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college courses
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Abstract

Background: Differences in post-secondary academic outcomes along dimensions of gender, race/ethnicity, and
socioeconomic status are a major concern. Few studies have considered differences in patterns of academic
outcomes and underlying mechanisms driving disparities across different STEM disciplines. Using data from about
4000 undergraduates in introductory STEM courses at a large, urban university in the eastern United States, this
study examines how differences in course grades by gender, race/ethnicity, and parent education vary in
introductory chemistry, physics, and psychology courses. In addition, structural equation modeling techniques
examine whether academic resources and discipline-specific motivational attitudes are important mediators of
demographic differences in course grades.

Results: This study finds that women have higher course grades than men on average in psychology, and men
have marginally higher grades than women in physics. In addition, students whose race/ethnicity is represented or
overrepresented in these courses (students who are White and or Asian) have higher course grades in chemistry
and physics and marginally higher grades in psychology on average compared with underrepresented students
(who are Black, Latinx, Native American, Pacific Islander, and or other racial/ethnic backgrounds). Further, first-
generation college students have lower course grades in physics and psychology on average than students with a
college-educated parent. The largest average differences in course performance are about half a full letter grade
(e.g. the difference between a B and an A-). This study also finds that some demographic differences in physics
and chemistry performance are linked to math resources whereas some disparities in psychology are more related
to verbal resources. In addition, the results suggest discipline-specific self-efficacy is a motivational attitude
associated with course performance in chemistry, physics, and psychology, while discipline-specific interest is only
relevant in chemistry.
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STEM

Conclusions: Overall, the findings emphasize that there are demographic differences in post-secondary course
performance on average, and academic resources and motivational attitudes help explain these differences.
Importantly, the specific findings differ across chemistry, physics, and psychology. Understanding these pathways
and how they are similar and different across disciplines within STEM is crucial for developing interventions aimed
at attenuating disparities in post-secondary academic outcomes.

Keywords: Post-secondary education, Achievement disparities, Academic resources, Academic motivational attitudes,

Introduction

Policymakers, researchers, and practitioners at all levels
are concerned about issues of equity in education. When
it comes to post-secondary education, there is great atten-
tion focused on striving for equity in students’ academic
outcomes by gender, race/ethnicity, and parents’ educa-
tional attainment. In particular, women, underrepresented
racial/ethnic groups, and first-generation college students
often receive lower course grades in large introductory sci-
ence classes (Boyer Commission, 1998; Johnson, 2007;
Salehi et al.,, 2019). However, there is considerable vari-
ation across universities and disciplines in the size of dif-
ferences in academic outcomes related to demographic
factors (Matz et al., 2017). For example, women some-
times outperform men in certain introductory courses
(Matz et al,, 2017) and some universities implement strat-
egies that better support first-generation college-goers to
mitigate disparities (Page et al., 2019). Understanding the
causes of specific demographic effects in academic out-
comes in a particular context is critical to designing inter-
ventions that will improve outcomes.

Demographic disparities in course outcomes are often at-
tributed to differences in factors such as discipline-specific
motivational attitudes and general academic resources, in-
cluding mathematical or verbal ability, that are present before
enrollment in higher education (Betancur et al., 2018; Nissen
& Shemwell, 2016; Sadler & Tai, 2001; Vincent-Ruz et al.,
2018; Wang & Degol, 2017). For example, on average,
women score lower on standardized math assessments and
also tend to have lower self-efficacy beliefs about their abil-
ities in physical sciences which disrupt studying and test-
taking behaviors, and thereby course performance in chemis-
try and physics classes (Marshman et al., 2018a; Vincent-Ruz
et al, 2018).

It is not currently clear why demographic disparities in
post-secondary academic outcomes vary by academic dis-
cipline. Prior studies tend to focus on specific disciplines
in isolation (e.g., only physics or only chemistry; Adams
et al,, 2008; Gonzélez & Paoloni, 2015; Hazari et al., 2007).
Furthermore, many studies focus on specific academic re-
sources (e.g., only high school grade point average (GPA);
Allensworth, & Clark, 2020) or motivational factors (e.g.,
only interest or only self-efficacy; Adams et al, 2008;

Gonzélez & Paoloni, 2015), making it difficult to compare
effects across studies.

Theoretically, there are a number of reasons to expect
variation by course in demographic disparities. For ex-
ample, academic courses across disciplines have distinct
populations of learners (National Science Board, 2018)
who differ in prior experiences and in motivational atti-
tudes and academic resources. For example, calculus-
based courses such as some physics and economics clas-
ses will only enroll students who have previously taken
calculus, which is not a universally available high school
course. Second, because of discipline-specific stereo-
types, there may be different patterns in gender dispar-
ities in self-efficacy, for example, between physics and
chemistry (Whitcomb et al.,, 2020). Learning challenges
also vary across disciplines (e.g., the amount of mathem-
atical problem-solving in physics versus the volume of
verbal information to learn in biology), which likely in-
fluences the academic resources that enhance course
performance. Disciplines also differ in the sources of
support they provide to enhance learning and counteract
differences in prior experience (e.g., online home prac-
tice systems are most commonly available for mathemat-
ics and natural sciences; Magalhdes et al., 2020). Thus,
there is likely variability in how motivational attitudes
and academic resources shape academic performance
across disciplines that gives rise to heterogeneous dispar-
ities in academic performance.

However, the population of students taking introduc-
tory courses does partially overlap across disciplines
(e.g., introductory STEM courses tend to draw students
who have the interest and prior experiences in STEM;
Le et al, 2014). Further, when introductory courses
share common instructional formats (e.g., large lectures,
grades predominantly based on in-class exams, and a
lack of demographic representation in instructors), we
can expect similar challenges for students. As a result,
systematic work using parallel methodologies across dis-
ciplines is necessary to begin to understand similarities
and differences in the etiological underpinnings of dis-
parities in academic outcomes. In this study, we present
a systematic investigation across introductory chemistry,
physics, and psychology courses at the University of
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Pittsburgh. In doing so, we aim to identify both common
and unique patterns across disciplines in disparities and
in linkages between academic resources, motivational at-
titudes, and academic performance.

Academic resources for introductory college courses

One main goal of the K-12 educational system is to pre-
pare students for college (Conley, 2007), which typically
involves developing students’ independent academic
skills, verbal ability, and mathematical ability (often mea-
sured by GPAs and Scholastic Aptitude Test (SAT)
scores). As many studies show, because of inequities in
opportunities and experiences during K-12, these aca-
demic resources (reflected in GPAs and SAT scores) are
not equitably obtained by students across gender, race/
ethnicity, and socioeconomic status (e.g., Luschei, &
Jeong, 2018). This is due to large disparities in access to
high-quality core educational experiences and sizeable
differences in access to optional educational experiences
such as elective coursework, afterschool/extracurricular
programming, and at-home learning resources (Betancur
et al., 2018; Sen & Wasow, 2016).

Despite concerns about variation in grading standards
across high schools, high school GPA remains one of the
strongest predictors of college performance (Allensworth
& Clark, 2020). High school GPA is often conceptualized
as a proxy for general academic work skills, such as
keeping track of required tasks, completing classwork
and homework, and studying for exams (Geiser & Sante-
lices, 2007; Sawyer, 2013). In other words, high school
GPA reflects whether students are good at the general
task of “doing school.” Large introductory college
courses can be especially challenging for students in
terms of these general academic work skills because
large course sizes translate to little direct oversight of
student task completion (Pascarella & Terenzini, 2005).
In addition, such courses include a broad range of topics
with large weight placed on exam performance, which
often requires intensive studying behaviors for successful
performance (Putnam et al., 2016).

For many introductory science courses, mathematical
skills are an important resource because students must in-
dependently interpret graphs and tables, quickly perform
mathematical operations when solving problems (e.g.,
solving for unknowns in systems of equations), and con-
ceptually understand the function of mathematical opera-
tions (e.g., the purpose of taking an average or computing
a standard deviation; National Research Council, 2002).
Indeed, some studies suggest that mathematical ability is
as important as prior exposure to disciplinary content in
predicting performance in introductory science courses
(Sadler & Tai, 2007a).

Verbal ability is also crucial for academic success in
introductory college courses. In some disciplines,
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students must read large textbooks on their own outside
of class as a primary source of learning (Conley, 2003;
National Survey of Student Engagement, 2006). In
addition, when there is a heavy reliance on exams in
introductory courses, students’ inability to quickly and
carefully read long and complex exam questions can be
detrimental to exam performance (Conley, 2003).

Discipline-specific motivational attitudes

Research often examines relationships among motiv-
ational attitudes and academic performance. There are
two broad underlying frameworks commonly used: Ex-
pectancy Value Theory (EVT; Wigfield & Eccles, 2000)
and Self-Determination Theory (Deci & Ryan, 2012).
The two frameworks overlap in several constructs such
as intrinsic value (or interest) and self-efficacy (or com-
petence beliefs). Further, motivational attitudes are
sometimes framed in very general terms, such as general
academic self-efficacy (e.g., Schunk & Pajares, 2002), and
sometimes in discipline-specific terms, such as physics
self-efficacy (e.g., Marshman et al,, 2018a). We focus on
discipline-specific motivational attitudes since these are
most relevant to predicting performance in particular
courses. We also focus on interest and self-efficacy be-
cause they predict course performance (e.g., Kalender
et al., 2020) and can be addressed through changing
course structures and early course interventions (e.g.,
Nissen & Shemwell, 2016); in other words, they are im-
portant and amenable to change.

Interest (also called intrinsic value) can be important
for learning outcomes because it leads students to try to
master the content (Eccles, 2005) and promotes deeper
engagement in learning activities and better conceptual
learning (Vansteenkiste et al., 2006). At the university
level, student discipline-specific interest predicts aca-
demic performance above and beyond academic re-
source differences and other attitudinal differences
(Hsieh, 2014). More enduring interest in a discipline
builds from positive experiences in one situation (Hidi &
Renninger, 2006). Instructors can shape undergraduates’
discipline-specific interest by highlighting the value of
the course for larger goals (Hulleman et al., 2010), sup-
porting student autonomy (Gonzilez & Paoloni, 2015),
and extending project-based or rich lab experiences
(Hazari et al., 2007).

Self-efficacy (e.g., beliefs about one’s abilities to suc-
cessfully complete tasks) consistently relates to academic
outcomes, even when controlling for actual abilities
(Honicke & Broadbent, 2016; Lawson et al., 2007). Evi-
dence and theory suggest that students with low self-
efficacy avoid studying because they do not think it will
result in success (Talsma et al., 2018). Low self-efficacy
can also leave students especially vulnerable to stereotype
threat (Steele & Aronson, 1995) and worry while taking
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exams (Marchand & Taasoobshirazi, 2013; Taasoobshirazi
et al,, 2019). Processes related to self-efficacy can consume
students’ working memory and infringe on the mental re-
sources they need for taking exams (Beilock et al., 2004).
Discipline-specific ~self-efficacy predicts undergraduate
academic performance to different degrees in physics
(Kalender et al., 2020), chemistry (Vincent-Ruz et al,
2018), biology (Lawson et al., 2007), and psychology
(Komarraju & Nadler, 2013). Discipline-specific self-
efficacy at the university level can be targeted through in-
structors’ beliefs (the beliefs that instructors have about
their students influence the beliefs that students have
about themselves; e.g., Canning et al., 2019) and collabora-
tive learning structures (Fencl & Scheel, 2005).

Demographic differences in academic resources and
discipline-specific motivational attitudes

Colleges in the United States typically use a combination
of high school GPA, SAT Verbal, and SAT Math (or
similar assessments) as primary determinants of college
admissions because they predict academic success (Saw-
yer, 2013). Unfortunately, such procedures tend to pro-
duce inequities in admissions because of differential
prior learning opportunities in and out of school. For ex-
ample, women, underrepresented racial/ethnic groups,
and students whose parents did not attend college are
less likely to experience opportunities to engage in ad-
vanced STEM coursework in high school (Robinson,
2003; Tyson et al, 2007), which negatively impacts
mathematical ability compared with their peers who did
have such opportunities (Kurban & Cabrera, 2019). In
addition, there are large socioeconomic differences in
many aspects of K-12 school quality, including the avail-
ability of summer and after school learning opportunities
(Putnam, 2016), which can impact mathematical, verbal,
and general study skills (Bernal et al., 2016; Hanushek &
Woessmann, 2017). However, there are also relative
strengths, for example, women are generally more suc-
cessful than men in high school academics (Fortin et al.,
2015) and are more likely to enroll in advanced writing
courses in high school (College Board, 2018a). Addition-
ally, very selective universities employ resource-based se-
lection procedures that reduce demographic disparities
in academic performance in college courses (e.g., only
students with high SAT Math scores are admitted to the
university or the STEM major). Thus, demographic dif-
ferences in academic resources in the general pool of
high school graduates do not always replicate among
college attendees, particularly in programs with a strong
focus on academic preparation.

There can also be demographic differences among un-
dergraduates within introductory STEM courses in
discipline-specific motivational attitudes, particularly in
discipline-specific interest (Marshman et al., 2018b) and
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discipline-specific self-efficacy (Marshman et al., 2018a;
Vincent-Ruz et al., 2018). These may arise from mes-
sages students receive from media, teachers, family, and
peers that shape beliefs about whether they can be suc-
cessful in academics. For example, there are negative ste-
reotypes about women and minoritized students in
STEM (Moss-Racusin et al,, 2012; Seymour & Hewitt,
1997) which can influence the messages students to re-
ceive and thereby change course performance (Hazari
et al, 2007). Further, differential exposure to certain
topics (e.g., in advanced coursework) in high school can
affect students’ interest in the topics (Osborne et al,
2003). At the same time, students self-select into majors
in college, which influences the introductory courses
they take. This could result in a reduction or absence of
demographic differences in motivational attitudes within
those courses. For example, women enrolled in chemis-
try courses may have a similarly high interest in chemis-
try as men enrolled in those courses.

It is important to note that academic resources and
motivational attitudes are not independent. Throughout
high school, grades within particular courses provide
feedback to students, which then shapes their discipline-
specific self-efficacy (Lopez & Lent, 1992). Additionally,
students are keenly aware of their performance on tests
like the SAT, which influences their discipline-specific
interests and self-efficacy (Vincent-Ruz et al., 2018).
Thus, demographic differences in academic resources
can also produce demographic differences in motiv-
ational attitudes.

Disciplinary variation in important motivational attitudes
and academic resources

From a theoretical perspective, a similar pool of general aca-
demic resources and motivational attitudes might matter for
all large introductory courses. However, it is likely that there
is variability in which academic resources and motivational
attitudes matter for which disciplines. First, for self-selection
reasons, demographic differences in ability might vary by dis-
cipline. For example, if only high math ability students select
physical sciences majors, then demographic differences in
math ability will be truncated and math skills will have little
predictive validity in explaining variability in performance in
the physical sciences, but could still explain differences in
other disciplines. Discipline-specific stereotypes could give
rise to a similar result. For example, women are commonly
described as weak in STEM but strong in social sciences
(Wang et al, 2013). Disciplines also vary in the extent to
which innate talent is thought to be critical, and this is corre-
lated with participation by gender (Leslie et al., 2015). Stereo-
types may give rise to limited variability in self-efficacy within
disciplines, with higher levels of self-efficacy among women
in psychology and lower levels among women in physics and
chemistry, for example.
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Second, introductory courses may vary substantially in the
extent to which they depend upon different academic re-
sources. Most obvious is the relative use of verbal versus
mathematical skills, with some disciplines depending more
on verbal skills and others depending more on mathematical
skills. For example, past studies find a strong role of SAT Ver-
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based introductory courses in chemistry, physics,
and psychology?

To what extent do demographic differences in
academic resources and discipline-specific motiv-
ational attitudes explain differences in academic
performance within each of these courses?

bal in psychology courses (Betancur et al, 2019) and a stron-

ger role of SAT Math in chemistry (Vincent-Ruz et al., 2018)
and physics courses (Kalender et al, 2020). With regard to
motivation, as previously mentioned, many studies across
disciplines find that self-efficacy is an important performance
predictor; less obvious is the relative reliance on interest.
When courses require students to do a lot of independent
learning (e.g., reading in psychology versus required/graded
homework completion in physics and chemistry), the relative

role of personal interest may be larger.

Theoretical framework

Figure 1 presents a theoretical model of the processes de-
scribed in the introduction; that demographics can affect
academic resources and motivational attitudes (because of
a variety of structural factors in society and K-12 experi-
ences), which can then affect academic performance. Fur-
thermore, each step may materialize differently across
academic disciplines depending on differences in learning

environments.

Research questions

1. What is the magnitude of differences in student
academic performance related to gender, race/
ethnicity, and parent education, in large, lecture-

We explore these general research questions in a particular
set of courses: Chemistry, Physics, and Psychology. The pool
of students who choose to enroll at the University of Pitts-
burgh and register in these specific courses may differ from
students who choose to enroll in other universities or register
in similar courses at other universities. Thus, the underlying
goal of these research questions is not to provide fixed an-
swers by the course that will definitively replicate across con-
texts. Rather the goal is to show that, even within one
university, (1) the size and even direction of demographic dif-
ferences in course grades can vary by discipline, (2) demo-
graphic differences in academic resources and discipline-
specific motivational attitudes can also vary by course, rather
than being universal statements about student demographic
groups, and (3) differences in academic resources and motiv-
ational attitudes can provide useful explanations for variation
in demographic-based course performance differences.

Method

Overview

This study takes place at the University of Pittsburgh, a large,
urban university in the eastern US. In 2018-2019, under-
graduate enrollment was 19,330 students and the under-
graduate student body was 70 percent White (University of
Pittsburgh, 2019). In the fall of 2018, the acceptance rate was
59 percent, the 25th percentile SAT score was 630 for Verbal

RQ1 Demographics
Gender
Race/Ethnicity
First Generation College Student

I

Academic Performance
Physics Grades
Chemistry Grades
Psychology Grades

RQ2
HS GPA

Demographics
Gender
Race/Ethnicity
First Generation College Student

Academic Resources

Math SAT

Verbal SAT \

Academic Performance
Physics Grades
Chemistry Grades

ﬁ Psychology Grades

Discipline-Specific
Attitudes
SeIf Efficacy, Interest

predict grades, are shown in grey. RQ = Research question

Fig. 1 Theoretical model of how variation in motivational attitudes and academic resources relates to academic performance. Note: This figure
shows the observed relationship between demographics and academic performance (RQ1), and the theoretical model of the role of academic
resources, discipline-specific motivational attitudes, and academic performance within each discipline (RQ2). Theorized structural causes of (1)
demographic differences in academic resources and discipline-specific motivational attitudes, and (2) differences in how resources and attitudes
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and 640 for Math, and the 75th percentile SAT score was
700 for Verbal and 730 for Math (Integrated Postsecondary
Education Data System, 2019).

This study merges administrative records from the
University with course-specific survey data from the
University’s “Interventions that Matter” project, which
aims to understand academic performance disparities
and evaluate interventions in undergraduate STEM
courses. The motivational attitude measures were col-
lected from students enrolled in General Chemistry I
from the fall of 2015 through the fall of 2016, Calculus-
based Physics I from the fall of 2015 through the spring
of 2017, and Introduction to Psychology from the fall of
2018 through the spring of 2019'. Each of these large
enrollments, lecture-based courses is the first college-
level (non-remedial) introductory course within each of
the disciplines, and each is primarily taken by students
in their first year at the University. Final grades in all
three courses were generally based on multiple midterms
and a final exam. However, as is commonly the case
across universities, grades in chemistry also involved a
separate lab component. grades in both chemistry and
physics were also based on weekly homework of a work-
sheet type, often completed online.

Introductory psychology, chemistry, and (calculus-based)
physics courses were selected as cases for study because
these large enrollment courses are likely to have substantially
different pools of students enrolled. Despite all being pre-
dominantly first-year students, enrollees in these introduc-
tory courses reflect differences in the types of students who
take these courses. The chemistry course includes large
numbers of students pursuing medicine or other health ca-
reers/life science majors. The calculus-based physics course
includes many students from engineering, as well as students
intending physics and chemistry majors; students pursuing
medicine typically enroll instead in the algebra-based physics
course. The psychology course draws students from a wide
range of intended majors. In other words, different popula-
tions enroll in each of these courses, which may give rise to
demographic differences in academic resources and
discipline-specific motivational attitudes (e.g., there may be
demographic differences in SAT Math in one sample but
not in another), and thus grades.

Sample
The samples include 1295, 1102, and 1829 students in
chemistry, physics, and psychology respectively. The

"This effort was situated in a larger project that involved different year
ranges of participation across disciplines and gradual revisions to
surveys that made them more comparable. We used every semester
with available data using the most comparable surveys to maximize
sample sizes. There were not large changes in population
characteristics at the University of Pittsburgh from 2015-2019, so this
variation is unlikely to influence the results.
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same student may be included in more than one sample
if they enrolled in more than one of the courses included
in this analysis. No student is included in a specific
course’s sample more than once, and if a student re-
peated a class, we included data from the earliest time a
student was enrolled in the class and completed the sur-
vey measures. Overall, the study analyzed 4226 final
course grades across the three courses with data from
3625 unique students. Table 1 includes descriptive infor-
mation on the sample for each course.

Measures

Demographic characteristics

Students’ demographic information came from adminis-
trative data at the University of Pittsburgh. The main
demographic variables of interest are student gender,
race/ethnicity, and parent education. Student gender is
represented with a dummy variable that indicates whether
the student is female or male (reference group)—although
gender is a complex, multi-dimensional construct (Hyde
et al,, 2019), the existing institutional data is only repre-
sented in binary terms.

Race/ethnicity is reflected in a dummy variable indi-
cating if the student is a member of an underrepresented
racial/ethnic group. If the student is of only White and
or Asian descent, they are considered represented (these
students serve as the reference group). If the student is
of Black, Latinx, Native American, Pacific Islander, and
or other descent, they are considered underrepresented.
The University of Pittsburgh’s undergraduate enrollment
is over 70 percent White and over 10 percent Asian
(University of Pittsburgh, 2019); Table 1 demonstrates
that the introductory courses examined in this study are
even more racially/ethnically homogenous. Thus, stu-
dents of Black, Latinx, Native American, Pacific Islander,
and or other descent are disproportionately underrepre-
sented, not only at the University but even more so in
these courses. While there is a great deal of racial/ethnic
heterogeneity within these dichotomized groups, there
were not adequate sample sizes to consider more refined
categories of race/ethnicity. Further, we are using stu-
dents’ race/ethnicity as a proxy for measuring the ramifi-
cations of being part of a minoritized racial/ethnic group
that is underrepresented in a classroom environment.
We recognize that using a race/ethnicity dummy vari-
able is an imperfect proxy for these processes (Brown
et al., 2019). Unfortunately, we do not have more refined
student-level data on specific processes related to the ex-
perience of being underrepresented (e.g., students’ re-
ports of belonging and experiences of racial aggressions).

First-generation college student status is represented
with a dummy variable as well, in this case indicating
whether students do not have at least one parent with at
least a bachelor’s degree. This variable was created from
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Table 1 Sample characterization in terms of demographics,
academic resources, discipline-specific attitudes, and course
performance

Chemistry Physics Psychology
Variable Meanor SD Meanor SD Meanor SD
% % %

Demographics

Age (years) 18.68 1.16 19.02 182 19.17 1.36
Gender

Female 61% 32% 57%

Male 39% 68% 43%
Race/Ethnicity

Asian 18% 11% 18%

Black 5% 4% 6%

Latinx 3% 3% 6%

Multi-racial 5% 5% 4%

Other 0.3% 0.1% 0.1%

White 69% 77% 67%
Parent Education

High school or 10% 8% 10%

below

College or higher 90% 92% 90%
Academic resources

High School GPA  4.08 040 4.07 044 4.00 048

SAT Verbal/100 6.72 0.77 6.80 0.72 659 0.74

SAT Math/100 6.70 073 697 064 6.59 0.75
Discipline attitudes

Interest 2.88 063 3.19 052 3.01 0.51

Self-Efficacy 2.74 0.56 2.85 045 3.08 0.39
Course performance

Course grade 2.87 091 243 1.03 353 0.71
N 1,295 1,102 1,829
Participation rate 95% 60% 79%
Number of class 6 9 9
sections
Number of 4 5 5
instructors
Average class size 191 122 203

Note: Sample statistics reflect imputed data. Native American and Pacific
Islander students are included with “Other” due to small sample sizes

University administrative data, which originally received
the data from the Free Application for Federal Student
Aid (FAFSA).

Academic resources

Key student academic resources were measured with
three constructs commonly used to predict academic
performance, obtained by the University of Pittsburgh as
part of the admissions process: high school grade-point
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averages (GPA), and the Mathematics and Verbal Scho-
lastic Aptitude Test (SAT) scores. About one percent of
high school GPAs were either missing or over 5.0. GPAs
over 5.0 were removed from analyses since these stu-
dents” GPAs were not calculated on the usual five-point
weighted-by-Advanced-Placement-courses scale,” mak-
ing their high school GPAs not comparable to the ma-
jority of the high school GPAs in the sample. Some
students only had American College Testing (ACT)
scores and no SAT scores. In those cases, the ACT Eng-
lish and math scores were standardized to the SAT scale
using the College Board (2018b) ACT/SAT concordance
tables to create one SAT Verbal score and one SAT
Math score (each with a maximum score of 800 and US-
wide means of slightly above 500) for each student. As
previously mentioned, these indicators serve as proxies
for academic resources and access to academic oppor-
tunities more broadly (Bernal et al., 2016; Hanushek &
Woessmann, 2017; Putnam, 2016).

Discipline-specific motivational attitudes
Students’ interest and self-efficacy in the discipline of
each course were measured using self-reported survey
responses collected at the start of the course (just after
the end of the add-drop period and before any exam
feedback was provided). The scales were developed by
adapting existing scales in the literature to each discip-
line and for undergraduate populations as needed. Cog-
nitive interviews were conducted to ensure items were
interpreted as intended. These interviews involved 5-10
students per discipline, drawn from the courses being
studied at varying times during the semester, and se-
lected to vary in gender and course performance. Ex-
ploratory factor analyses with a broader set of constructs
(e.g., intelligence mindset, extrinsic value) were con-
ducted to establish a single-factor structure within each
scale and discriminant validity between scales. Item re-
sponse theory (IRT) analyses were conducted to ensure
no survey items had differential scale discriminability by
gender, race/ethnicity, or first-generation status.
Discipline-specific interest scales capture how fasci-
nated a student is by each course’s subject matter. The
discipline-specific ~ self-efficacy scale captures how
confident and capable a student feels about their ability
to do well on a variety of tasks involving content from

2US high schools use a 0—4 GPA scale with 0 representing a failure
and 4 representing the top grade, an A. However, when high school
students take Advance Placement (AP) courses that provide them early
access to university-level coursework, grades in these courses are in-
flated to a 0 to 5 scale. The combination of grades across courses types
is called a weighted GPA. We did not have access to students’ un-
weighted GPAs; there is evidence that weighted GPAs can be a better
predictor than unweighted GPAs (Sadler & Tai, 2007b), although there
is some counter-evidence as well (Warne et al., 2014).
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that particular discipline. Table 2 includes the full list of
survey items used to measure discipline-specific interest
and self-efficacy in chemistry, physics, and psychology as
well as the corresponding Cronbach’s alphas. The survey
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items were collected from existing scales and surveys
and were not originally created for the purpose of this
study; hence, there are minor differences in the items
across disciplines. The source datasets also contain many

Table 2 Survey questions used for discipline-specific interest and self-efficacy variables

Chemistry interest In general | find chemistry topics Very boring (1) Boring (2) Interesting (3)
(a=0.77) Very Interesting (4)
| want to know everything | can about chemistry. NO! (1) no (2) yes (3) YES! (4)

Chemistry self-efficacy ~ Chemistry intimidates me.
(a = 0.85)

Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

| have trouble understanding anything based on chemistry. Strongly Disagree (1) Disagree (2) Agree (3)

Strongly Agree (4) IDU (5)

| have always had difficulty understanding arguments that require Strongly Disagree (1) Disagree (2) Agree (3)

chemical knowledge.

Strongly Agree (4) IDU (5)

I can usually figure out a way to solve chemistry problems. Strongly Disagree (1) Disagree (2) Agree (3)
Strongly Agree (4) IDU (5)

After | study a topic in chemistry and feel that | understand it, Strongly Disagree (1) Disagree (2) Agree (3)

I have difficulty solving problems on the same topic. Strongly Agree (4) IDU (5)

Source: (Adams et al,, 2008; Bauer, 2005; Vincent-Ruz et al.,, 2018)

Physics interest | wonder about how nature works.
(a =0.63)

In general, | find physics

I want to know everything | can about physics.

Never(1) Once a month (2) Once a week (3)
Every day (4)

Very boring (1) Boring (2) Interesting (3)
Very Interesting (4)

NO! (1) no (2) yes (3) YES! (4)

Physics self-efficacy | can complete the physics activities | get in a lab class. Rarely (1) Half the time (2) Most of the time (3)

(a = 0.75)

All the time (4)

If I went to a museum, | could figure out what is being shown None of it (1) A few areas (2) Most areas (3)

about physics in

All areas (4)

I am often able to help my classmates with physics in the laboratory NO! (1) no (2) yes (3) YES! (4)

or in recitation.

| get a sinking feeling when | think of trying to tackle difficult NO! (1) no (2) yes (3) YES! (4)

physics problems.

If I wanted to, | could be good at doing physics research. NO! (1) no (2) yes (3) YES! (4)

If I study, I will do well on a physics test.
Source: (Marshman et al,, 2018b)

Psychology interest | wonder about how psychology works.
(a =0.82)

In general, | find psychology

I want to know everything | can about psychology. NO!
|'am curious about recent discoveries in psychology. NO!

I want to know about the current research that psychologists are doing. NO!

Psychology self-efficacy If | study, | will do well on a psychology test.
(a=0.77)

NO! (1) no (2) yes (3) YES! (4)

Never(1) Once a month (2) Once a week (3)
Every day (4)

Very boring (1) Boring (2) Interesting (3)
Very Interesting (4)

If I wanted to, | could be good at psychology research. NO! (1) no (2) yes (3) YES! (4
I understand concepts | have studied in psychology. NO! (1) no (2) yes (3) YES! (4
| am able to help my classmates with psychology in the NO! (1) no (2) yes (3) YES! (4

laboratory or in recitation.

If I encounter a setback in a psychology exam, | can overcome it. NO! (1) no (2) yes (3) YES! (4)

When | think about getting ready for a psychology exam, | get a NO! (1) no (2) yes (3) YES! (4)

sinking feeling.

Source: (Marshman et al,, 2018b; Vincent-Ruz & Schunn, 2017)

Note: Only responses 1-4 were included in analyses of composites
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other survey constructs (different constructs within each
discipline), so the number of survey items per construct
were minimized to avoid poor participation due to sur-
vey fatigue.

Course performance

The main outcomes of interest in this study are students’
course grades in introductory chemistry, physics, and
psychology. Course grades are measured on a continu-
ous four-point scale with a 4.0 being an A or A+ and a 0
equaling an F: A =4,B=3,C=2,D =1, and +/- add
or subtract 0.25 (e.g., a B- is a 2.75 and a B+ is 3.25).

Analytic approach

The first research question (Fig. 1) involved identifying the
magnitude of differences in students’ course grades based on
gender, race/ethnicity, and parent education, in large,
lecture-based introductory courses in psychology, chemistry,
and physics. This analysis used multiple regression in Stata
15.0 to predict course grades in chemistry, physics, and
psychology with just demographic characteristics.

For the second research question (Fig. 1), this study
used structural equation modeling (SEM) in Stata 15.0.
We chose an SEM framework in order to test several
direct and indirect effects simultaneously, which is a
more precise method than multiple regression (Li,
2011). The SEMs tested academic resources and
discipline-specific motivational attitudes as mediators of
the relationships of gender, race/ethnicity, and parent
education on course grades. The models also tested
pathways from academic resources to motivational atti-
tudes. The statistical significance of indirect effects was
tested simultaneously in a SEM framework (Keith, 2006)
using a Sobel (1987) test with 200 bootstrapped standard
errors. After initially testing all possible direct and indir-
ect effects, insignificant (p > .05) pathways and insignifi-
cant correlated errors of mediators were trimmed to
improve the goodness of fit of the model. Model fit was
assessed using the Comparative Fit Index (CFI) and
Tucker-Lewis Index (TLI) to compare the model with a
baseline model and the Root Mean Squared Error of Ap-
proximation (RMSEA) to examine parsimony (Hu &
Bentler, 1999). A good fit is achieved if the CFI and TLI
values are above .95 and the RMSEA values are below
.06 (Hu & Bentler, 1999).

Missing data

Only 72 percent of the chemistry sample, 74 percent of
the physics sample, and 69 percent of the psychology
sample have complete data for all variables included in
the analyses. Most missing data is due to the missing
parent education variables for students who did not
complete a FAFSA. Given the biases introduced with
listwise deletion, regression analyses used imputation
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methods and SEMs used maximum likelihood with
missing values (MLMV; Enders & Bandalos, 2001). For
the regression models, missing data were imputed using
chained equations (ICE) to create 20 complete datasets
in Stata 15.0 (Royston, 2004, 2005). The SEMs with
MLMYV were also conducted in Stata 15.0. The models
were analyzed both with and without imputed data and
were consistent; for simplicity, we present only the re-
sults with imputed data and include the unimputed re-
sults in Online Supplementary Tables 1-6.

Results
Table 3 provides group mean differences in academic
resources, discipline-specific motivational attitudes,
and course grades, separated by gender, underrepre-
sented racial/ethnic backgrounds, and parent educa-
tion. Although the University of Pittsburgh is
somewhat selective, there are no ceiling effects on the
academic resource variables. Additionally, while stu-
dents self-selected into these courses (by larger aca-
demic pathway, by major, or by general interest),
there were no ceiling effects on the interest or self-
efficacy measures. Thus, differential predictiveness of
academic outcomes could not be attributed to a lack
of variation across students enrolled in each course.
The variation, highlighted by large within-group
standard deviations (Table 3), also illustrates that des-
pite the results’ focus on average group differences,
there are students of all backgrounds with high levels
of interest and self-efficacy and high course grades.
Table 4 provides bivariate correlations for all variables
included in the SEMs. The three demographic variables
were generally independent of one another, but with
small variation across courses. The three academic re-
source variables were moderately correlated, with the
largest correlation being between SAT Verbal and SAT
Math. Interest and self-efficacy moderately correlated as
well, but not so strongly as to prevent the analysis of
separate mediation pathways. Academic resources and
motivational variables were essentially uncorrelated in
psychology, rarely correlated in physics, and consistently
but weakly correlated in chemistry. Overall, the correla-
tions among demographic variables, academic resources,
and motivational variables varied substantially across
disciplines and are probed further in the SEMs.

Demographic performance disparities in introductory
courses

In accordance with the first research question, Table 5
shows the results of three regression models with intro-
ductory course grades for chemistry, physics, and psych-
ology each regressed on gender, race/ethnicity, and parent
education. Associations between gender and introductory
grades varied across courses, from the marginally lower
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Table 3 Mean and SD for academic resources and discipline-specific motivational attitudes by course and demographic

characteristics

%

High School GPA

SAT Verbal (/100)

SAT Math (/100)

Discipline-based

Discipline-based Course grade

(range: 0-5) (range: 3.5-8) (range: 3.6-8) interest self-efficacy (range: 0-4)
(range: 1-4.5) (range: 1-4.1)
Mean sD Mean sD Mean sD Mean sD Mean sD Mean SD
Chemistry
Female 61% 4.13 0.37 6.76 0.75 6.57 0.71 2.82 0.63 262 0.57 2.84 0.87
Male 39% 4.02 042 6.66 0.79 6.89 0.72 298 0.60 291 049 292 0.97
Underrepresented  11% 4.02 041 6.59 0.70 641 0.73 272 0.66 263 0.55 249 1.03
White and or Asian  89% 4.09 0.39 6.73 0.78 6.73 0.72 290 0.62 2.75 0.56 291 0.89
First generation 10% 4.06 0.38 6.38 0.82 6.32 0.73 2.89 0.65 2.64 0.54 2.75 091
Non-first gen 90% 4.09 040 6.76 0.76 6.74 0.72 288 062 275 0.56 288 093
Physics
Female 32% 4.8 0.36 6.91 0.74 6.87 0.67 3.05 0.58 267 046 2.34 0.96
Male 68% 4.02 047 6.74 0.71 7.02 0.63 3.25 048 293 042 247 1.06
Underrepresented 9%  4.03 042 6.72 0.69 6.83 0.61 3.18 0.55 2.80 0.51 2.22 1.07
White and or Asian  91% 4.07 044 6.80 0.73 6.99 0.65 3.19 0.52 2.85 044 245 1.03
First generation 8% 393 0.56 641 0.71 6.63 0.75 328 0.54 286 046 1.94 1.16
Non-first gen 92% 4.08 043 6.83 071 7.00 0.63 3.18 0.52 2.85 045 247 1.01
Psychology
Female 57% 4.05 042 661 0.75 6.46 0.73 3.08 0.50 3.09 037 359 063
Male 43% 3.94 0.53 6.57 0.73 6.76 0.73 291 0.50 3.07 041 346 0.81
Underrepresented  14% 3.86 046 6.45 0.74 6.30 0.69 3.03 0.51 3.09 040 345 0.69
White and or Asian  86% 4.03 047 6.62 0.74 6.63 0.74 3.01 051 3.08 039 354 0.72
First generation 10% 3.88 0.53 6.17 0.76 6.28 0.76 3.07 0.57 3.10 042 335 0.89
Non-first gen 90% 4.02 047 6.64 0.72 6.62 0.74 3.00 0.50 3.08 0.39 355 0.69

Note: Group ranges and mean statistics reflect imputed data

performance of female students on average (.06 standard
deviation units (SD), p = .065) in physics, to no significant
difference in chemistry, to significantly higher perform-
ance of women in psychology (.09 SD, p < .001). Students
from underrepresented racial/ethnic groups performed
marginally or significantly worse than students from only
White and or Asian backgrounds across all of the intro-
ductory courses, but the size of the relationship varied by
discipline, with differences of .14 SD (p < .001) in chemis-
try, .06 SD (p = .039) in physics, and only .04 SD (p =
.064) in psychology. Finally, students with at least one
college-educated parent performed better than first-
generation college students in physics (.14 SD, p < .001)
and psychology (.09 SD, p < .001), whereas the difference
was small and non-significant in chemistry. Thus, all
demographic disparities varied in significance, effect size,
and or direction across disciplines.

Mediators of demographic performance disparities in
introductory college courses

In accordance with the second research question, Figs. 2—
4 display the direct effects of pathways with significant

indirect effects relevant to course grade outcomes in the
SEMs across the chemistry, physics, and psychology sam-
ples. Figure 5 shows the direct effects of full SEMs. The
complete coefficients, standard errors, and p values of
every direct and indirect effect estimated in the SEMs are
displayed in Appendix Tables 6 and 7. Overall, the final
models for each course provided good fits to the data®:
chemistry RMSEA <.01 (90% CI .00, .03), CFI > .99, and
TLI > .99; physics RMSEA = 0.01 (90% CI 0.00, 0.03), CFI
>.99, and TLI > .99, and psychology RMSEA = 0.02 (90%
CI 0.00, 0.03), CFI > .99, and TLI = .99. As a robustness
check to examine whether there was strong support for
using different final models for each discipline, each
model specification was run with each course sample (e.g.,
the psychology model specification was applied to the
chemistry sample). In all of these instances, the models
demonstrated worse fit with the SEM specifications for
other disciplines. This supports that each model specifica-
tion is distinctly predictive of its course sample. Details of

*We report p values rounded to three digits and fit statistics rounded
to two digits.
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Table 4 Bivariate correlations for each variable analyzed by course

Page 11 of 25

Course Female Under- First High school  SAT SAT Interest Self-
grade represented generation  GPA Verbal Math efficacy

Chemistry

Course grade 1.00

Female -0.04 1.00

Underrepresented racial/ -0.14 0.06 1.00

ethnic group

First generation -0.04 0.06 0.04 1.00

High school GPA 036 0.13 —-0.06 —-0.03 1.00

SAT Verbal 0.31 0.06 -0.06 -0.15 0.29 1.00

SAT Math 041 -0.22 -0.14 -0.17 0.26 0.53 1.00

Interest 028 -013  -0.09 0.01 0.05 0.04 0.12 1.00

Self-efficacy 0.38 -0.25 -0.07 -0.06 0.16 0.14 0.34 0.55 1.00
Physics

Course grade 1.00

Female —0.06 1.00

Underrepresented racial/ -0.07 0.05 1.00

ethnic group

First generation -0.14 0.01 0.01 1.00

High school GPA 032 0.17 -0.02 —-0.09 1.00

SAT Verbal 028 0.11 -0.03 -0.16 030 1.00

SAT Math 047 -0.11 -0.07 -0.15 0.21 042 1.00

Interest 0.08 -0.18  —0.001 0.05 —0.05 -0.02 0.02 1.00

Self-efficacy 0.16 -027  -004 0.01 -0.04 —-0.01 0.16 0.50 1.00
Psychology

Course grade 1.00

Female 0.09 1.00

Underrepresented racial/ —-0.05 0.01 1.00

ethnic group

First generation -0.09 0.03 0.04 1.00

High school GPA 038 0.12 -0.12 —-0.08 1.00

SAT Verbal 023 0.03 -0.08 —-0.19 0.29 1.00

SAT Math 0.18 -020  -0.15 -0.14 0.28 042 1.00

Interest 0.02 0.17 0.01 0.04 0.003 0.07 —-0.05 1.00

Self-efficacy 0.08 0.02 0.01 0.02 0.06 0.08 0.03 039 1.00

the fit indices for all model specifications are in Appendix
Table 8.

In the following sections, we discuss the mediators be-
tween demographic factors and course grades to deter-
mine whether the demographic-based grade disparities
revealed in the regression analyses in research question
one (Table 5) can be explained in terms of the mediation
models we ran for research question two. We organize
sections based on gender (Fig. 2), race/ethnicity (Fig. 3),
and parent education (Fig. 4). Each figure also shows the
initial demographic effect on course grades from the first
research question (Table 5). Figures 2, 3, and 4 show
only the significant mediational pathways (i.e., that

contributed significantly in positive or negative ways to-
wards demographic grade effects). Figure 5 includes all
significant pathways in the mediational models. We con-
clude with the findings of moderation analyses to verify
that the tested mediational pathways are appropriate
pathways across demographic groups (e.g., whether SAT
math predicts physics self-efficacy to an equal extent for
women and men).

Gender

Chemistry The SEM results reveal that the non-
significant relationship between gender and course
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Table 5 Multiple regression results for demographic characteristics predicting course grade in introductory chemistry, physics, and

psychology
Chemistry Physics Psychology

Predictors Coeff. SE Standardized Coeff. Coeff. SE Standardized Coeff. Coeff. SE Standardized Coeff.
Gender

Female -0.06 005 -003 -0.12+ 007 -0.06 0.14%%* 003 0.09
Race/ethnicity

Underrepresented  —041*** 008 -0.14 —0.22* 011  -006 —0.09+ 005 —004
Parent education

First generation -0.10 0.10 -0.03 -0.53*** 014 -0.14 -0.20"* 006 —0.09
Intercept 2.96 0.04 2.53 0.04 349 0.03
N 1,295 1,102 1,829

Note. All of the variables in the models are dummy variables, so the coefficients reflect the difference in mean performance between the variable and the

reference group
***p < .001. **p < .01. *p < .05. +p < .1

performance in the regression analysis for chemistry
may be the result of significant and countervailing indir-
ect effects operating through academic resources and
motivational attitudes (Fig. 2a; Appendix Table 7). For
academic resources, there was a positive indirect effect
of high school GPA on the association between gender
(women had higher high school GPAs than men on
average) and course grade (mediation effect 5 = .03, p <
.001). By contrast, there was a negative indirect effect of
SAT Math scores (women had lower SAT Math scores
on average) on the association between gender and
course grade (mediation effect § = —.05, p < .001). For
motivational attitudes, women had lower chemistry
interest and self-efficacy on average and there were
negative indirect effects of chemistry interest and self-
efficacy on the association between gender and chemis-
try course grades (mediation effects f = -.01, p = .004
and f§ = -.04, p < .001, respectively).

Similar to the countervailing indirect effects between
gender and course performance, there were also coun-
tervailing indirect effects of academic resources on the
associations between gender and motivational attitudes.
There was a positive indirect effect of high school GPA
on the association between gender and self-efficacy (me-
diation effect § = .01, p = .001). By contrast, there were
negative indirect effects of SAT Math on the associa-
tions between gender and chemistry self-efficacy (medi-
ation effect § = -.06, p < .001) and gender and
chemistry interest (mediation effect 8 = -.02, p = .002).

Physics The patterns in physics were similar to those in
chemistry, but with fewer pathways. In physics, the re-
gression found a marginal relationship between gender
and course performance, with women receiving lower
grades than men. This predicted association is also me-
diated by countervailing indirect effects through high
school GPA, SAT Math, and physics self-efficacy (Fig.

2b, Appendix Table 7). There was a positive indirect ef-
fect of high school GPA (women had higher high school
GPAs on average) on the association between gender
and course grade (mediation effect f = .04, p < .001). By
contrast, there was an equally large negative indirect ef-
fect of SAT Math scores (women had lower SAT Math
scores on average) on the association between gender
and course grade (mediation effect § = -.04, p = .001).
Additionally, women had lower physics self-efficacy on
average, and there was a negative indirect effect of self-
efficacy on the association between gender and physics
course grades (mediation effect § = —.03, p = .001).

There was only one indirect effect of academic resources
on the associations between gender and motivational atti-
tudes: there was a negative indirect effect of SAT Math
scores on the association between gender and physics self-
efficacy (mediation effect 8 = —.02, p = .004).

Psychology In psychology, unlike chemistry and physics,
women’s course grades were significantly higher than
men’s on average. The SEM results (Fig. 2c; Appendix
Table 7) partially explain this disparity with a positive
indirect effect of high school GPA (women had higher
high school GPAs on average) on the association be-
tween gender and course grade (mediation effect 5 = .04,
p < .001).

However, the SEM does not fully explain the estimated
association between gender and psychology course
grade. There is an enduring direct effect of gender on
course grade (direct effect 5§ = .05, p = .034) after ac-
counting for academic resources and motivational atti-
tudes (Fig. 2c; Appendix Table 6).

Race/ethnicity

Chemistry The regression results highlight that Black,
Latinx, Native American, Pacific Islander, and or
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Fig. 2 Significant direct effects between students’ gender, academic resources, discipline-specific attitudes, and introductory course grades. Note:
Solid arrows indicate significant direct effects, dashed arrows indicate significant negative direct effects, and line thickness denotes the size of the
standardized path coefficient. These figures only display pathways with significant indirect effects relevant to course grade outcomes; see Fig. 5
for all significant pathways. The final models for each course provided good fits to the data: chemistry RMSEA < .01 (90% CI .00, .03), CFI > .99,
and TLI > .99; physics RMSEA = 0.01 (90% CI 0.00, 0.03), CFl > .99, and TLI > .99, and psychology RMSEA = 0.02 (90% CI 0.00, 0.03), CFI > .99, and
TLI = .99. **p < 001. **p < 01.*p < .05 +p < .1

students who classify themselves as other (all of whom
are underrepresented in these courses) demonstrated
lower chemistry course grades on average than did
White and or Asian students (who make up the racial
majority of these courses). The SEM results (Fig. 3a;
Appendix Table 7) suggest there are negative indirect ef-
fects of academic resources and motivational attitudes
on the association between race/ethnicity and chemistry
course grade. For academic resources, there are indirect
effects of high school GPA and SAT Math (underrepre-
sented students had lower high school GPAs and SAT
Math scores on average) on the association between
race/ethnicity and chemistry course grade (mediation

effects f = -.02, p = .030 and 8 = -.03, p < .001, respect-
ively). For motivational attitudes, there was a negative
indirect effect of chemistry interest (underrepresented
students demonstrated less interest) on the relationship
between race/ethnicity and chemistry course grades (me-
diation effect 5 = -.01, p = .020).

The model also suggests negative indirect effects of
academic resources on the associations between race/
ethnicity and motivational attitudes. There was a nega-
tive indirect effect of SAT Math on the association be-
tween race/ethnicity and chemistry interest (mediation
effect § = —.01, p = .010). There were also negative indir-
ect effects of high school GPA and SAT Math on the
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Fig. 3 Significant direct effects between students’ race/ethnicity, academic resources, discipline-specific attitudes, and introductory course grades.
Note: Solid arrows indicate significant direct effects, dashed arrows indicate significant negative direct effects, and line thickness denotes the size
of the standardized path coefficient. These figures only display pathways with significant indirect effects relevant to course grade outcomes; see
Fig. 5 for all significant pathways. The final models for each course provided good fits to the data: chemistry RMSEA < .01 (90% CI .00, .03), CFI >
99, and TLI > .99; physics RMSEA = 0.01 (90% Cl 0.00, 0.03), CFI > .99, and TLI > .99, and psychology RMSEA = 0.02 (90% Cl 0.00, 0.03), CFI > .99,
and TLI = .99. **p < .001. **p < .01. *p < .05. +p < .1

association between race/ethnicity and chemistry self- backgrounds. The SEM (Fig. 3b, Appendix Table 7)
efficacy (mediation effects f = -.01, p = .036; 8 = -.03, p  highlights that the significant negative relationship may
< .001, respectively). be explained by a negative indirect effect of SAT Math
However, these significant mediators do not explain  scores (underrepresented students had lower SAT Math
the full course grade disparity. The SEM suggests a scores on average) on the association between race/eth-
negative direct effect of underrepresented racial/ethnic  nicity and physics course grades (mediation effect
backgrounds on chemistry course grades (direct effect 5 5 = -.02, p = .049).
= -.07, p = .011) even when accounting for academic re-
sources and motivational attitudes. Psychology Unlike chemistry and physics, students from
underrepresented racial/ethnic backgrounds had only
Physics Similar to chemistry, physics has a racial/ethnic =~ marginally lower course grades in psychology compared
disparity in course grades with White and or Asian stu- to White and or Asian students. The SEM (Fig. 3c¢;
dents receiving higher course grades on average than  Appendix Table 7) illustrates that this small effect may
students from underrepresented racial/ethnic  be due to negative indirect effects of high school GPA
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and SAT Verbal scores (underrepresented students had
lower high school GPAs and SAT Verbal scores on aver-
age) on the association between race/ethnicity and
psychology course grades (mediation effects f = -.04,
p < .001; B = -.01, p = .019, respectively).

Parent education

Chemistry The regression analysis found that slightly
lower chemistry course performance for first-generation
college students was not statistically significant. How-
ever, the SEM (Fig. 4a; Appendix Table 7) found nega-
tive indirect effects of SAT Math and Verbal scores

(first-generation students had lower SAT scores on
average than students who have a parent with a college
degree) on the association between parent education and
chemistry course grades (mediation effects f = -.03,
p < .001 and B = -.01, p = .015, respectively).

There was also a negative indirect effect of SAT Math
scores on the associations between parent education and
interest in chemistry (mediation effect g = -.01,
p = .006) and parent education and chemistry self-
efficacy (mediation effect § = —.04, p < .001).

Physics The largest course grade disparity in physics is
between first-generation college students and college
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(See figure on previous page.)

Fig. 5 All significant direct associations between students’ demographics, academic resources, discipline-specific attitudes, and introductory
course grades. Note: Solid arrows indicate significant direct effects, dashed arrows indicate significant negative direct effects, and line thickness
denotes the size of the standardized path coefficient. The final models for each course provided good fits to the data: chemistry RMSEA < .01
(90% ClI .00, .03), CFI > .99, and TLI > .99; physics RMSEA = 0.01 (90% CI 0.00, 0.03), CFI > .99, and TLI > .99, and psychology RMSEA = 0.02 (90% CI

000, 0.03), CFl > .99, and TLI = 99, **p < .001. **p < 01. *p < 05.+p < .1

students with at least one college-educated parent. Simi-
lar to chemistry, but with greater magnitude, the SEM
results (Fig. 4b; Appendix Table 7) suggest a negative in-
direct effect of SAT Math scores (first-generation stu-
dents have lower SAT Math scores on average) on the
relationship between parent education and physics
course grades (mediation effect § = —.05, p = .001). Add-
itionally, there is a negative indirect effect of SAT Math
scores on the relationship between first-generation stu-
dents and physics self-efficacy (mediation effect f =
-.02, p = .005). However, there is also a remaining direct
effect of first-generation status on physics course grades
(direct effect f = -.07, p = .029); so the physics course
grade disparity is not entirely explained through aca-
demic resources and motivational attitudes about phys-
ics (Fig. 4b; Appendix Table 6).

Psychology Similar to physics, first-generation students in
psychology demonstrated significantly worse course perform-
ance on average, although with a smaller effect size. The
SEM (Fig. 4c; Appendix Table 7) suggests negative indirect
effects of high school GPA and SAT Verbal scores (first-gen-
eration students have lower high school GPAs and SAT Ver-
bal scores on average) on the association between parent
education and psychology course grades (mediation effects /3
=-.03, p = 011 and 8 = -.02, p < .001, respectively).

Moderation

Finally, we were concerned that the pathways highlighted
above in the mediation analyses may have been operating
differently for different demographic subgroups. For ex-
ample, discrimination and biases in the learning environment
may lead one subgroup to (1) more heavily revise their self-
efficacy based upon prior academic performance or (2) rely
more on motivational attitudes for course performance. For
the latter group, motivational attitudes would be a stronger
predictor of course performance. While we lacked sufficient
power to simultaneously test every potential moderating
pathway using a multi-group SEM framework, we felt it was
important to test the moderating effects of the demographic
variables (gender, racial/ethnic background, and parent edu-
cation) on the pathways from academic resources to self-
efficacy and self-efficacy to the course grade. There were only
a small number of statistically significant moderation effects.
In physics, the positive effect of self-efficacy on course grades
was significantly stronger for men (unstandardized simple
slope (SS) = .36) than women (SS = -.04, p < .001). In

psychology, the positive effect of self-efficacy on course
grades was significantly stronger for first-generation college
students (SS = .47) than non-first generation students (SS =
04, p = .043). Also in psychology, the positive effect of SAT
Verbal on self-efficacy was significantly stronger for men (SS
= .09) than women (SS = .01, p = .003). There were no sig-
nificant moderating effects in chemistry. Given the small
number of moderating effects, we only include tables and fig-
ures with the mediation analyses in the manuscript and the
moderation results are available in online supplementary
Tables 7, 8, and 9.

Discussion

The current study extends a core understanding of inequities
in educational outcomes within large introductory college
courses in four fundamental ways. First, the study highlights
robust consistent trends across disciplines and demographic
predictors. Some combination of academic resources and
discipline-specific motivational attitudes always had direct ef-
fects on course grades in chemistry, physics, and psychology
(see Fig. 5 and Appendix Table 6). High school GPA and
discipline-specific self-efficacy in particular were significant
predictors of course grades in each SEM, replicating prior
findings in the literature (Robbins et al., 2004). SAT was also
important for each discipline, but whether it was SAT Math,
SAT Verbal, or both varied, this is also consistent with prior
findings that SAT Math is especially important for chemistry
and physics and SAT Verbal predicts psychology grades
(Betancur et al, 2019; Kalender et al., 2020; Vincent-Ruz
et al, 2018).

Furthermore, academic resources always had direct effects
on motivational attitudes (see Fig. 5 and Appendix Table 6):
that is, the general predictiveness of academic resources on
course grades is partially mediated through motivational atti-
tudes. Replicating prior work on self-efficacy (Vincent-Ruz
et al, 2018), SAT scores generally predict self-efficacy, and
the mediational effects (see Appendix Table 7) of SAT Math
scores to course grades via self-efficacy were statistically sig-
nificant in chemistry and physics. The findings regarding
discipline-specific interest were more novel. The SEMs pro-
vide evidence that SAT scores were significant predictors of
discipline-specific interest in chemistry and psychology, and
the mediational effect of SAT Math on course grades
through discipline-specific interest was statistically significant
in chemistry.

There were also consistent direct effects between particular
demographic variables and both academic resources and
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motivational attitudes, even though most of these patterns
varied substantially by demographic variable (see Fig. 5 and
Appendix Table 6). Gender was consistently related to aca-
demic resources and motivational attitudes, whereas parent
education was only directly connected to academic resources,
and race/ethnicity was associated with academic resources
with only one significant direct connection to discipline-
specific interest in Chemistry. Moreover, the associations of
students from underrepresented racial/ethnic backgrounds
and first-generation students to academic resources were
consistently negative (although of varying size), whereas the
associations for female students to both academic resources
and motivational attitudes were positive in some cases and
negative in others. For example, as generally found in the lit-
erature (Fortin et al., 2015) and in recent reports on the SAT
national sample (e.g, College Board, 2016), women in all
three samples had higher high school GPAs but lower SAT
Math scores than men on average.

The second fundamental takeaway is the finding that dis-
parities in course performance are variable by course, even
within the same University and for courses that all predom-
inantly enroll first-year students. In one case, there are even
effects in opposite directions: women outperform men on
average in psychology while they underperform on average
compared with men in physics. The other academic per-
formance disparities may have been directionally equivalent,
but they all yield different effect sizes across courses. For ex-
ample, in chemistry, the largest academic disparities relate to
race/ethnicity, while in physics they relate to parent educa-
tion (Table 5). Each discipline’s sample included over one
thousand students, and only three disciplines were examined,
thus reducing the likelihood of by-chance variation. Further,
the variation was not likely a matter of individual instructor
effects since each course involved a range of instructors.
Therefore, these findings support that research on education
inequity in large introductory lecture courses needs to attend
to discipline-specific disparities, rather than treating all
courses as the same, even within STEM.

Third, the current study uncovered significant indirect
effects of the relationships between gender, race/ethni-
city, and parent education on course performance oper-
ating through academic resources and motivational
attitudes. Importantly, the analyses of indirect effects un-
covered course-variations in demographic differences in
both academic resources and motivational attitudes. For
example, first-generation students have lower high
school GPAs on average in psychology but show no sig-
nificant difference from non-first generation students
within chemistry or physics. Additionally, women have
significantly higher SAT Verbal scores on average in the
two natural science courses, but not in psychology.
Demographic differences in motivational attitudes in-
clude women demonstrating significantly less self-
efficacy on average in chemistry and physics while there
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are no significant gender differences in psychology self-
efficacy on average. These variations in demographic dif-
ferences by course may be attributable to self-selection
into courses and may also reflect broader self-selection
trends within majors. For example, gender differences in
SAT Verbal scores may only occur in the natural science
courses because men with higher SAT Verbal scores are
less likely to take natural science courses (Wang et al,
2013). Additionally, women may have significantly less
interest in and self-efficacy regarding chemistry and
physics due to beliefs and stereotypes about women in
STEM that may not apply to psychology.

Furthermore, the SEMs revealed differences in links
between academic resources, motivational attitudes, and
course performance across subpopulations of students.
In all three courses, combinations of academic resources
and motivational attitudes were significant predictors of
introductory course grades. Thus, the general conceptual
model is robust and generalizable; however, the specific
significant academic resources and motivational atti-
tudes varied by course. As expected, physics and chemis-
try were more dependent upon math resources whereas
psychology was more dependent upon verbal resources.
Self-efficacy was the key motivational attitude in psych-
ology and physics, while both self-efficacy and interest
were significant predictors for chemistry.

Fourth and finally, this study highlights important null
findings and small effect sizes that may dispel assump-
tions about disparities in academic performance and as-
sumptions about what explains these differences. As
previously mentioned, the difference between a B and a
B+, for example, is 0.25 grade points. Many of the sig-
nificant demographic differences were less than 0.25
grade points (Table 5), and thus rarely reflected different
letter grades. The largest effects are the difference in
average chemistry course grades (-0.41 grade points) be-
tween White and or Asian students (who are overrepre-
sented in these courses) and Black, Latinx, Native
American, Pacific Islander, and students of other descent
(who are underrepresented in these courses), and the
difference in average physics course grades (-0.53 grade
points) between first-generation college students and
students who have a parent with a college degree. These
larger disparities operationally represent the difference
between a B and an A-.

This study also highlights important small and null find-
ings with regard to the mediators explaining associations be-
tween demographic factors and course grades. For example,
across all three courses, first-generation students only exhibit
significantly different motivational attitudes related to self-
efficacy and interest through indirect effects of SAT scores.
The fact that there are no direct effects of parent education
on motivational attitudes highlights that the reason for first-
generation students’ lower grades on average cannot likely be
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attributed to motivational attitudes independently of aca-
demic resources. In other words, the results largely support
that academic resources in high school have more to do with
academic performance disparities for underrepresented and
first-generation students than motivational attitudes in col-
lege. However, given the estimated significant pathways from
academic resources to course grades through motivational
attitudes (see Appendix Table 7), the results support that ad-
dressing motivational attitudes through interventions may
have the capacity to attenuate disparities in academic per-
formance resulting from differential access to academic re-
sources in high school. This is discussed further in the
conclusion.

Caveats and future research

It should be noted that these observational findings cannot
be used to make strong causal claims about the mechanisms
underlying associations between demographic characteristics
and academic outcomes. However, the SEM framework cer-
tainly provides compelling evidence for indirect effects that
mediate these direct associations. In regression or SEM ap-
proaches, there should also be consideration of possible con-
founding factors that might result in alternative causal
pathways. The current analyses build upon prior studies con-
ducted on these courses at the University of Pittsburgh to
identify which demographic, academic resource, and motiv-
ational factors from a much broader set were significant pre-
dictors (Vincent-Ruz et al, 2018; Betancur et al, 2019;
Kalender et al., 2020; Witherspoon et al., 2019). The current
analyses focused on the factors previously found to be signifi-
cant. In applying our analytic approach at other universities,
we encourage broader initial exploration to identify which
factors are most important to control for.

It is also important to emphasize that the undergraduates
attending the University and especially those enrolled in
introductory STEM courses are predominantly White and
non-first generation (University of Pittsburgh, 2019; Table 1).
Thus, the findings may not generalize to institutions with dif-
ferent populations of students. However, the methods and
analytic framework presented in this study could be product-
ively applied at other institutions, and with other courses, to
highlight the specific factors related to demographic-based
performance differences. Further, dashboards could be cre-
ated to help administrators and faculty attend to gaps and
underlying factors, without needing to have access to large
administrative datasets or master SEM techniques. Hence,
future research should examine associations between demo-
graphics, prior academic resources, discipline-specific motiv-
ational attitudes, and academic performance at institutions
with more socioeconomic and racial/ethnic variability. Future
research should also address the previously mentioned limi-
tations that arise from using binary gender categories and
measuring race/ethnicity with dummy variables (Brown
et al, 2019; Hyde et al,, 2019).
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One limitation of comparing discipline-specific inter-
est and self-efficacy across chemistry, physics, and
psychology courses is that slightly different survey items
were used to measure these constructs, so they are not
operationally equivalent across disciplines. As previously
mentioned, the items used to create these constructs
were collected from existing scales and surveys that are
discipline-specific and not necessarily intended to be
compared across disciplines. Additional details on the
items and measures can be found in Table 2. Future re-
search should explore the mediating pathways of motiv-
ational attitudes on scales that are standardized and
designed to be comparable across disciplines. However,
it is also important to reiterate that the self-efficacy dif-
ferences observed in this study replicate past findings in
those specific disciplines using a variety of other self-
efficacy instruments. Thus, it is unlikely that there is
high sensitivity to a small variation in survey structure.

Additionally, while these findings highlight significant in-
direct effects through academic resources and motivational
attitudes, there are still enduring demographic disparities in
course grades (see Fig. 5 and Appendix Table 6). In chemis-
try, there are estimated remaining direct effects of students
from underrepresented racial/ethnic backgrounds on course
grades; in physics, there are remaining direct effects of parent
education; and in psychology, there are remaining direct ef-
fects of gender even when controlling for pathways through
academic resources and motivational attitudes. This high-
lights that there are residual explanations for why some stu-
dents are systemically underperforming academically that are
not explored in this study. Future research should examine
additional possible operationalizations of motivational atti-
tudes (e.g,, the roles of sense-of-belonging, discipline-specific
identity, or discipline-specific theories of intelligence). Just as
importantly, research should consider other explanations for
disparities in outcomes, such as characteristics of the learning
environment (e.g., instructor and peer beliefs and stereotypes
that might produce racial aggressions or stereotype-
reinforcing messages in class towards particular groups).

Finally, future research should examine whether these
results are robust beyond introductory and or first-year
courses. Two different cases seem particularly salient.
First is the case of organic chemistry or algebra-based
physics, which is usually taken by medical-school intend-
ing students after the first year of their studies (Wither-
spoon et al,, 2019). Attrition during the first year can
systematically change what population remains (Wither-
spoon et al, 2019). Second is the case of challenging
“majors only” courses. How does the student population
of an introductory course map on to the population of
majors in a given discipline? Self-efficacy in a discipline
may not be a robust predictor of course performance in
an upper-level course comprised only of majors. Note
that in studies of later coursework, high school GPA and
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SAT should be replaced by measures reflecting more
temporally proximate measures of academic resources
because those are malleable factors that can fundamen-
tally change with experience. Additional studies might
also examine these pathways in other disciplines beyond
chemistry, physics, and psychology that demonstrate
performance disparities by gender, race/ethnicity, and or
parent education.

Conclusion

This study highlights that demographic differences in post-
secondary course performance differ by discipline within
STEM, and distinct pathways through academic resources
and discipline-specific motivational attitudes help explain
these differences. Therefore, this study emphasizes the im-
portance of considering the unique and complex ways stu-
dents’ gender, race/ethnicity, and parents’ education interface
with academic resources and motivational attitudes, and how
these constructs work directly and indirectly to differentially
predict students’ academic outcomes.

From a theory-building perspective, it now becomes
important to understand when and why academic re-
sources and motivational attitudes are predictors of
course performance. Conceptualizations of why high
school GPA, SAT scores, and discipline-specific interest
and self-efficacy predict academic outcomes should
apply at least somewhat to all learning contexts. Course
contexts that are radically different (e.g., lab courses vs.
lecture courses vs. small seminars) might require very
different learning behaviors and thus depend upon dif-
ferent resources. However, it is somewhat surprising
from a theoretical perspective that differences in signifi-
cant predictors were found in these relatively homoge-
neously structured courses.

In addition to highlighting important theoretical path-
ways to consider when examining disparities in course
performance, these findings also highlight opportunities
for instructors to play to the relative strengths of under-
performing students. For example, women in physics
demonstrated superior SAT Verbal skills on average yet
have inferior course grades on average compared with
men. With this knowledge, instructors interested in im-
proving the average grades of women can diversify their
assignments to play on verbal strengths through more
open-ended responses or written explanations. Further,
different degree specializations (ecology specialization
within biology) or special-topic versions of core courses
(e.g., health sciences General Chemistry I) will involve
student self-selection and thus other potential popula-
tion differences that should be measured and carefully
considered in the design of these programs and courses.

The findings also highlight key areas for supporting stu-
dents’ perceptions of their efficacy in specific courses. Chem-
istry, physics, and psychology exhibited positive direct effects
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of discipline-specific self-efficacy on course grades. Thus, in-
structors can employ teaching methods and interventions
aimed at improving underperforming students’ self-efficacy
in their disciplines. For example, Miyake et al. (2010) intro-
duced a course-specific values affirmation intervention that
reduced the gender performance gap in an introductory
physics course. Social belonging and mindset interventions
are also proven to be effective for changing attitudes and re-
ducing disparities (Walton & Cohen, 2011; Chen et al,
2020). More general field-specific personal values and or
framing interventions may also have the potential to improve
academic outcomes of women, racially/ethnically minoritized
students, and first-generation students in introductory col-
lege science courses through motivational attitudes such as
interest and self-efficacy (Harackiewicz & Priniski, 2018).
However, the findings emphasize that interventions should
be targeted to the subpopulations that actually stand to bene-
fit from them depending on the course context. For example,
in this study, women significantly outperform men on aver-
age in psychology, but the opposite is true in physics.
Women also only demonstrate significantly lower self-
efficacy on average in chemistry and physics. Thus, interven-
tions to improve women’s discipline-specific self-efficacy in
order to improve course grades are likely not necessary in
psychology courses while they may be instrumental in chem-
istry and physics courses.

At the same time, we should caution against focusing
only on interventions that aim to improve students’ atti-
tudes directly. Classroom environments also need to
change. Students should not receive stereotype-
reinforcing messages from their instructors; instructor
mindsets about innate talent versus possibility for
growth are shown to be strong predictors of racial/eth-
nic disparities (Canning et al., 2019). Importantly, stu-
dents too regularly encounter toxic cultures in certain
disciplines within STEM. For example, a recent report
revealed continuing issues of sexual harassment of un-
dergraduates in physics (Aycock et al., 2019). Factors
such as bias and harassment may explain the unmedi-
ated disparities in our own study.

Opverall, this study identifies the magnitude of differ-
ences in student academic performance related to gen-
der, race/ethnicity, and parent education, in large,
lecture-based introductory courses in chemistry, physics,
and psychology in one university setting. The study also
highlights the extent to which demographic differences
in academic resources and discipline-specific motiv-
ational attitudes explain differences in academic per-
formance within each of these courses. Finally, the
similarities and differences in findings across the differ-
ent disciplines provide a compelling argument for imple-
menting this methodology to examine questions about
academic disparities and mediators of these disparities
separately by fields within STEM.
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Appendix

Table 6 Direct effect results of structural equation models for demographic characteristics predicting course grades

Direct Effect Results of Structural Equation Models for Demographic Characteristics Predicting Course Grades

Chemistry Physics Psychology
. Bootstrapp - Standardiz - Bootstrapp - Standardiz - Bootstrapp - Standardiz -
Path Estimated Coeff. od Sé’p ed Coeff. p-value Coeff. od Slsp ed Cocff. p-value Coeff. od Sé)p ed Coeff. p-value

High School GPA to Course Interest
High School GPA to Course Self-Efficacy 0.15 0.04 0.11 0.000
High school GPA to Course Grade 0.56 0.05 0.24 0.000 0.59 0.08 0.25 0.000 0.50 0.06 0.33 0.000
SAT Verbal to Course Interest 0.05 0.02 0.07 0.005
SAT Verbal to Course Self-Efficacy 0.04 0.01 0.08 0.000
SAT Verbal to Course Grade 0.11 0.03 0.09 0.000 0.12 0.02 0.13 0.000
SAT Math to Course Interest 0.09 0.02 0.10 0.000
SAT Math to Course Self-Efficacy 0.21 0.02 0.27 0.000 0.10 0.02 0.14 0.000
SAT Math to Course Grade 0.28 0.04 0.22 0.000 0.63 0.04 0.39 0.000
Course Interest to Course Grade 0.19 0.05 0.13 0.000
Course Self-Efficacy to Course Grade 0.29 0.05 0.18 0.000 0.24 0.06 0.10 0.000 0.08 0.04 0.04 0.043
Gender (Female=1) to High School GPA 0.11 0.02 0.13 0.000 0.16 0.03 0.17 0.000 0.11 0.02 0.12 0.000
Gender to SAT Verbal 0.11 0.04 0.07 0.017 0.17 0.05 0.11 0.000
Gender to SAT Math -0.31 0.04 -0.21 0.000 -0.15 0.05 -0.11 0.002 -0.32 0.03 -0.21 0.000
Gender to Course Interest -0.13 0.03 -0.10 0.000 -0.21 0.04 -0.18 0.000 0.16 0.02 0.16 0.000
Gender to Course Self-Efficacy -0.23 0.03 -0.20 0.000 -0.25 0.03 -0.26 0.000
Gender to Course Grade 0.07 0.03 0.05 0.034
Race/Ethnicity (Underrepresented
backeround=1) to High School GPA -0.08 0.03 -0.06 0.019 -0.17 0.03 -0.12 0.000
Race/Ethnicity to SAT Verbal -0.14 0.07 -0.06 0.041 -0.15 0.05 -0.07 0.005
Race/Ethnicity to SAT Math -0.29 0.07 -0.12 0.000 -0.10 0.05 -0.05 0.040 -0.32 0.05 -0.15 0.000

ity to Course Interest -0.13 0.05 -0.06 0.018
Race/Ethnicity to Course Self-Efficacy
Race/Ethnicity to Course Grade -0.20 0.08 -0.07 0.011
Parent Education (First generation=1) to High
School GPA -0.12 0.05 -0.08 0.012
Parent Education to SAT Verbal -0.34 0.10 -0.14 0.000 -0.31 0.09 -0.11 0.000 -0.45 0.06 -0.18 0.000
Parent Education to SAT Math -0.33 0.08 -0.14 0.000 -0.30 0.10 -0.12 0.002 -0.30 0.06 -0.12 0.000
Parent Education to Course Interest
Parent Education to Course Self-Efficacy
Parent Education to Course Grade -0.27 0.12 -0.07 0.029

Note. After initially testing all possible mediating pathways, insignificant (p > .05) pathways and insignificant correlated errors of mediators were trimmed to
improve the goodness of fit of the model. Only the pathways displayed in this table were estimated in the final structural equation models (SEMs). This table
includes each individual direct effect, not the total direct effects.
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Table 7 Indirect effect results of structural equation models with academic resources and motivational attitudes as mediators

Indirect Effect Results of Structural Equation Models with Academic Resources and Motivational Attitudes as Mediators

Chemistry Physics Psychology
. . . .  Bootstrapp - Standardiz - . Bootstrapp - Standardiz - . Bootstrapp - Standardiz -
Path Estimated Mediator Coeff. ed S]sp ed Coeff. p-value Coeff. od S]f:’p od Cooff. p-value Coeff. od S]};p ed Coeff. p-value
High school GPA to Course Grade Course Interest
Course Self-Efficacy 0.04 0.01 0.02 0.000
SAT Verbal to Course Grade Course Inle\restw
Course Self-Efficacy 0.004 0.002 0.004 0.102
SAT Math to Course Grade Course Interest 0.02 0.01 0.01 0.007
Course Self-Efficac 0.06 0.01 0.05 0.000 0.02 0.01 0.01 0.002
High School GPA
Gender to Course Interest (Female=1) SAT Verbal
SAT Math -0.03 0.01 -0.02 0.002
High School GPA 0.02 0.005 0.01 0.001
Gender to Course Self-Efficacy SAT Verbal
SAT Math -0.07 0.01 -0.06 0.000 -0.01 0.01 -0.02 0.004
High School GPA 0.06 0.01 0.03 0.000 0.09 0.02 0.04 0.000 0.06 0.01 0.04 0.000
SAT Verbal 0.01 0.01 0.01 0.061
Gender to Course Grade SAT Math -0.09 0.02 -0.05 0.000 -0.09 0.03 -0.04 0.001
Course Interest -0.02 0.01 -0.01 0.004
Course Self-Efficacy -0.07 0.02 -0.04 0.000 -0.06 0.02 -0.03 0.001
Race/Ethnicity to Course Interest High School GPA
- _ SAT Verbal -0.01 0.004 -0.004 0.097
(Underrepresented background=1)
SAT Math -0.02 0.01 -0.01 0.010
High School GPA -0.01 0.01 -0.01 0.036
Race/Ethnicity to Course Self-Efficacy SAT Verbal -0.01 0.003 -0.01 0.042
SAT Math -0.06 0.01 -0.03 0.000 -0.01 0.01 -0.01 0.071
High School GPA -0.05 0.02 -0.02 0.030 -0.08 0.02 -0.04 0.000
SAT Verbal -0.02 0.01 -0.01 0.085 -0.02 0.01 -0.01 0.019
Race/Ethnicity to Course Grade SAT Math -0.08 0.02 -0.03 0.000 -0.06 0.03 -0.02 0.049
Course Interest -0.02 0.01 -0.01 0.020
Course Self-Efficacy
Parent Education to Course Interest High School GPA
: . SAT Verbal -0.02 0.01 -0.01 0.017
(First generation=1)
SAT Math -0.03 0.01 -0.01 0.006
Parent Education to Course Self- High School GPA
Efficacy SAT Verbal -0.02 0.01 -0.01 0.001
SAT Math -0.07 0.02 -0.04 0.000 -0.03 0.01 -0.02 0.005
High School GPA -0.06 0.02 -0.03 0.011
SAT Verbal -0.04 0.02 -0.01 0.015 -0.06 0.02 -0.02 0.000
Parent Education to Course Grade SAT Math -0.09 0.03 -0.03 0.000 -0.19 0.06 -0.05 0.001
Course Interest
Course Self-Efficacy

Note. After initially testing all possible mediating pathways, insignificant (p > .05) pathways and insignificant correlated errors of mediators were trimmed to
improve the goodness of fit of the model. Only the pathways displayed in this table were estimated in the final structural equation models (SEMs). This table
includes each individual indirect effect, not the total indirect effects through multiple mediators.

Table 8 Fit indices for all model specifications

Course Chemistry  Chemistry Chemistry ~ Physics  Physics Physics Psychology Psychology Psychology Good Fit Indices (Hu &
sample Bentler, 1999)

SEM Chemistry  Physics Psychology Physics Chemistry Psychology Psychology Chemistry — Physics

specification

RMSEA 0.00 0.03 0.04 0.01 006 0.05 0.02 0.13 0.13 <06

90% Cl lower 0.00 0.00 0.03 0.00 0.05 0.04 0.00 0.12 0.12

bound

90% Cl 0.03 0.05 0.05 0.03 008 0.06 0.03 0.14 0.15

upper bound

CFI 1.00 0.99 0.98 1.00 095 0.95 1.00 0.84 0.76 >0.95

TLI 1.00 0.98 0.94 1.00 0.91 0.89 0.99 0.62 044 >0.95
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