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Abstract

Background: Differences in post-secondary academic outcomes along dimensions of gender, race/ethnicity, and
socioeconomic status are a major concern. Few studies have considered differences in patterns of academic
outcomes and underlying mechanisms driving disparities across different STEM disciplines. Using data from about
4000 undergraduates in introductory STEM courses at a large, urban university in the eastern United States, this
study examines how differences in course grades by gender, race/ethnicity, and parent education vary in
introductory chemistry, physics, and psychology courses. In addition, structural equation modeling techniques
examine whether academic resources and discipline-specific motivational attitudes are important mediators of
demographic differences in course grades.

Results: This study finds that women have higher course grades than men on average in psychology, and men
have marginally higher grades than women in physics. In addition, students whose race/ethnicity is represented or
overrepresented in these courses (students who are White and or Asian) have higher course grades in chemistry
and physics and marginally higher grades in psychology on average compared with underrepresented students
(who are Black, Latinx, Native American, Pacific Islander, and or other racial/ethnic backgrounds). Further, first-
generation college students have lower course grades in physics and psychology on average than students with a
college-educated parent. The largest average differences in course performance are about half a full letter grade
(e.g., the difference between a B and an A−). This study also finds that some demographic differences in physics
and chemistry performance are linked to math resources whereas some disparities in psychology are more related
to verbal resources. In addition, the results suggest discipline-specific self-efficacy is a motivational attitude
associated with course performance in chemistry, physics, and psychology, while discipline-specific interest is only
relevant in chemistry.
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Conclusions: Overall, the findings emphasize that there are demographic differences in post-secondary course
performance on average, and academic resources and motivational attitudes help explain these differences.
Importantly, the specific findings differ across chemistry, physics, and psychology. Understanding these pathways
and how they are similar and different across disciplines within STEM is crucial for developing interventions aimed
at attenuating disparities in post-secondary academic outcomes.

Keywords: Post-secondary education, Achievement disparities, Academic resources, Academic motivational attitudes,
STEM

Introduction
Policymakers, researchers, and practitioners at all levels
are concerned about issues of equity in education. When
it comes to post-secondary education, there is great atten-
tion focused on striving for equity in students’ academic
outcomes by gender, race/ethnicity, and parents’ educa-
tional attainment. In particular, women, underrepresented
racial/ethnic groups, and first-generation college students
often receive lower course grades in large introductory sci-
ence classes (Boyer Commission, 1998; Johnson, 2007;
Salehi et al., 2019). However, there is considerable vari-
ation across universities and disciplines in the size of dif-
ferences in academic outcomes related to demographic
factors (Matz et al., 2017). For example, women some-
times outperform men in certain introductory courses
(Matz et al., 2017) and some universities implement strat-
egies that better support first-generation college-goers to
mitigate disparities (Page et al., 2019). Understanding the
causes of specific demographic effects in academic out-
comes in a particular context is critical to designing inter-
ventions that will improve outcomes.
Demographic disparities in course outcomes are often at-

tributed to differences in factors such as discipline-specific
motivational attitudes and general academic resources, in-
cluding mathematical or verbal ability, that are present before
enrollment in higher education (Betancur et al., 2018; Nissen
& Shemwell, 2016; Sadler & Tai, 2001; Vincent-Ruz et al.,
2018; Wang & Degol, 2017). For example, on average,
women score lower on standardized math assessments and
also tend to have lower self-efficacy beliefs about their abil-
ities in physical sciences which disrupt studying and test-
taking behaviors, and thereby course performance in chemis-
try and physics classes (Marshman et al., 2018a; Vincent-Ruz
et al., 2018).
It is not currently clear why demographic disparities in

post-secondary academic outcomes vary by academic dis-
cipline. Prior studies tend to focus on specific disciplines
in isolation (e.g., only physics or only chemistry; Adams
et al., 2008; González & Paoloni, 2015; Hazari et al., 2007).
Furthermore, many studies focus on specific academic re-
sources (e.g., only high school grade point average (GPA);
Allensworth, & Clark, 2020) or motivational factors (e.g.,
only interest or only self-efficacy; Adams et al., 2008;

González & Paoloni, 2015), making it difficult to compare
effects across studies.
Theoretically, there are a number of reasons to expect

variation by course in demographic disparities. For ex-
ample, academic courses across disciplines have distinct
populations of learners (National Science Board, 2018)
who differ in prior experiences and in motivational atti-
tudes and academic resources. For example, calculus-
based courses such as some physics and economics clas-
ses will only enroll students who have previously taken
calculus, which is not a universally available high school
course. Second, because of discipline-specific stereo-
types, there may be different patterns in gender dispar-
ities in self-efficacy, for example, between physics and
chemistry (Whitcomb et al., 2020). Learning challenges
also vary across disciplines (e.g., the amount of mathem-
atical problem-solving in physics versus the volume of
verbal information to learn in biology), which likely in-
fluences the academic resources that enhance course
performance. Disciplines also differ in the sources of
support they provide to enhance learning and counteract
differences in prior experience (e.g., online home prac-
tice systems are most commonly available for mathemat-
ics and natural sciences; Magalhães et al., 2020). Thus,
there is likely variability in how motivational attitudes
and academic resources shape academic performance
across disciplines that gives rise to heterogeneous dispar-
ities in academic performance.
However, the population of students taking introduc-

tory courses does partially overlap across disciplines
(e.g., introductory STEM courses tend to draw students
who have the interest and prior experiences in STEM;
Le et al., 2014). Further, when introductory courses
share common instructional formats (e.g., large lectures,
grades predominantly based on in-class exams, and a
lack of demographic representation in instructors), we
can expect similar challenges for students. As a result,
systematic work using parallel methodologies across dis-
ciplines is necessary to begin to understand similarities
and differences in the etiological underpinnings of dis-
parities in academic outcomes. In this study, we present
a systematic investigation across introductory chemistry,
physics, and psychology courses at the University of
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Pittsburgh. In doing so, we aim to identify both common
and unique patterns across disciplines in disparities and
in linkages between academic resources, motivational at-
titudes, and academic performance.

Academic resources for introductory college courses
One main goal of the K-12 educational system is to pre-
pare students for college (Conley, 2007), which typically
involves developing students’ independent academic
skills, verbal ability, and mathematical ability (often mea-
sured by GPAs and Scholastic Aptitude Test (SAT)
scores). As many studies show, because of inequities in
opportunities and experiences during K-12, these aca-
demic resources (reflected in GPAs and SAT scores) are
not equitably obtained by students across gender, race/
ethnicity, and socioeconomic status (e.g., Luschei, &
Jeong, 2018). This is due to large disparities in access to
high-quality core educational experiences and sizeable
differences in access to optional educational experiences
such as elective coursework, afterschool/extracurricular
programming, and at-home learning resources (Betancur
et al., 2018; Sen & Wasow, 2016).
Despite concerns about variation in grading standards

across high schools, high school GPA remains one of the
strongest predictors of college performance (Allensworth
& Clark, 2020). High school GPA is often conceptualized
as a proxy for general academic work skills, such as
keeping track of required tasks, completing classwork
and homework, and studying for exams (Geiser & Sante-
lices, 2007; Sawyer, 2013). In other words, high school
GPA reflects whether students are good at the general
task of “doing school.” Large introductory college
courses can be especially challenging for students in
terms of these general academic work skills because
large course sizes translate to little direct oversight of
student task completion (Pascarella & Terenzini, 2005).
In addition, such courses include a broad range of topics
with large weight placed on exam performance, which
often requires intensive studying behaviors for successful
performance (Putnam et al., 2016).
For many introductory science courses, mathematical

skills are an important resource because students must in-
dependently interpret graphs and tables, quickly perform
mathematical operations when solving problems (e.g.,
solving for unknowns in systems of equations), and con-
ceptually understand the function of mathematical opera-
tions (e.g., the purpose of taking an average or computing
a standard deviation; National Research Council, 2002).
Indeed, some studies suggest that mathematical ability is
as important as prior exposure to disciplinary content in
predicting performance in introductory science courses
(Sadler & Tai, 2007a).
Verbal ability is also crucial for academic success in

introductory college courses. In some disciplines,

students must read large textbooks on their own outside
of class as a primary source of learning (Conley, 2003;
National Survey of Student Engagement, 2006). In
addition, when there is a heavy reliance on exams in
introductory courses, students’ inability to quickly and
carefully read long and complex exam questions can be
detrimental to exam performance (Conley, 2003).

Discipline-specific motivational attitudes
Research often examines relationships among motiv-
ational attitudes and academic performance. There are
two broad underlying frameworks commonly used: Ex-
pectancy Value Theory (EVT; Wigfield & Eccles, 2000)
and Self-Determination Theory (Deci & Ryan, 2012).
The two frameworks overlap in several constructs such
as intrinsic value (or interest) and self-efficacy (or com-
petence beliefs). Further, motivational attitudes are
sometimes framed in very general terms, such as general
academic self-efficacy (e.g., Schunk & Pajares, 2002), and
sometimes in discipline-specific terms, such as physics
self-efficacy (e.g., Marshman et al., 2018a). We focus on
discipline-specific motivational attitudes since these are
most relevant to predicting performance in particular
courses. We also focus on interest and self-efficacy be-
cause they predict course performance (e.g., Kalender
et al., 2020) and can be addressed through changing
course structures and early course interventions (e.g.,
Nissen & Shemwell, 2016); in other words, they are im-
portant and amenable to change.
Interest (also called intrinsic value) can be important

for learning outcomes because it leads students to try to
master the content (Eccles, 2005) and promotes deeper
engagement in learning activities and better conceptual
learning (Vansteenkiste et al., 2006). At the university
level, student discipline-specific interest predicts aca-
demic performance above and beyond academic re-
source differences and other attitudinal differences
(Hsieh, 2014). More enduring interest in a discipline
builds from positive experiences in one situation (Hidi &
Renninger, 2006). Instructors can shape undergraduates’
discipline-specific interest by highlighting the value of
the course for larger goals (Hulleman et al., 2010), sup-
porting student autonomy (González & Paoloni, 2015),
and extending project-based or rich lab experiences
(Hazari et al., 2007).
Self-efficacy (e.g., beliefs about one’s abilities to suc-

cessfully complete tasks) consistently relates to academic
outcomes, even when controlling for actual abilities
(Honicke & Broadbent, 2016; Lawson et al., 2007). Evi-
dence and theory suggest that students with low self-
efficacy avoid studying because they do not think it will
result in success (Talsma et al., 2018). Low self-efficacy
can also leave students especially vulnerable to stereotype
threat (Steele & Aronson, 1995) and worry while taking
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exams (Marchand & Taasoobshirazi, 2013; Taasoobshirazi
et al., 2019). Processes related to self-efficacy can consume
students’ working memory and infringe on the mental re-
sources they need for taking exams (Beilock et al., 2004).
Discipline-specific self-efficacy predicts undergraduate
academic performance to different degrees in physics
(Kalender et al., 2020), chemistry (Vincent-Ruz et al.,
2018), biology (Lawson et al., 2007), and psychology
(Komarraju & Nadler, 2013). Discipline-specific self-
efficacy at the university level can be targeted through in-
structors’ beliefs (the beliefs that instructors have about
their students influence the beliefs that students have
about themselves; e.g., Canning et al., 2019) and collabora-
tive learning structures (Fencl & Scheel, 2005).

Demographic differences in academic resources and
discipline-specific motivational attitudes
Colleges in the United States typically use a combination
of high school GPA, SAT Verbal, and SAT Math (or
similar assessments) as primary determinants of college
admissions because they predict academic success (Saw-
yer, 2013). Unfortunately, such procedures tend to pro-
duce inequities in admissions because of differential
prior learning opportunities in and out of school. For ex-
ample, women, underrepresented racial/ethnic groups,
and students whose parents did not attend college are
less likely to experience opportunities to engage in ad-
vanced STEM coursework in high school (Robinson,
2003; Tyson et al., 2007), which negatively impacts
mathematical ability compared with their peers who did
have such opportunities (Kurban & Cabrera, 2019). In
addition, there are large socioeconomic differences in
many aspects of K-12 school quality, including the avail-
ability of summer and after school learning opportunities
(Putnam, 2016), which can impact mathematical, verbal,
and general study skills (Bernal et al., 2016; Hanushek &
Woessmann, 2017). However, there are also relative
strengths, for example, women are generally more suc-
cessful than men in high school academics (Fortin et al.,
2015) and are more likely to enroll in advanced writing
courses in high school (College Board, 2018a). Addition-
ally, very selective universities employ resource-based se-
lection procedures that reduce demographic disparities
in academic performance in college courses (e.g., only
students with high SAT Math scores are admitted to the
university or the STEM major). Thus, demographic dif-
ferences in academic resources in the general pool of
high school graduates do not always replicate among
college attendees, particularly in programs with a strong
focus on academic preparation.
There can also be demographic differences among un-

dergraduates within introductory STEM courses in
discipline-specific motivational attitudes, particularly in
discipline-specific interest (Marshman et al., 2018b) and

discipline-specific self-efficacy (Marshman et al., 2018a;
Vincent-Ruz et al., 2018). These may arise from mes-
sages students receive from media, teachers, family, and
peers that shape beliefs about whether they can be suc-
cessful in academics. For example, there are negative ste-
reotypes about women and minoritized students in
STEM (Moss-Racusin et al., 2012; Seymour & Hewitt,
1997) which can influence the messages students to re-
ceive and thereby change course performance (Hazari
et al., 2007). Further, differential exposure to certain
topics (e.g., in advanced coursework) in high school can
affect students’ interest in the topics (Osborne et al.,
2003). At the same time, students self-select into majors
in college, which influences the introductory courses
they take. This could result in a reduction or absence of
demographic differences in motivational attitudes within
those courses. For example, women enrolled in chemis-
try courses may have a similarly high interest in chemis-
try as men enrolled in those courses.
It is important to note that academic resources and

motivational attitudes are not independent. Throughout
high school, grades within particular courses provide
feedback to students, which then shapes their discipline-
specific self-efficacy (Lopez & Lent, 1992). Additionally,
students are keenly aware of their performance on tests
like the SAT, which influences their discipline-specific
interests and self-efficacy (Vincent-Ruz et al., 2018).
Thus, demographic differences in academic resources
can also produce demographic differences in motiv-
ational attitudes.

Disciplinary variation in important motivational attitudes
and academic resources
From a theoretical perspective, a similar pool of general aca-
demic resources and motivational attitudes might matter for
all large introductory courses. However, it is likely that there
is variability in which academic resources and motivational
attitudes matter for which disciplines. First, for self-selection
reasons, demographic differences in ability might vary by dis-
cipline. For example, if only high math ability students select
physical sciences majors, then demographic differences in
math ability will be truncated and math skills will have little
predictive validity in explaining variability in performance in
the physical sciences, but could still explain differences in
other disciplines. Discipline-specific stereotypes could give
rise to a similar result. For example, women are commonly
described as weak in STEM but strong in social sciences
(Wang et al., 2013). Disciplines also vary in the extent to
which innate talent is thought to be critical, and this is corre-
lated with participation by gender (Leslie et al., 2015). Stereo-
types may give rise to limited variability in self-efficacy within
disciplines, with higher levels of self-efficacy among women
in psychology and lower levels among women in physics and
chemistry, for example.
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Second, introductory courses may vary substantially in the
extent to which they depend upon different academic re-
sources. Most obvious is the relative use of verbal versus
mathematical skills, with some disciplines depending more
on verbal skills and others depending more on mathematical
skills. For example, past studies find a strong role of SAT Ver-
bal in psychology courses (Betancur et al., 2019) and a stron-
ger role of SAT Math in chemistry (Vincent-Ruz et al., 2018)
and physics courses (Kalender et al., 2020). With regard to
motivation, as previously mentioned, many studies across
disciplines find that self-efficacy is an important performance
predictor; less obvious is the relative reliance on interest.
When courses require students to do a lot of independent
learning (e.g., reading in psychology versus required/graded
homework completion in physics and chemistry), the relative
role of personal interest may be larger.

Theoretical framework
Figure 1 presents a theoretical model of the processes de-
scribed in the introduction; that demographics can affect
academic resources and motivational attitudes (because of
a variety of structural factors in society and K-12 experi-
ences), which can then affect academic performance. Fur-
thermore, each step may materialize differently across
academic disciplines depending on differences in learning
environments.

Research questions

1. What is the magnitude of differences in student
academic performance related to gender, race/
ethnicity, and parent education, in large, lecture-

based introductory courses in chemistry, physics,
and psychology?

2. To what extent do demographic differences in
academic resources and discipline-specific motiv-
ational attitudes explain differences in academic
performance within each of these courses?

We explore these general research questions in a particular
set of courses: Chemistry, Physics, and Psychology. The pool
of students who choose to enroll at the University of Pitts-
burgh and register in these specific courses may differ from
students who choose to enroll in other universities or register
in similar courses at other universities. Thus, the underlying
goal of these research questions is not to provide fixed an-
swers by the course that will definitively replicate across con-
texts. Rather the goal is to show that, even within one
university, (1) the size and even direction of demographic dif-
ferences in course grades can vary by discipline, (2) demo-
graphic differences in academic resources and discipline-
specific motivational attitudes can also vary by course, rather
than being universal statements about student demographic
groups, and (3) differences in academic resources and motiv-
ational attitudes can provide useful explanations for variation
in demographic-based course performance differences.

Method
Overview
This study takes place at the University of Pittsburgh, a large,
urban university in the eastern US. In 2018–2019, under-
graduate enrollment was 19,330 students and the under-
graduate student body was 70 percent White (University of
Pittsburgh, 2019). In the fall of 2018, the acceptance rate was
59 percent, the 25th percentile SAT score was 630 for Verbal

Fig. 1 Theoretical model of how variation in motivational attitudes and academic resources relates to academic performance. Note: This figure
shows the observed relationship between demographics and academic performance (RQ1), and the theoretical model of the role of academic
resources, discipline-specific motivational attitudes, and academic performance within each discipline (RQ2). Theorized structural causes of (1)
demographic differences in academic resources and discipline-specific motivational attitudes, and (2) differences in how resources and attitudes
predict grades, are shown in grey. RQ = Research question
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and 640 for Math, and the 75th percentile SAT score was
700 for Verbal and 730 for Math (Integrated Postsecondary
Education Data System, 2019).
This study merges administrative records from the

University with course-specific survey data from the
University’s “Interventions that Matter” project, which
aims to understand academic performance disparities
and evaluate interventions in undergraduate STEM
courses. The motivational attitude measures were col-
lected from students enrolled in General Chemistry I
from the fall of 2015 through the fall of 2016, Calculus-
based Physics I from the fall of 2015 through the spring
of 2017, and Introduction to Psychology from the fall of
2018 through the spring of 20191. Each of these large
enrollments, lecture-based courses is the first college-
level (non-remedial) introductory course within each of
the disciplines, and each is primarily taken by students
in their first year at the University. Final grades in all
three courses were generally based on multiple midterms
and a final exam. However, as is commonly the case
across universities, grades in chemistry also involved a
separate lab component. grades in both chemistry and
physics were also based on weekly homework of a work-
sheet type, often completed online.
Introductory psychology, chemistry, and (calculus-based)

physics courses were selected as cases for study because
these large enrollment courses are likely to have substantially
different pools of students enrolled. Despite all being pre-
dominantly first-year students, enrollees in these introduc-
tory courses reflect differences in the types of students who
take these courses. The chemistry course includes large
numbers of students pursuing medicine or other health ca-
reers/life science majors. The calculus-based physics course
includes many students from engineering, as well as students
intending physics and chemistry majors; students pursuing
medicine typically enroll instead in the algebra-based physics
course. The psychology course draws students from a wide
range of intended majors. In other words, different popula-
tions enroll in each of these courses, which may give rise to
demographic differences in academic resources and
discipline-specific motivational attitudes (e.g., there may be
demographic differences in SAT Math in one sample but
not in another), and thus grades.

Sample
The samples include 1295, 1102, and 1829 students in
chemistry, physics, and psychology respectively. The

same student may be included in more than one sample
if they enrolled in more than one of the courses included
in this analysis. No student is included in a specific
course’s sample more than once, and if a student re-
peated a class, we included data from the earliest time a
student was enrolled in the class and completed the sur-
vey measures. Overall, the study analyzed 4226 final
course grades across the three courses with data from
3625 unique students. Table 1 includes descriptive infor-
mation on the sample for each course.

Measures
Demographic characteristics
Students’ demographic information came from adminis-
trative data at the University of Pittsburgh. The main
demographic variables of interest are student gender,
race/ethnicity, and parent education. Student gender is
represented with a dummy variable that indicates whether
the student is female or male (reference group)—although
gender is a complex, multi-dimensional construct (Hyde
et al., 2019), the existing institutional data is only repre-
sented in binary terms.
Race/ethnicity is reflected in a dummy variable indi-

cating if the student is a member of an underrepresented
racial/ethnic group. If the student is of only White and
or Asian descent, they are considered represented (these
students serve as the reference group). If the student is
of Black, Latinx, Native American, Pacific Islander, and
or other descent, they are considered underrepresented.
The University of Pittsburgh’s undergraduate enrollment
is over 70 percent White and over 10 percent Asian
(University of Pittsburgh, 2019); Table 1 demonstrates
that the introductory courses examined in this study are
even more racially/ethnically homogenous. Thus, stu-
dents of Black, Latinx, Native American, Pacific Islander,
and or other descent are disproportionately underrepre-
sented, not only at the University but even more so in
these courses. While there is a great deal of racial/ethnic
heterogeneity within these dichotomized groups, there
were not adequate sample sizes to consider more refined
categories of race/ethnicity. Further, we are using stu-
dents’ race/ethnicity as a proxy for measuring the ramifi-
cations of being part of a minoritized racial/ethnic group
that is underrepresented in a classroom environment.
We recognize that using a race/ethnicity dummy vari-
able is an imperfect proxy for these processes (Brown
et al., 2019). Unfortunately, we do not have more refined
student-level data on specific processes related to the ex-
perience of being underrepresented (e.g., students’ re-
ports of belonging and experiences of racial aggressions).
First-generation college student status is represented

with a dummy variable as well, in this case indicating
whether students do not have at least one parent with at
least a bachelor’s degree. This variable was created from

1This effort was situated in a larger project that involved different year
ranges of participation across disciplines and gradual revisions to
surveys that made them more comparable. We used every semester
with available data using the most comparable surveys to maximize
sample sizes. There were not large changes in population
characteristics at the University of Pittsburgh from 2015–2019, so this
variation is unlikely to influence the results.
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University administrative data, which originally received
the data from the Free Application for Federal Student
Aid (FAFSA).

Academic resources
Key student academic resources were measured with
three constructs commonly used to predict academic
performance, obtained by the University of Pittsburgh as
part of the admissions process: high school grade-point

averages (GPA), and the Mathematics and Verbal Scho-
lastic Aptitude Test (SAT) scores. About one percent of
high school GPAs were either missing or over 5.0. GPAs
over 5.0 were removed from analyses since these stu-
dents’ GPAs were not calculated on the usual five-point
weighted-by-Advanced-Placement-courses scale,2 mak-
ing their high school GPAs not comparable to the ma-
jority of the high school GPAs in the sample. Some
students only had American College Testing (ACT)
scores and no SAT scores. In those cases, the ACT Eng-
lish and math scores were standardized to the SAT scale
using the College Board (2018b) ACT/SAT concordance
tables to create one SAT Verbal score and one SAT
Math score (each with a maximum score of 800 and US-
wide means of slightly above 500) for each student. As
previously mentioned, these indicators serve as proxies
for academic resources and access to academic oppor-
tunities more broadly (Bernal et al., 2016; Hanushek &
Woessmann, 2017; Putnam, 2016).

Discipline-specific motivational attitudes
Students’ interest and self-efficacy in the discipline of
each course were measured using self-reported survey
responses collected at the start of the course (just after
the end of the add-drop period and before any exam
feedback was provided). The scales were developed by
adapting existing scales in the literature to each discip-
line and for undergraduate populations as needed. Cog-
nitive interviews were conducted to ensure items were
interpreted as intended. These interviews involved 5–10
students per discipline, drawn from the courses being
studied at varying times during the semester, and se-
lected to vary in gender and course performance. Ex-
ploratory factor analyses with a broader set of constructs
(e.g., intelligence mindset, extrinsic value) were con-
ducted to establish a single-factor structure within each
scale and discriminant validity between scales. Item re-
sponse theory (IRT) analyses were conducted to ensure
no survey items had differential scale discriminability by
gender, race/ethnicity, or first-generation status.
Discipline-specific interest scales capture how fasci-

nated a student is by each course’s subject matter. The
discipline-specific self-efficacy scale captures how
confident and capable a student feels about their ability
to do well on a variety of tasks involving content from

Table 1 Sample characterization in terms of demographics,
academic resources, discipline-specific attitudes, and course
performance

Chemistry Physics Psychology

Variable Mean or
%

SD Mean or
%

SD Mean or
%

SD

Demographics

Age (years) 18.68 1.16 19.02 1.82 19.17 1.36

Gender

Female 61% 32% 57%

Male 39% 68% 43%

Race/Ethnicity

Asian 18% 11% 18%

Black 5% 4% 6%

Latinx 3% 3% 6%

Multi-racial 5% 5% 4%

Other 0.3% 0.1% 0.1%

White 69% 77% 67%

Parent Education

High school or
below

10% 8% 10%

College or higher 90% 92% 90%

Academic resources

High School GPA 4.08 0.40 4.07 0.44 4.00 0.48

SAT Verbal/100 6.72 0.77 6.80 0.72 6.59 0.74

SAT Math/100 6.70 0.73 6.97 0.64 6.59 0.75

Discipline attitudes

Interest 2.88 0.63 3.19 0.52 3.01 0.51

Self-Efficacy 2.74 0.56 2.85 0.45 3.08 0.39

Course performance

Course grade 2.87 0.91 2.43 1.03 3.53 0.71

N 1,295 1,102 1,829

Participation rate 95% 60% 79%

Number of class
sections

6 9 9

Number of
instructors

4 5 5

Average class size 191 122 203

Note: Sample statistics reflect imputed data. Native American and Pacific
Islander students are included with “Other” due to small sample sizes

2US high schools use a 0–4 GPA scale with 0 representing a failure
and 4 representing the top grade, an A. However, when high school
students take Advance Placement (AP) courses that provide them early
access to university-level coursework, grades in these courses are in-
flated to a 0 to 5 scale. The combination of grades across courses types
is called a weighted GPA. We did not have access to students’ un-
weighted GPAs; there is evidence that weighted GPAs can be a better
predictor than unweighted GPAs (Sadler & Tai, 2007b), although there
is some counter-evidence as well (Warne et al., 2014).
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that particular discipline. Table 2 includes the full list of
survey items used to measure discipline-specific interest
and self-efficacy in chemistry, physics, and psychology as
well as the corresponding Cronbach’s alphas. The survey

items were collected from existing scales and surveys
and were not originally created for the purpose of this
study; hence, there are minor differences in the items
across disciplines. The source datasets also contain many

Table 2 Survey questions used for discipline-specific interest and self-efficacy variables

Chemistry interest
(� = 0.77)

In general I find chemistry topics Very boring (1) Boring (2) Interesting (3)
Very Interesting (4)

I want to know everything I can about chemistry. NO! (1) no (2) yes (3) YES! (4)

Chemistry self-efficacy
(� = 0.85)

Chemistry intimidates me. Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

I have trouble understanding anything based on chemistry. Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

I have always had difficulty understanding arguments that require
chemical knowledge.

Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

I can usually figure out a way to solve chemistry problems. Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

After I study a topic in chemistry and feel that I understand it,
I have difficulty solving problems on the same topic.

Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

Source: (Adams et al., 2008; Bauer, 2005; Vincent-Ruz et al., 2018)

Physics interest
(� = 0.63)

I wonder about how nature works. Never(1) Once a month (2) Once a week (3)
Every day (4)

In general, I find physics Very boring (1) Boring (2) Interesting (3)
Very Interesting (4)

I want to know everything I can about physics. NO! (1) no (2) yes (3) YES! (4)

Physics self-efficacy
(� = 0.75)

I can complete the physics activities I get in a lab class. Rarely (1) Half the time (2) Most of the time (3)
All the time (4)

If I went to a museum, I could figure out what is being shown
about physics in

None of it (1) A few areas (2) Most areas (3)
All areas (4)

I am often able to help my classmates with physics in the laboratory
or in recitation.

NO! (1) no (2) yes (3) YES! (4)

I get a sinking feeling when I think of trying to tackle difficult
physics problems.

NO! (1) no (2) yes (3) YES! (4)

If I wanted to, I could be good at doing physics research. NO! (1) no (2) yes (3) YES! (4)

If I study, I will do well on a physics test. NO! (1) no (2) yes (3) YES! (4)

Source: (Marshman et al., 2018b)

Psychology interest
(� = 0.82)

I wonder about how psychology works. Never(1) Once a month (2) Once a week (3)
Every day (4)

In general, I find psychology Very boring (1) Boring (2) Interesting (3)
Very Interesting (4)

I want to know everything I can about psychology. NO! (1) no (2) yes (3) YES! (4)

I am curious about recent discoveries in psychology. NO! (1) no (2) yes (3) YES! (4)

I want to know about the current research that psychologists are doing. NO! (1) no (2) yes (3) YES! (4)

Psychology self-efficacy
(� = 0.77)

If I study, I will do well on a psychology test. NO! (1) no (2) yes (3) YES! (4)

If I wanted to, I could be good at psychology research. NO! (1) no (2) yes (3) YES! (4)

I understand concepts I have studied in psychology. NO! (1) no (2) yes (3) YES! (4)

I am able to help my classmates with psychology in the
laboratory or in recitation.

NO! (1) no (2) yes (3) YES! (4)

If I encounter a setback in a psychology exam, I can overcome it. NO! (1) no (2) yes (3) YES! (4)

When I think about getting ready for a psychology exam, I get a
sinking feeling.

NO! (1) no (2) yes (3) YES! (4)

Source: (Marshman et al., 2018b; Vincent-Ruz & Schunn, 2017)

Note: Only responses 1–4 were included in analyses of composites
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other survey constructs (different constructs within each
discipline), so the number of survey items per construct
were minimized to avoid poor participation due to sur-
vey fatigue.

Course performance
The main outcomes of interest in this study are students’
course grades in introductory chemistry, physics, and
psychology. Course grades are measured on a continu-
ous four-point scale with a 4.0 being an A or A+ and a 0
equaling an F: A = 4, B = 3, C = 2, D = 1, and +/� add
or subtract 0.25 (e.g., a B� is a 2.75 and a B+ is 3.25).

Analytic approach
The first research question (Fig. 1) involved identifying the
magnitude of differences in students’ course grades based on
gender, race/ethnicity, and parent education, in large,
lecture-based introductory courses in psychology, chemistry,
and physics. This analysis used multiple regression in Stata
15.0 to predict course grades in chemistry, physics, and
psychology with just demographic characteristics.
For the second research question (Fig. 1), this study

used structural equation modeling (SEM) in Stata 15.0.
We chose an SEM framework in order to test several
direct and indirect effects simultaneously, which is a
more precise method than multiple regression (Li,
2011). The SEMs tested academic resources and
discipline-specific motivational attitudes as mediators of
the relationships of gender, race/ethnicity, and parent
education on course grades. The models also tested
pathways from academic resources to motivational atti-
tudes. The statistical significance of indirect effects was
tested simultaneously in a SEM framework (Keith, 2006)
using a Sobel (1987) test with 200 bootstrapped standard
errors. After initially testing all possible direct and indir-
ect effects, insignificant (p > .05) pathways and insignifi-
cant correlated errors of mediators were trimmed to
improve the goodness of fit of the model. Model fit was
assessed using the Comparative Fit Index (CFI) and
Tucker-Lewis Index (TLI) to compare the model with a
baseline model and the Root Mean Squared Error of Ap-
proximation (RMSEA) to examine parsimony (Hu &
Bentler, 1999). A good fit is achieved if the CFI and TLI
values are above .95 and the RMSEA values are below
.06 (Hu & Bentler, 1999).

Missing data
Only 72 percent of the chemistry sample, 74 percent of
the physics sample, and 69 percent of the psychology
sample have complete data for all variables included in
the analyses. Most missing data is due to the missing
parent education variables for students who did not
complete a FAFSA. Given the biases introduced with
listwise deletion, regression analyses used imputation

methods and SEMs used maximum likelihood with
missing values (MLMV; Enders & Bandalos, 2001). For
the regression models, missing data were imputed using
chained equations (ICE) to create 20 complete datasets
in Stata 15.0 (Royston, 2004, 2005). The SEMs with
MLMV were also conducted in Stata 15.0. The models
were analyzed both with and without imputed data and
were consistent; for simplicity, we present only the re-
sults with imputed data and include the unimputed re-
sults in Online Supplementary Tables 1–6.

Results
Table 3 provides group mean differences in academic
resources, discipline-specific motivational attitudes,
and course grades, separated by gender, underrepre-
sented racial/ethnic backgrounds, and parent educa-
tion. Although the University of Pittsburgh is
somewhat selective, there are no ceiling effects on the
academic resource variables. Additionally, while stu-
dents self-selected into these courses (by larger aca-
demic pathway, by major, or by general interest),
there were no ceiling effects on the interest or self-
efficacy measures. Thus, differential predictiveness of
academic outcomes could not be attributed to a lack
of variation across students enrolled in each course.
The variation, highlighted by large within-group
standard deviations (Table 3), also illustrates that des-
pite the results’ focus on average group differences,
there are students of all backgrounds with high levels
of interest and self-efficacy and high course grades.
Table 4 provides bivariate correlations for all variables

included in the SEMs. The three demographic variables
were generally independent of one another, but with
small variation across courses. The three academic re-
source variables were moderately correlated, with the
largest correlation being between SAT Verbal and SAT
Math. Interest and self-efficacy moderately correlated as
well, but not so strongly as to prevent the analysis of
separate mediation pathways. Academic resources and
motivational variables were essentially uncorrelated in
psychology, rarely correlated in physics, and consistently
but weakly correlated in chemistry. Overall, the correla-
tions among demographic variables, academic resources,
and motivational variables varied substantially across
disciplines and are probed further in the SEMs.

Demographic performance disparities in introductory
courses
In accordance with the first research question, Table 5
shows the results of three regression models with intro-
ductory course grades for chemistry, physics, and psych-
ology each regressed on gender, race/ethnicity, and parent
education. Associations between gender and introductory
grades varied across courses, from the marginally lower
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