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Abstract

Background: Increasingly, high dropout rates in science courses at colleges and universities have led to discussions
of causes and potential support measures of students. Students’ prior knowledge is repeatedly mentioned as the
best predictor of academic achievement. Theory describes four hierarchically ordered types of prior knowledge,
from declarative knowledge of facts to procedural application of knowledge. This study explores the relevance of
these four prior knowledge types to academic achievement in the introductory phase of the two science subjects,
biology and physics.

Results: We assessed the knowledge types at the beginning and student achievement (measured by course
completion) at the end of the first study year. We applied logistic regression models to evaluate the relationship
between the knowledge types and academic achievement. First, we controlled for a well-established predictor of
academic achievement (high school grade point average). Second, we added the knowledge types as predictors.
For biology, we found that only knowledge about principles and concepts was a significant predictor in the first
year. For physics, knowledge about concepts and principles as well as the ability to apply knowledge to problems
was related to academic achievement.

Conclusion: Our results concerning the knowledge types, which are of special relevance in biology and physics
studies, could lead to effective measures, e.g. for identifying at-risk students and course guidance. Furthermore, the
results provide a profound starting point for controlled intervention studies that systematically foster the identified
relevant knowledge types in each subject and aim at a theory- and empirical-based optimization of pre- and
introductory courses.
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Introduction
Higher education research has always been concerned with
the prediction of academic achievement to improve teach-
ing and enhance the self-awareness of students (Kappe &
van der Flier, 2012; Schiefele, Krapp, & Winteler, 2014;
Thompson & Zamboanga, 2003). In recent years, the pre-
diction of academic achievement in science-related fields in
particular has gained increasing interest due to high

dropout rates and the declining numbers of students major-
ing in these fields (Chen & Soldner, 2013; Eurostat, 2016;
Olson & Riordan, 2012; Whalen & Shelley, 2010). In
particular, the first year at university shows a substantial
number of science-leavers (Alting & Walser, 2007; Chang,
Cerna, Han, & Saenz, 2008). The identification of good
predictors of first-year grades could lead to effective
support of at-risk students by adjusted training and course
guidance. This applies even more, since first-year grades
themselves have proven to be good predictors of the final
grades (Adelman, 1999; Harackiewicz, Barron, Tauer, &
Elliot, 2002). A variety of underlying factors are discussed
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as reasons for science dropout or achievement, such as
demographics, personal factors, attitudinal factors, and cog-
nitive factors (for an overview see, Chen & Soldner, 2013;
Robbins et al., 2004). One of the most powerful cognitive
predictors of academic achievement in general is prior
knowledge (Hell, Trapmann, & Schuler, 2007; Ramist,
Lewis, & McCamley-Jenkins, 2001).
In this regard, Dochy, Segers, and Buehl (1999)

highlighted the role of a more detailed and complete
prior knowledge assessment with a variety of assessment
methods. Thus, we have developed and tested prior
knowledge assessments in biology and physics that dif-
ferentiate four prior knowledge types in each subject.
We investigated in how far the results of these assess-
ments predict academic achievement in the first year of
biology and physics majors.

Theoretical background
Predicting academic achievement in science subjects
In recent years, a variety of predictors of success and
retention in science courses were identified. In single
studies, predictors such as work-study aid, participation
in learning communities, motivation, personality traits,
college admission tests, and subject-specific prior know-
ledge were identified (e.g. prior knowledge: Hailikari,
Nevgi, & Lindblom-Ylänne, 2007; van Riesen, Gijlers,
Anjewierden, & Jong, 2018; concept inventories and
attitude: Lee, Sbeglia, Ha, Finch, & Nehm, 2015; SAT
and ACT: Sadler & Tai, 2007; personal, institutional, cog-
nitive and affective predicators: Whalen & Shelley, 2010;
Sadler & Tai, 2001).
However, of these identified predictors, the most power-

ful seem to be the cognitive ones, prior knowledge in par-
ticular. Meta-analyses (Hell et al., 2007; Kuncel, Hazlett, &
Ones, 2001; Robbins et al., 2004) identified prior know-
ledge as the best predictor of academic success. Most
studies used the high school grade point average (HS
GPA) as an indicator of students’ prior knowledge. Shown
by various meta-analyses (e.g. Burton & Ramist, 2001; Hell
et al., 2007; Ramist et al., 2001; Robbins et al., 2004), the
HS GPA is one of the best universal predictors of achieve-
ment in university courses. Not only it is a measure for
prior knowledge but also for university readiness, and its
predictive power for academic achievement exceeds that
of college admission tests (e.g. ACT), when considered
together (Chingos, 2018). However, the HS GPA is rather
subject-unspecific. Almost the same applies for the high
school course choice in mathematics or mathematics tests
scores (e.g. SAT-M) that have proven to be relevant
predictors for academic success in science subjects
(Burton & Ramist, 2001, e.g. biology: Loehr, Almarode,
Tai, & Sadler, 2012; Sadler & Tai, 2007; physics: Hazari,
Tai, & Sadler, 2007; Sadler & Tai, 2007). In order to iden-
tify more subject-specific predictors for academic success

in science subjects, several other, more or less explicit,
indicators for prior knowledge were used (Table 1).
To predict achievement in biology courses, high school

biology enrolment or biology high school grades were
used as indicators for subject-specific prior knowledge in
some studies. Some studies use concept inventories
(Table 1) that are closely related to certain content areas.
Therefore, in these studies, the test scores are only cor-
related with the respective courses’ grades. One large-
scale, multi-level modelling study (Loehr et al., 2012)
addressed, among others, high school science grades, la-
boratory pedagogy, and how biology content was covered
in high school as predictors of the final grade in intro-
ductory biology. They found that students who took a
high school course with a focus on a deep understanding
of biology content performed a third of a grade better in
their first introductory biology course than their peers
who took a course focusing on memorising facts. Thus,
in predicting biology achievement at university, it seems
promising to address in which way biology content was
packaged and learned by the students at high school.
Most physics prediction studies used implicit indica-

tors for physics prior knowledge. For example, Sadler
and Tai (2001) employed a comprehensive set of demo-
graphic, student, and teacher variables to predict physics
achievement for a sample of N = 1,933 introductory col-
lege physics students. In their study, those variables that
are implicitly connected to physics prior knowledge
turned out to be among the most powerful predictors
for the introductory college grade (e.g. regular, honours,
or AP physics, years of physics in high school). Some
studies use physics tests as an indicator for students’
prior knowledge. One of the first studies using a physics
test was a study by Halloun and Hestenes (1985). They
designed a Mechanics Diagnostic Test (MDT) which
assessed the qualitative understanding of basic physics
concepts. The test score of the MDT was the best
predictor for the exam score in introductory physics,
even when controlling for other indicators of prior
knowledge (mathematics test, physics courses, and math-
ematics courses in high school) (Halloun & Hestenes,
1985). Sorge, Petersen, and Neumann (2016) found
similar results. In their study a physics prior knowledge
test outperformed the HS GPA and the high school
physics grade as a predictor for physics achievement at
university.
In conclusion, the HS GPA is a useful predictor of aca-

demic achievement in different subjects (cf. Robbins et
al., 2004). However, it is rather subject-unspecific and
combines knowledge of subjects with general knowledge
and cognitive abilities. This suggests that prediction
studies should consider the HS GPA as a control vari-
able in order to find more precise and specific predictors
for achievement.
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In addition to HS GPA, a variety of indicators for sub-
ject-specific prior knowledge have been used for the prog-
nosis of achievement in science. In both science subjects
(biology and physics), indictors of subject-specific prior
knowledge, such as high school science grades or course
enrolment, seem to be related to achievement. Those
indicators only address prior knowledge indirectly and do
not measure the knowledge relevant for the courses in the
first year.
A few studies address prior knowledge directly, using

prior knowledge tests. In these studies, prior knowledge
is one of the best predictors for future physics achieve-
ment. However, the findings are only based on a few
studies and more evidence is needed.
Nevertheless, some results in biology and physics (e.g.

Loehr et al., 2012; Halloun & Hestenes, 1985) present
indications that certain types of prior knowledge (e.g. deep
understanding) could be better predictors for academic

achievement than other types (e.g. memorised facts).
Therefore, a systematic comparison of different prior
knowledge types, based on a theoretical model of prior
knowledge, as predictors for achievement seems beneficial
to us. Studies describing the relationship between prior
knowledge types and academic achievement will be dis-
cussed in the next section.

Knowledge types as predictors of academic achievement
The relevance of prior knowledge to learning is familiar
to psychologists and educators. In particular, domain-
specific prior knowledge is argued to be crucial for the
acquisition of new knowledge (Bloom, 1976; Dochy,
1992, 1994; Krathwohl, 2002). High and well-developed
prior knowledge about a topic supports learning and
vice-versa (Ausubel, 2000; Schneider & Pressley, 1997;
Thompson & Zamboanga, 2003). Thus, individuals with
higher prior knowledge about a topic understand and

Table 1 Overview of significant cognitive predictors for academic achievement in science courses at university or college

Subject Biology or physics in
high school

Subject-specific
grade in high
school

Number
of lab
courses

Subject-specific
tests in biology
or physics

Reference

Biology ✓
(Number of AP courses, enrolment
in AP biology)

✓
(Science)

✓ – Loehr et al. (2012)

– ✓
(Science, AP
exam score)

– – Sadler & Tai (2007)

– – – ✓
(CINS, ACORNS)

Lee et al. (2015)

– – – ✓
(GCA)

Smith, Wood, & Knight (2008)

Physics ✓ ǂ

(Physics enrolment)
– – ✓

(Mechanics test)
Halloun & Hestenes (1985)

✓
(Physics enrolment)

– – – Hart & Cottle (1993)

✓
(Physics enrolment)

– – – Alters (1995)

✓
(At least 2 years of physics, enrolment
of any physics course)

✓
(Physics)

✓ – Sadler & Tai (2001)

– ✓
(Science, AP exam score)

– – Sadler & Tai (2007)

– – – ✓
(FCI)

Docktor & Heller (2008)

– ✗
(Physics)

– ✓
(Physics test)

Sorge, Petersen, & Neumann (2016)

– – – ✓
(Physics tests)

Buschhüter, Spoden, & Borowski (2017)

✓
(Time on mechanics and optics)

✓
(Science)

✓
(Microlabs)

– Hazari, Tai, & Sadler (2007)

CINS Concept Inventory on Natural Selection (Anderson, Fischer, & Norman, 2002), ACORNS Assessment of Contextual Reasoning on Natural Selection (Nehm,
Beggrow, Opfer, & Ha, 2012), GCA Genetics Concept Assessment (Smith, Wood & Knight, 2008), FCI Force Concept Inventory (Hestenes, Wells, &
Swaghammer, 1992)
ǂVariable only significant for the college sample, but not for the university sample
✗Variable not significant
✓Variable significant
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remember the subject matter better and perform better
on exams (Chi & Ceci, 1987; Hailikari et al., 2007).
Most studies use one ability measure as an indicator of

the overall prior knowledge of a student. In contrast to
these studies, Hailikari et al. (2007) and Bloom (1976)
define prior knowledge as composed of different types of
knowledge, skills, and competencies, multidimensional
and dynamic in nature. Following general theories about
knowledge, they assume that not all prior knowledge
types influence academic achievement the same way.
Hailikari et al. (2007) introduce a structural model of

prior knowledge that distinguishes between four prior
knowledge types (knowledge of facts, knowledge of mean-
ing, integration of knowledge, and application of know-
ledge; Fig. 1). The model is based on the theories of
knowledge and learning described in the revision of
educational objectives by Krathwohl (2002), studies of
knowledge dimensions by Dochy (1992), and the theory of
structurally developing understanding by Biggs (1996).
Knowledge of facts is defined as knowledge on a low

level of abstraction, which can be tested with simple rec-
ognition and reproduction tasks. Knowledge of meaning is
the ability to understand the meaning of a concept. Inte-
gration of knowledge is the ability to understand the links
and interrelations of concepts and different phenomena.
For application of knowledge, students must be able to
apply knowledge and solve domain-specific problems (for
details of the definitions, see Hailikari et al., 2007).

Every type of knowledge is ordered into the widely ac-
cepted distinction between declarative and procedural
knowledge (Anderson, 1982; Birenbaum & Dochy, 2012).
Declarative knowledge types (knowledge of facts and know-
ledge of meaning) are closely related to cognitive indicators
for retention (remember, recall, recognise, reproduce, etc.).
The procedural types (integration of knowledge and appli-
cation of knowledge) are closely related to cognitive indica-
tors for transfer (understand, apply, etc.) (cf. Mayer, 2002).
These indicators were adopted from Bloom’s original
Taxonomy of Learning (Bloom, 1976).
The model describes the structure of knowledge and

not primarily the development of knowledge or learning.
It is meant to serve as a framework for assessment and for
the prediction of academic achievement (Hailikari et al.,
2007). Therefore, it could serve as a design objective for
the construction of ample knowledge tests. But with re-
gard to the analysis of learning and interventions that
might be derived from the results of prediction studies, it
is important that the model is compatible with recent the-
ories of knowledge development, e.g. of knowledge inte-
gration (e.g. Geller, Neumann, Boone, & Fischer, 2014;
Liu, Ryoo, Linn, Sato, & Svihla, 2015). Hailikari et al.
(2007) explicitly point out that in “the model it is assumed
that operating on the higher levels of knowledge subsumes
the lower levels of knowledge” (p. 324).
Based on this framework, Hailikari et al. (2007) investi-

gated the relevance of the four prior knowledge types in

Fig. 1 Prior knowledge model (Hailikari et al., 2007)
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mathematics. Hailikari, Katajavuori, and Lindblom-Ylänne
(2008) utilised the model to assess undergraduate pharma-
cology students, and Hailikari and Nevgi (2010) used it to
identify at-risk chemistry students. In all three studies,
procedural types of knowledge turned out to be the best
predictors for course grades in the respective subjects.
Thus, the model of prior knowledge devised by Hailikari
et al. (2007) was successfully adapted to a variety of sci-
ence fields and added a new viewpoint on prior knowledge
as a predictor of academic achievement. However, in all
studies, only a few items or one single item was used to
assess a particular type of knowledge.
In addition, findings about the relevance of the prior

knowledge types for academic achievement are hitherto
hardly known. Until now, only correlations between the
prior knowledge types and single exams in chemistry and
mathematics were reported. Especially biology and physics
courses impose diverse requirements on the students in
their first year. In biology courses, much new taxonomy
and terminology need to be learned in different content
areas (e.g. botany), whereas in physics courses, the students
are encouraged to solve problem-solving tasks in different
content areas (e.g. mechanics). Therefore, different prior
knowledge types could be relevant for achievement in the
first year. Findings could be of immediate practical rele-
vance to plan meaningful interventions and course-guid-
ance for first-year students in both science subjects.
Besides the practical relevance, a transfer of the prior

knowledge model by Hailikari et al. (2007) to biology
and physics would legitimise the model for science do-
mains besides chemistry and mathematics.

Aims of the study
The goal of our study is to examine the relevance of differ-
ent prior knowledge types for the prediction of academic
achievement in the first year of biology and physics majors.
Concerning the role of the HS GPA as a well-estab-

lished predictor across subjects, our study aims to repli-
cate the results of former studies and, if it is a relevant
predictor, to use the HS GPA as a control variable for
further analyses.
With regard to our main goal, we want to construct a

detailed, reliable, and valid assessment of students’ prior
knowledge types, using the framework established by
Hailikari et al. (2007). Applying this assessment, we want
to identify the knowledge types that are most relevant to
academic achievement in the first year at university in
biology and physics. Therefore, we pose the following re-
search questions:

I. In how far does the HS GPA predict the likelihood
of having academic achievement in the first year at
university for biology and physics majors?

II. In how far are the knowledge types incrementally
valid compared to the HS GPA in predicting the
likelihood of having academic achievement in the
first year for biology and physics majors?

One can assume that a valid and reliable assessment of
the knowledge types should produce more precise predic-
tors for academic achievement than HS GPA. The identi-
fication of prior knowledge types related to academic
achievement can be a starting point for knowledge-based
course guidance and the identification of at-risk students.

Methods
In our study, we sought to utilise knowledge types in biol-
ogy and physics as predictors of academic achievement in
these subjects. Therefore, we assessed the knowledge types
as well as HS GPA at the beginning of the first semester
and academic achievement at the end of the second se-
mester. The following section explains how the variables
were assessed and used for the prediction analysis.

Study and test design
The study took place in the first year at two universities
in Germany. We tested the students’ prior knowledge in
the first two weeks of the first semester. We adminis-
tered tests for all four prior knowledge types (see below).
All biology tests were administered to the biology stu-
dents and all physics tests to the physics students. In
addition, we asked for HS GPA as self-report. At the
end of the first and second semester, we obtained stu-
dents’ course grades (see below).

Prior knowledge types
In both subjects, biology and physics, tests for all four
knowledge types were constructed with regard to the
curriculum and the relevant cognitive indicators and
processes of every type of knowledge.

Test construction
To construct the assessment instrument, we used the
model of Hailikari et al. (2007) as a framework. They rec-
ommend using different assessment methods to measure
different knowledge types. This argument is consistent with
Dochy et al. (1999), who suggested using alternative, au-
thentic forms of assessments that initiate adequate
cognitive processes. Considering this, we applied different
test formats for the four knowledge tests.

Test content regarding the curriculum
We analysed university curricula and common subject-
specific textbooks of biology and physics to uncover
relevant content areas for the first year. Recurring con-
tent areas were included in the assessment. In biology,
three content areas are relevant for the introductory
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courses: botany, zoology, and cellular biology. In physics,
we identified mechanics and electrodynamics as main
content areas. Thus, we focused on these content areas
for test construction. To assure content validity, we re-
ferred to the curricula and textbooks and involved lec-
turers or training staff to assess the relevance and
correctness of the items.

Knowledge of facts
Hailikari et al. (2007) define knowledge of facts to be
knowledge on a low level of abstraction that can be tested
with simple reproduction tasks. Thus, we choose a mul-
tiple-choice (single-select) format to assess knowledge of
facts. We designed or adapted a total of 106 items in biol-
ogy and 106 items in physics in the content areas men-
tioned above. Some of the physics items were adapted
from Müller, Fischer, Borowski, and Lorke (2017) and
some of the biology items from Schachtschneider (2016).
All of the biology and physics items asked for facts, such
as technical terms, nomenclature, taxonomical names, or
formulas (cf. Additional file 1).
After expert revision of the items (cf. the “Test content

regarding the curriculum” section), a portion of the
items (39 in biology, 15 in physics) was chosen for the
final knowledge of facts assessment that covered the
relevant facts of the two semesters. All items had one at-
tractor and three distractors. We coded the answers
dichotomously.

Knowledge of meaning
Similar to knowledge of facts, knowledge of meaning is also
on a low level of abstraction but deals with another quality
of knowledge (cf. de Jong & Ferguson-Hessler, 1996). It
includes the ability to reproduce the definitions of concepts
and laws of a subject. Hailikari et al. (2007) suggest to use
open questions in order to assess this knowledge type. Fol-
lowing this, we constructed 15 open-ended tasks for biology
and physics each. Each task asked for a short definition of a
subject-specific concept or law (cf. Additional file 1). We
used a coding scheme defining meaningful aspects of all
concepts to rate students’ answers. The answers were coded
based on the number of meaningful aspects within the
student’s concept description. Therefore, we applied polyto-
mous coding.

Integration of knowledge
Understanding the interrelationships among concepts in a
domain is often referred to as conceptual knowledge (de
Jong & Ferguson-Hessler, 1996; Mitchell & Chi, 1984), a
part of declarative knowledge. Other authors view it as its
own type of knowledge, termed structural knowledge
(Jonassen, Yacci, & Beissner, 2012) or propositional know-
ledge (Ruiz-Primo & Shavelson, 1996). Again, we follow
the argument of Hailikari et al. (2007), who view this type

of knowledge as procedural because of its active nature
and the reasoning skills it requires when the students
understand interrelationships between different concepts
of a domain. As this process is closely related to the cogni-
tive structure as defined in Ausubel’s Assimilation Theory
(Ausubel, 1963, 1968), we considered concept maps an
appropriate assessment tool. For more than 25 years,
concept maps have been a practical and reliable assess-
ment tool to reveal cognitive structures (e.g. Novak &
Gowin, 1999; Ruiz-Primo & Shavelson, 1996).
We used a construct-a-concept-map task (cf. Yin,

Vanides, Ruiz-Primo, Ayala, & Shavelson, 2005) for each
subject with 12 pre-structured concepts but without link-
ing lines and labels. In this type of assessment, the stu-
dents are required to understand the interrelations among
the concepts, draw linking lines, and write down linking
phrases between the concepts (cf. Additional file 1). The
concepts are equally spread over the domains of the first
and second semester (cf. the “Test content regarding the
curriculum” section). A coding scheme was adopted to
code the propositions (i.e. the linking phrase with regard
to the linked concepts). Every proposition was treated as
one single item of the test and scored dichotomously (1,
right; 0, wrong or missing).

Application of knowledge
Application of knowledge is shown by the ability to apply
knowledge, for example in solving subject-specific prob-
lems (Hailikari et al., 2007). This type of knowledge is re-
vealed when students are confronted with novel problems
that require them to understand the problem and adapt a
learned solution procedure (Hailikari et al., 2007). Based
on these definitions, we evaluated the tasks given in the
courses and designed sets of 12 problems each for biology
and physics. The solution of each problem can be reached
by the application of subject-specific concepts taught in
the classes, such as symbiosis or osmosis for biology and
energy conservation in physics. We presented the prob-
lems in a kind of card-sorting task to assess application of
knowledge. Card-sorting tasks have been used in a variety
of subject-specific studies as a time-economic way to
assess relevant parts of a student's problem-solving ability
(cf. Friege & Lind, 2006; Nehm & Ridgeway, 2011; Chi,
Feltovich, & Glaser, 1981). In the card-sorting task, stu-
dents were asked to sort the problems and name the
underlying subject-specific problem schemes but not to
solve them. The problem schemes were not given to the
students, so they had to generate them themselves. For
our 12 tasks, we adapted four different subject-specific
problem schemes. Each problem scheme was suitable to
deal with three different tasks. A point was awarded when
the students named an adequate problem scheme and
sorted the right tasks to it. These types of sorting tasks are
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highly correlated with the actual solving of the problems
(Friege & Lind, 2006; Nehm & Ridgeway, 2011).

Validity of test score interpretation
To prove for the trustworthiness of our conclusions, we
collected theoretical arguments and empirical evidence for
different aspects of validity (Messick, 1987). We assured for
content validity by adapting the content of the first year for
our tests and by expert revision (cf. the “Test content re-
garding the curriculum” section). This expert revision en-
sured that test content is representative for different types
of biological or physics knowledge. The use of established
assessment methods (e.g. concept maps) for the assessment
of each knowledge type is an argument for cognitive valid-
ity. Since sorting tasks are not an established measure for
application of knowledge, we conducted a more extensive
validation study for both tests. An Interpretation-Use-Argu-
mentation (cf. Kane, 2013) supports the assumption that
the test scores from both tests can be interpreted as object-
ive, reliable, and valid measures for subject-specific prob-
lem-solving processes associated with application of
knowledge (Binder, Schmiemann, & Theyßen, 2019). Con-
struct validity is, among others, supported by the relatively
low latent correlations between the knowledge types within
each subject (cf. the “Quality of the prior knowledge tests”
section). These medium and high latent correlations be-
tween the knowledge types indicate that our tests assess
knowledge, even though in different types.
All arguments and evidence support the hypothesis

that our test scores can validly be interpreted as mea-
sures of the knowledge types we wanted to assess.

HS GPA
We assessed the HS GPA of the biology and physics fresh-
men using self-report. The HS GPA in Germany is rated
in grades on a scale from 4.0 (pass) to 1.0 (best possible).
We thus inverted the scale for regression analyses.

Academic achievement
Academic achievement is often defined as a student’s
grades in certain courses at university or as a cumulative
measure (Grade Point Average or Pass/Fail-Information)
(e.g. Legg et al., 2001; Tai, Sadler, & Mintzes, 2006). For
our analysis, we defined academic achievement as a
conglomeration of success in the subject-specific exams
of the first year. Because prior knowledge tests can only
be valid predictors for subject-specific performance, we
constrain academic achievement to the exams in the
major. To form a variable for academic achievement, we
define students who passed all those exams as successful
and students who failed at least one exam as non-suc-
cessful students. Students who skipped one exam in their
first semester were included and coded as successful when
they passed the same exam in their second semester.

Otherwise, they were coded as non-successful students.
Students who did not take any exam were excluded from
the study.

Sample
The whole sample comprises 268 undergraduates en-
rolled in biology and physics at two German universities,
of whom 162 students were freshmen in biology and 106
were freshmen in physics. In biology, 65 % were female
and two persons do not identify as male or female. In
physics, 76 % were male and one person did not identify
as male or female. The ages ranged between 18 and 67
years (Md = 20) for physics students and between 17 and
52 years (Md = 21) for biology students.

Analyses
We rated each item of each test with a coding scheme.
For biology and physics, each test is associated with one
specific prior knowledge type and was rated dichotom-
ously or polytomously as described above. To ensure ob-
jectivity, 20% of the items (except knowledge of facts)
were coded independently by two trained raters based on
the coding schemes and Cohen’s kappa (Cohen, 1960) was
calculated as a measure of interrater-reliability.
The biology and physics assessments were scaled

separately. In order to assess the four prior knowledge
types, each test set was scaled following an item re-
sponse theory (IRT) approach (Wilson, 2004). Because
of the polytomous rating of some items, we applied a
multidimensional Partial Credit Model to our data, an
extension of the Rasch Model for polytomous items
(Masters, 1982). The IRT approach has the advantage
that the item fit can be evaluated for each item separ-
ately. In addition, IRT models separate item difficulty
and person ability and allow for their separate evaluation
(e.g. Bond & Fox, 2012; Boone & Scantlebury, 2006). To
account for reliability, we calculated Warm’s weighted
likelihood estimate (WLE) reliability indices for the
person parameters. The estimates refer to the variance
of the person ability estimates calculated in the model
and the average of the squared errors of these estimates
(Adams, 2005). Since reliability measures are not consid-
ered the most important indicators of test quality
(Adams, 2005), we used other indicators as well. Item
infit statistics were evaluated for the items (Boone,
Townsend, & Staver, 2011). This statistic shows how
well an item fits the assumed construct that is to be
measured and contributes to the validity of the prior
knowledge tests. Third, we analysed the threshold pa-
rameters for polytomous items using Thurstonian
thresholds (Bond & Fox, 2012). When threshold parame-
ters are in an order, the different steps in an item are
meaningful with regard to difficulty.
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After we accounted for reliability, we computed WLE as
a measure of person ability and examined the reliability of
these measures and the latent correlations between the
four prior knowledge types. WLE scores were used for fur-
ther analysis in the regression models (Warm, 1989). We
conducted statistical analyses using the software package
R (R Core Team, 2014) with the package TAM (Test
Analysis Modules) and IBM SPSS statistics 24.
The two most commonly used regression methods in

prediction studies in science education concerning aca-
demic achievement are logistic and linear regression
(e.g. Alzen, Langdon & Otero, 2018; Legg et al., 2001;
Sadler & Tai, 2001). In our study, we applied binary lo-
gistic regression, in order to identify knowledge types,
which contribute to overall academic achievement in the
first year. We used the scoring of academic achievement
as the dependent variable. Since our work is exploratory
in nature, we strove for parsimony when building the re-
gression models (Field, 2018). Therefore, we fitted a
model with all knowledge types as predictors first and
then excluded predictors without explanatory benefit
step by step. All predictors were standardised before
they were entered in the prediction model. To find sig-
nificant models, we examined the likelihood ratio statis-
tics of the baseline model and our regression models by
chi-square tests. We utilised the Wald statistics to
exclude knowledge types as predictors from the regres-
sion models (Field, 2018). Odds ratios were used to in-
terpret the strength of the relationship between the
knowledge types and academic achievement. They indi-
cate the constant effect of the predictors on the likeli-
hood of having academic achievement. Values of the
odds ratio greater than 1 mean that as the predictor
variable increases, so do the odds of having academic
achievement (e.g. Alzen et al., 2018; Lehtamo, Juuti,
Inkinen & Lavonen, 2018).

Results
Quality of the prior knowledge tests
As a precondition for further analyses, we first analysed
the objectivity of the coding and reliability of the test
measures (cf. the “Analyses” section).
Regarding objectivity, we found the interrater reliabil-

ity to be substantial for most rated tests items (biology,
κ ≥ .61; physics, κ ≥ .64). One item of the physics know-
ledge of meaning test showed only moderate (κ = .44)
interrater reliability (Landis & Koch, 1977).
The WLE reliability of the test scores in biology is be-

tween 0.60 and 0.71, and in physics between 0.68 and
0.77. All reliability measures are acceptable (Bond &
Fox, 2012). The standardised infit measures for the prior
knowledge tests range from 0.88 to 1.12 in biology and
from 0.73 to 1.21 in physics. As these fit measures do
not exceed the cutoff values of 0.7–1.3, we assume that

the statistical model matches the empirical data (Bond &
Fox, 2012). In both subjects, the threshold parameters
for the knowledge of meaning tasks were found to be
ordered and increasing in difficulty. Latent correlations
between the knowledge types ranged between .462 <
rlat < .663 in biology and .517 < rlat < .757 in physics.
More information concerning reliability can be found in
Additional file 1.

HS GPA and academic achievement
In the first step, we utilised HS GPA as predictor of aca-
demic achievement. Full data sets with all outcome mea-
sures were available for 120 biology and 73 physics
students.
For the biology sample, we found a non-significant

model (A) in comparison to the baseline model (χ2 =
1.11, p = .292, df = 1). HS GPA made no significant con-
tribution to the model (Table 2).
For the physics sample, the best fitting model (A) in

comparison to the baseline model (χ2 = 17.29, p < .001,
df = 1) includes the HS GPA as significant predictor for
academic achievement (Table 3).
The physics prediction model (A) is able to predict

71.2% of the outcome variable.

Knowledge types and academic achievement
In the second step, we used the knowledge types as pre-
dictors for academic achievement. Therefore, we added
the prior knowledge types in the prediction models
achieved in the first analysis of HS GPA.
For the biology sample, HS GPA was no longer

included in the model because it made no significant
contribution to the prediction of academic achievement.
The best-fitting model for the biology sample, model E
(χ2 = 15.74, p < .001, df = 1), has one significant predictor,
knowledge of meaning (Table 2). Model E (Fig. 2a) clas-
sifies 68.3% of the biology students correctly. The odds
ratio (OR) indicates that a rise of one logit in knowledge
of meaning in biology raises the odds of being successful
by a factor of 2.32 (95% CI = 1.46, 3.67; p < .001).
For the prediction of academic achievement with the

prior knowledge types in physics, we included HS GPA
in every prediction model because it was significant in
the first model. The best-fitting model for the physics
sample, model D (χ2 = 41.56, p < .001, df = 3), has two
significant predictors, knowledge of meaning (OR = 4.36;
95% CI = 1.72, 11.13; p = .002) and application of know-
ledge (OR = 4.73; 95% CI = 1.59, 14.02; p = .005) (Table 3).
HS GPA (OR = 1.77; 95% CI = 0.69, 4.56; p = .234) does
not contribute to the model significantly if the know-
ledge types are included. Model D (Fig. 2b) predicts
82.2% of the cases correctly.
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Discussion
HS GPA and academic achievement
To answer Research Question I, “In how far does the
HS GPA predict the likelihood of having academic
achievement in the first year at university for biology
and physics majors?”, we examined the relationship

between HS GPA and academic achievement at the
end of the first year.
In our study, the HS GPA was not a significant predictor

for academic achievement in biology in the first year at uni-
versity. One reason for our finding could be that content
covered in the first-year courses is disparate to the content

Table 2 Summary of the logistic regression analysis for academic achievement in biology

Model A Model B Model C Model D Model E

Parameter B (SE) OR
[95% CI]

B (SE) OR
[95% CI]

B (SE) OR
[95% CI]

B (SE) OR
[95% CI]

B (SE) OR
[95% CI]

Intercept 0.769
(0.197)

2.16 0.869
(0.219)

2.38 0.842
(0.218)

2.32 0.855
(0.216)

2.35 0.867
(0.215)

2.38

HS GPA 0.203
(0.193)

1.23
[0.8, 1.8]

– – – – – – – –

Knowledge of facts – – 0.304
(0.261)

1.36
[0.8, 2.3]

0.292
(0.257)

1.34
[0.8, 2.2]

0.278
(0.256)

1.32
[0.8, 2.2]

– –

Knowledge of meaning – – 0.780
(0.297)

2.18**
[1.2, 3.9]

0.752
(0.282)

2.12**
[1.2, 3.7]

0.706
(0.264)

2.03**
[1.2, 3.4]

0.839
(0.235)

2.32***
[1.5, 3.7]

Integration of knowledge – – − 0.083
(0.270)

0.921
[0.5, 1.6]

– – – – – –

Application of knowledge – – − 0.090 (0.230) 0.914 [0.6, 1.4] − 0.108 (0.222) 0.90 [0.6, 1.4] – – – –

Correctly classified cases 68.3% 70.0 % 70.8 % 70.8 % 68.3 %

Nadelkerke’s R2 .013 .188 .187 .185 .172

Chi-square tests 1.11 n.s. 17.28** 17.18** 16.95*** 15.74***

Chi-square tests test the deviance of the fitted model against the null model. Not significant predictors were excluded in the following model. Dependent
variable = academic achievement (1 = passed all subject-specific courses)
OR odds ratio
**p < .01
***p < .01

Table 3 Summary of the logistic regression analysis for academic achievement in physics

Model A Model B Model C Model D

Parameter B (SE) OR [95% CI] B (SE) OR [95% CI] B (SE) OR [95% CI] B (SE) OR [95% CI]

Intercept − 0.852
(0.312)

0.43 − 1.958
(0.581)

0.14 − 1.816
(0.540)

0.16 − 1.775
(0.530)

0.17

HS GPA 1.282
(0.365)

3.60*** [1.8,
7.4]

0.513 (0.534) 1.67 [0.6, 4.8] 0.477 (0.505) 1.61 [0.6, 4.3] − 0.450
(0.440)

1.77 [0.7,
4.6]

Knowledge of facts – – 0.704 (0.503) 2.02 [0.8, 5.4] 0.754 (0.496) 2.11 [0.8, 5.6] – –

Knowledge of meaning – – 1.035
(0.530)

2.82ǂ [1.0,
8.0]

1.232
(0.507)

3.43* [1.3,
9.3]

1.475
(0.477)

4.37** [1.7,
11.1]

Integration of
knowledge

– – 0.556 (0.521) 1.74 [0.6, 4.8] – – – –

Application of
knowledge

– – 1.259
(0.592)

3.52* [1.1,
11.2]

1.300
(0.576)

3.67* [1.2,
11.3]

1.553
(0.555)

4.73** [1.6,
14.0]

Correctly classified cases 71.2% 84.9 % 82.2 % 82.2 %

Nadelkerke’s R2 .287 .627 .615 .590

Chi-square Tests 17.29*** 45.15*** 43.98*** 41.55***

Chi-square tests test the deviance of the fitted model against the null model. Not significant predictors were excluded in the following model. Dependent
variable = academic achievement (1 = passed all subject-specific courses)
OR odds ratio
ǂp < .10
*p < .05
**p < .01
***p < .001
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covered at school. High school biology content in Germany
is limited to the topics of genetics, ecology, and evolution
whereas the content at the university covers zoology, bot-
any, and cellular biology. This explanation for our finding is
supported by the findings of Loehr et al. (2012). Among
several high school course grades, they identified only the
grades of certain high school courses to be predictors of
achievement in freshmen biology courses and the predictiv-
ity seemed to be an issue of content validity.
Another reason for our finding could be that the

learning in the first year of biology is often limited to
reproduction tasks. Therefore, higher cognitive skills,
such as complex problem solving or reasoning that is re-
lated to the HS GPA, are not predictive for academic
achievement here. In addition, the variance of the HS
GPA of biology students is limited because it is a selec-
tion criterion for enrollment (Numerus Clausus).
For the physics students, we found the HS GPA as a sig-

nificant predictor for achievement in the first year. A raise
of one standard deviation in the HS GPA increases the
odds of academic achievement more than threefold. This
finding is in line with the findings of Sadler and Tai (2001),
who found the HS GPA to be a significant predictor for the
college grades in introductory courses. They also found that
HS GPA (B = 0.36) is much less predictive than the high
school course choice that is a more subject-specific indica-
tor (B = 2.26/3.51/4.32 for regular/honours/AP). This is in
accordance with our findings that the HS GPA is no longer
a relevant predictor for academic achievement if the know-
ledge types are included in the model (Table 3).
The HS GPA, as a conglomeration of many different

subjects, does not seem to be specific enough as a pre-
dictor for absolute achievement in the first year.

Knowledge types and academic achievement
To answer Research Question II, “In how far are the
knowledge types incrementally valid compared to the

HS GPA in predicting the likelihood of having academic
achievement in the first year for biology and physics ma-
jors?”, we examined the relationship between the four
knowledge types and academic achievement at the end
of the first year. The latent intercorrelations between the
knowledge types support the hypothesis of four distinct
knowledge types in both subjects. This is in line with the
findings for mathematics by Hailikari et al. (2007) and
for chemistry by Hailikari et al. (2008).
In biology, knowledge of meaning as a rather declarative

knowledge type is the only knowledge type that predicts
academic achievement in the first year. According to our
results, we can state that an increase in knowledge about
the concepts and principles of biology at the beginning of
the introductory courses by one standard deviation
(SDKOM = 0,88 logits1), more than doubles the odds of
being successful. Therefore, more prior knowledge about
biological concepts and principles increases the odds of
being successful in all subject-specific exams by the end of
the first year at university. This finding differs from those
of Hailikari and her colleagues, who always found proced-
ural knowledge types as the best predictors in their studies
(mathematics: Hailikari et al., 2007; pharmacy: Hailikari et
al., 2008; chemistry: Hailikari & Nevgi, 2010). This stresses
the subject-specific relevance of the prior knowledge
types. Our result is related to the findings of Loehr et al.
(2012) that high school courses that fostered deep under-
standing of biology concepts were positively related with
academic achievement, and those of Lin, Liang and Tsai
(2014), who found that students who contextualise learn-
ing as meaningful acquisition of knowledge are good aca-
demic achievers. A reason for our finding might be that

Fig. 2 Prediction curve and observed scores for academic achievement in the first year. Logistic curve and distribution of the academic achievers
(upper part) and non-achievers (lower part). a Biology sample, logistic curve of the prediction of model E. b Physics sample, logistic curve of the
prediction of model D

1WLE person abilities are estimated in logit units. Logits convert the
raw scores (number of items solved correctly) into equal interval
measures. For more information concerning logits and their
advantages for science education research, see Boone and Scantlebury
(2006).
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students who memorise concepts are able to easily inte-
grate new facts and ideas of biology with these concepts.
In terms of knowledge integration theory, the declarative
knowledge of rather low complexity seems necessary to
construct new valid links among those and to other new
science ideas (Liu et al., 2015).
To analyse why knowledge of meaning is the most im-

portant knowledge type for the prediction of academic
achievement in biology, further research about the
teaching in first-year classes would be required.
In our prediction models for physics, we controlled for

the HS GPA. But as soon as the knowledge types were
included, the HS GPA was no longer significant. This
finding highlights the importance of subject-specific
knowledge types as a prerequisite in physics. In physics,
knowledge of meaning seems to play the same crucial role
as a prerequisite for learning in introductory courses as it
does in biology. Thereby, an increase in prior knowledge
in knowledge of meaning by one standard deviation
(SDKOM = 0.79 logits), increases the odds of being success-
ful in the introductory physics courses by a factor of four.
In addition, application of knowledge is related to stu-
dents’ achievement. An increase of one standard deviation
(SDAOK = 1.63 logits) in the knowledge type quadruples
the odds of being successful in the introductory physics
courses. This means that students’ knowledge of physics
concepts as well as their ability to apply it and to solve
subject-specific problems predict achievement in the first
year. Therefore, more prior knowledge in these types of
knowledge increases the odds of being successful in all
exams in the first year in physics.
In contrast, Sadler and Tai (2001) found several indica-

tors of problem-solving (e.g. homework done or the num-
ber of quantitative problems assigned) to be non-significant
for college achievement in physics. In our study, we used a
more direct measure of subject-specific problem-solving
abilities, and our results suggest that problem solving is im-
portant for introductory physics courses at university. This
finding is in line with other studies of problem-solving in
physics (Friege & Lind, 2006).

Conclusion
Our assessments for different types of prior knowledge in
biology and physics can be used by lecturers to gain
insight into students’ knowledge at the beginning of or
prior to biology or physics courses. The results of such as-
sessments might be used for an early identification of at-
risk students and reliable course guidance. Besides this
immediate practical relevance for assessment and course
guidance, the results are a profound starting point for fur-
ther research and course development. Since our study is
basically an analysis of correlations, further studies with
interventions fostering selected knowledge types are
needed to test for causality. The results of our study

suggest, which knowledge types should be selected for these
intervention studies in each subject, i. e. knowledge of
meaning in biology, knowledge of meaning, and application
of knowledge in physics. Thus, our findings may guide the
development of respective interventions and innovations. If
the relationships between knowledge types and academic
achievement turn out to be causal, a theory- and empirical-
based optimization of pre-courses and introductory courses
fostering relevant knowledge types is possible. The develop-
ment of interventions fostering knowledge of meaning or
application of knowledge can be based on current research
findings. For example, Koretsky, Keeler, Ivanovitch, and Cao
(2018) found that in introductory physics and biology
courses, especially pedagogical tools, such as Audience Re-
sponse Systems and Guided Inquiry Worksheets, provide
the opportunity to improve students’ knowledge regarding
fundamental concepts, principles, and the application
thereof. For the implementation of such practices, institu-
tional conceptions of teaching practices (Lund & Stains,
2015) and adequate supporting measures for lecturers have
to be taken into account (Bathgate et al., 2019).
Our findings are consistent with previous research on

academic achievement in science subjects. Subject-specific
prior knowledge is a good predictor of academic achieve-
ment in science classes (Loehr et al., 2012; Sadler & Tai,
2001). The current study contributes to relating different
prior knowledge types to achievement in introductory
courses in biology and physics. Our results complement
previous results that were obtained based on the model of
Hailikari et al. (2007), and they show that in biology, in
contrast to other subjects, a declarative knowledge type is
relevant for academic achievement. Furthermore, they add
that the HS GPA is a good predictor in physics as it is a
proxy for specific prior knowledge types.
The analysis of our study and the interpretation of

our results entail some limitations. Our study is only
able to predict academic achievement indicated by ab-
solute success in all exams in the first year of biology
and physics courses. This operationalisation of aca-
demic achievement is comparable over both subjects,
but restrictive and somehow rough. It only distin-
guishes the successful students from other students. In
addition to our operationalisation, academic achieve-
ment can be addressed by a variety of different indica-
tors, such as grades at university, persistence to the
sophomore year, length of time to degree or graduation,
standardised exams, credit hours earned, or by more
affective variables, such as satisfaction or well-being in the
learning environment (Kuh, Kinzie, Buckley, Bridges, &
Hayek, 2006). These indicators allow a more detailed view
on academic achievement and should be addressed in fur-
ther research. However, because our study aimed to com-
pare biology and physics students, we had to recourse to
this rough but comparable indicator.
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The second research question might imply a direct
comparison of biology and physics. But this is not pos-
sible since we used different tests in each subject, al-
though we tried to keep the assessment in both subjects
as similar as possible. Thus, the interpretation of the re-
sults should be restricted to the specific roles of the
knowledge types within each subject.

Additional file

Additional file 1: Supplementary Material. (PDF 314 kb)
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