect if institutional 
change initiatives to spread awareness and use of EBIPs 
are having the intended effect.

In terms of using these scores for EBIP adoption to 
compare universities, ANOVA showed that among our 3 
sampled universities, we saw a statistically significant dif-
ference in EBIP adoption. This finding helps support that 
the instrument can detect differences, and the scale does 
not produce the same scores across different locations. 
One concern with self-report data is that faculty might 
feel pressure to report higher scores than are reflected 
in actual practice. Previous research has supported that 
instructor self-report, student feedback, and observa-
tion tend to produce similar results (Durham et al., 2018), 
suggesting that any one of these types of data can reflect 
actual practice. Additionally, none of the results from this 
survey were shared back to university or department in 
an identifiable way, lessening any concern for faculty to 
not respond honestly. Therefore, we believe the scores we 
report are representative of our surveyed departments, 
but care should be used if this scale is administered in a 
setting that might encourage inflated responses.

On the strategic complements scale, the average 
response of 5.10 on the 7-point scale suggests that fac-
ulty in our sample tend to view the adoption of EBIPs as 
a mutually reinforcing behavior (Jackson & Zenou, 2015). 
This finding would support the idea that as more fac-
ulty adopt EBIPs, other faculty will follow among those 
surveyed in our sampled population. In terms of the 
CACAO model, this finding would help provide evidence 
that as more faculty members adopt EBIPs, the relative 
advantage of an individual faculty member also adopting 
will go up and lead to more adoption. As the perception 
that EBIPs are valuable increases, this would increase the 
likelihood that they are adopted. This finding suggests 
that over time, EBIPs can spread in these departments 
as the increase in relative advantage leads to more adop-
tion which leads to even more strategic complementarity. 
Based on ANOVA, we see a statistically significant differ-
ence in complements among our sampled departments, 
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suggesting that the CAFI will be an effective tool in com-
parisons. Another finding is that we do observe that the 
university which reported a statistically significant higher 
complements score is also the university with statistically 
significant higher EBIP adoption.

For the interdependence scale, the average response of 
5.77 suggests that faculty generally have a view that their 
fates are intertwined (Aktipis et al., 2018). Based on this 
high value from these sampled universities, we have evi-
dence that there is a degree of trust among faculty (Boon 
& Holmes, 1991) and that discussing or using EBIPs is 
unlikely to have a negative social impact (Dormant & 
Lee, 2011). With a finding like this, a change agent imple-
menting a change initiative can use this interdepend-
ence as leverage when designing activities and policies. 
For example, change agents can consider activities such 
as faculty retreats or team teaching that require mutual 
effort. Another option for change agents is to highlight 
the success of faculty through team awards and recogni-
tions rather than individual awards. Based on ANOVA, 
we fail to see evidence of a statistically significant dif-
ference when comparing these universities. Since all 
responses were generally high in our sample, it would be 
interesting to see data on this scale from settings where 
interdependence might be expected to be lower. For 
example, a university where departments are undergoing 
structural changes, such as being newly created from for-
merly separate units. Another setting where perception 
of interdependence may be lower is within institutions 
that implement competitive ‘merit pay’ structures, as 
success of a colleague could be seen as having a negative 
impact on the availability of merit pay for other faculty 
members.

The climate scale responses suggest that faculty have a 
wide range of perceptions of their institution’s readiness 
for change. While the average response of 4.74 on the 
7-point scale is above a neutral response, several faculty 
members reported the theoretical minimum of 1 while 
others viewed climate very positively, reaching the theo-
retical maximum of 7. This finding suggests that there 
is a wide range of the perception of the compatibility 
between implementing EBIPs and the support from the 
university in implementing EBIPs. As compatibility can 
influence potential adopters to use an innovative prac-
tice like EBIPs (Dormant & Lee, 2011), this finding would 
suggest that change agents should consider efforts to 
investigate why there are different perceptions of climate 
and encourage those with positive perceptions to share 
their experiences. Leadership can be important in com-
municating and leading this effort to support the use of 
innovative teaching practices (Walter et al., 2021). Based 
on ANOVA, the CAFI can detect a statistically significant 
difference in climate among our sampled universities, 

indicating that our instrument can be useful in making 
comparisons.

Relating scores to EBIP adoption
In the regression analysis predicting EBIP adoption from 
complements, interdependence, climate, and indegree, 
we obtained some initial insights into the predictive 
power of the CAFI in describing EBIP adoption. When 
comparing regressions that include and exclude indegree, 
we see that the inclusion of indegree results in a statis-
tically significant improvement of fit in the regression. 
As indegree serves as a measure for opinion leadership 
(Valente & Pumpuang, 2007), this finding supports that 
the opinion leaders in the teaching discussion networks 
are themselves users of EBIPs. Therefore, training some 
faculty members to spread EBIPs in a department can 
be an effective strategy to spread the adoption of EBIPs. 
Andrews et al. (2016) found that DBER faculty were quite 
influential in their networks, which would support the 
spread of EBIPs. Our team has previously reported an 
exponential random graph model analysis providing evi-
dence that EBIP users tend to seek out other EBIP users 
for teaching discussions (Lane et  al., 2020). The result 
from our regression here is consistent with this previous 
finding in that faculty who use EBIPs are more likely to 
be sought as discussion partners for conversations about 
teaching. This result is also consistent with previous find-
ings that faculty members with more extensive networks 
also showed more learner-centered teaching behavior 
(Middleton et al., 2022).

Once we established that indegree was predictive in 
our model, we focused on the relationship between the 
other scales on the CAFI and EBIP adoption. Among the 
findings is evidence of a direct relationship between the 
complements and climate with EBIP adoption. As the 
regression coefficient for complements is positive and 
significant, we have support that the perception that use 
of EBIPs provides a shared benefit is predictive of faculty 
members using EBIPs. This adds to our previous find-
ing that the perception of strategic complementarity was 
generally high at our sampled universities by saying the 
perception is also connected to the use of EBIPs. There-
fore, we have evidence that promoting the use of EBIPs 
as mutually beneficial may support their adoption among 
other faculty members.

For the regression coefficient between climate and EBIP 
adoption, we find the value is both negative and signifi-
cant when looking at the results from the model which 
took all campuses into account. Based on this result, we 
would expect that an increased perception that the uni-
versity supports change in teaching practice results in less 
use of EBIPs. However, as our research design is correla-
tional rather than causal, it could also be that a decision 
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not to adopt EBIPs is what leads to the higher perception 
of the campus climate toward EBIP use. To better under-
stand this negative correlation between EBIP adoption 
and climate, we ran a correlation test of EBIP adoption 
score to climate when splitting the data between faculty 
who do not use EBIPs (adoption score < 4) and those who 
do use EBIPs (adoption score ≥ 4). We see the correlation 
change from − 0.236 for nonusers to 0.055 for users. A 
potential reason that we observe this tendency could be 
that faculty members who are not using EBIPs perceive 
the campus as supporting their use but decide against 
adopting EBIPs for other reasons.

As of now, there is no significant relationship between 
EBIP adoption and the interdependence scale. This sug-
gests that feelings of trust among faculty are not directly 
predicting EBIP adoption among our sampled universi-
ties. It is possible that even if interdependence does not 
have a direct impact on EBIP adoption, it can have an 
indirect effect through how people form social connec-
tions and how they persist. Additionally, as our sample 
showed little variance on the interdependence scale, it is 
possible that any effect it has may just not be apparent, 
and collection of data in a setting with a broader range 
of responses may provide more insight into the impact of 
interdependence on teaching practice.

Implications
We have shown how using the CAFI can quickly char-
acterize departments or universities. This instrument 
provides change agents with a tool to characterize local 
conditions on their respective campuses and other cam-
puses that have used it. The survey is short enough to be 
completed in less than 10 min, and we observed reasona-
ble response rates even with little or no formal incentive. 
Based on our results, we see that campuses and individu-
als have a range of responses on many of these scales, and 
the scales have a direct relationship to EBIP adoption.

For those researching the impact and process of change 
initiatives, this instrument provides measures for ana-
lyzing a population. By considering the progression of 
EBIP adoption and the factor scores from this instrument 
based on the components of an ideal change as presented 
in the CACAO model, a researcher can develop descrip-
tive and predictive summaries of different initiatives. The 
instrument produces scores with decent variance and 
good internal structure characteristics. The instrument 
can be provided at the beginning of a project, at interme-
diate steps, and afterwards to have a longitudinal com-
parison. The present study focused on institutions in later 
stages of reform initiatives, so it would also be of value 
to see how this instrument functions in settings that are 
earlier in the process of institutional change.

While we have not yet demonstrated how these scales 
behave within the context of a developing change project, 
we have developed a tool that can be used to empirically 
monitor constructs that theory tells us might influence a 
change process. We hope that groups planning to engage 
in a change effort in higher education will consider 
administering this instrument at a very early stage, some-
thing which we were unable to do, and then at regular 
intervals aligned with the implementation of their spe-
cific set of change strategies. The initial empirical data 
will provide a mechanism to develop in  situ hypotheses 
about change readiness and change strategies that can 
be tested via subsequent data collections as a change 
effort continues. The first change leadership teams who 
engage with the instrument in this way will also provide 
invaluable information about its successes and failures, 
which should serve to highlight both the strengths of the 
current form of the instrument and to indicate poten-
tial improvements, which are an important part of any 
instrument’s ultimate utility.

For the practical work of individual change agents 
themselves, our results documenting a link between EBIP 
use and the complements scale, in particular, demon-
strate that individual change agents are likely to benefit 
from knowing the degree to which a specific department 
(or other unit that is to be a primary site of change) per-
ceives mutual benefits of EBIPs. Activities designed to 
convince faculty of the mutual benefit of implementing a 
pedagogical approach are quite different from, for exam-
ple, activities designed to assist faculty with learning 
how to implement that pedagogical approach effectively. 
Change agents do not have infinite time, and individual 
change agents have different strengths. Having greater 
insight about where to place emphasis can help change 
agents make the best use of their time and skills.

Limitations
There are some concerns that should be considered 
while interpreting these results. While we did tar-
get five disciplines at three different universities, the 
results may or may not be transferable to other insti-
tutions or academic departments. This concern is par-
ticularly true for universities that do not have large 
enrollments or strong research emphasis. A simi-
lar concern arises from the fact that the departments 
in this study had different sizes and response rates. It 
is possible that some of the observed differences in 
response rate could be attributed to available incen-
tives. Aligning incentive structures across the institu-
tions might have produced a uniform response rate. 
Regardless, more iterations at different types of insti-
tutions and academic departments would be helpful 
to support the evidence of validity. Additionally, while 
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exploratory and confirmatory factor analyses were per-
formed on responses from different individuals, the 
responses were from the same departments and the 
same universities. This decision could result in a fac-
tor structure too specific to this particular case. As the 
instrument begins to be used more broadly, the factor 
structure should be examined before interpretation. For 
the CFA presented in this paper, addition of correlated 
error terms to the model allowed the model to reach 
accepted levels of fit but were proposed post hoc. There 
are also limitations inherent to our choice to develop 
a quantitative tool. This approach to data collection, 
while allowing someone to characterize a large popula-
tion in a short time, can lack the depth and nuance that 
would be provided from other data collection methods 
such as semi-structured interviews. While we hope 
that others find the CAFI useful, we believe it should 
not preclude the collection of multiple forms of data in 
the effort to understand complex institutional changes. 
Finally, when examining the results from regression 
analysis, the research design does not allow for causal 
claims, so findings should be interpreted cautiously. 
The relationships are correlational, and further investi-
gation is required to demonstrate a true causal link.

Conclusion
This report details efforts to develop and administer a 
new instrument, the CAFI, to better understand institu-
tional change within university STEM departments. This 
instrument uses the CACAO model of change to link the 
intended outcome of EBIP adoption with perception of 
EBIPs as mutually reinforcing (strategic complements), 
perception of faculty having their fates intertwined 
(interdependence), and perception of institutional readi-
ness for change (climate). Through discussions with an 
external advisory board for content validity and factor 
analysis for internal structure, we have support for the 
validity of interpreting scores produced by the CAFI. We 
demonstrated through ANOVA that many of these scales 
show significant differences across different universi-
ties, supporting the utility of the instrument in making 
comparisons. We also found by regression analysis that 
the complements and climate scale along with status 
as an opinion leader in a department have a significant 
relationship to the outcome of EBIP adoption. The CAFI 
serves as a tool to help change agents understand their 
campus environment and help support the implementa-
tion of EBIPs.
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