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Abstract

This paper reports a systematic literature review of the balance model, an often-used aid to teach linear equations.
The purpose of the review was to report why such a model is used, what types of models are used, and when they
are used. In total, 34 peer-reviewed journal articles were analyzed, resulting in a comprehensive overview of
described rationales for using the balance model, its appearances, situations in which it was used, and the gained
learning outcomes. Some trends appeared about how rationales, appearances, situations, and learning outcomes
are related. However, a clear pattern could not be identified. Our study shows that this seemingly simple model
actually is a rather complex didactic tool of which in-depth knowledge is lacking. Further systematic research is
needed for making informed instructional decisions on when and how balance models can be used effectively for
teaching linear equation solving.
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Introduction
A substantial component of learning algebra is learning
to solve algebraic equations. Within the algebra curricu-
lum, solving linear equations is one of the foundational
topics in which students make the transition from rea-
soning with numbers to reasoning with unknowns (e.g.,
Filloy & Rojano, 1989). Similarly, early algebra has been
described as a “shift from thinking about relations
among particular numbers and measures towards think-
ing about relations among sets of numbers and mea-
sures, from computing numerical answers to describing
and representing relations among variables” (Carraher,
Schliemann, & Schwartz, 2007, p. 266). Solving linear
equations as a basic skill (Ballheim, 1999) is a substantial
part of the middle school mathematics program (Hunt-
ley & Terrell, 2014). However, many students do not
achieve mastery of this basic skill and experience diffi-
culties in learning the concepts and skills related to solv-
ing equations (e.g., Kieran, 2007).
Solving linear equations means that the values of the

unknown quantities have to be found based on the
equality of two given mathematical expressions—one on

each side of the equal sign. The essence of an equation
is that these mathematical expressions represent the
same value (Alibali, 1999), which makes equality a
key concept in solving linear equations (e.g., Bush &
Karp, 2013) and understanding equality one of the
main conceptual demands associated with equation
solving (Kieran, 1997; Kieran, Pang, Schifter, & Ng, 2016).
Students need to understand that in an equation, the
expressions on both sides of the equal sign have the
same value and that this equality should always be
maintained in the process of solving an equation
(e.g., Kieran et al., 2016).
Misconceptions related to the concept of equality in

linear equation solving are well documented. These mis-
conceptions are particularly reflected in students’ inter-
pretations of the equal sign. Instead of perceiving it as a
relational symbol meaning “is the same as,” students
often have an operational view of the equal sign, that is,
they view it as a sign to “do something” or to “calcu-
late the answer” (e.g., Knuth, Stephens, McNeil, &
Alibali, 2006). For example, when solving the problem
8 + 4 = __ + 5, a common mistake is adding the num-
bers on the left side of the equation and putting a 12
in the blank (Falkner, Levi, & Carpenter, 1999). Such
interpretation of the equal sign can begin in the
elementary grades and can persist through middle
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school (e.g., Alibali, Knuth, Hattikudur, McNeil, &
Stephens, 2007).
One way to help students gain conceptual understand-

ing in equation solving is through the use of models as
“ways of thinking about abstract concepts” (Warren &
Cooper, 2009, p. 77). Such didactical models can be seen
as representations of mathematical problem situations in
which the essential mathematical concepts and aspects
of the problem situation are reflected, and through
which the concrete situation is connected to the more
formal mathematics (Van den Heuvel-Panhuizen, 2003).
By first being a model of a concrete situation where the
model is very closely related to a specific problem and
later evolving to a model for similar problems that are
situated in another context, the model can be applied for
solving all kinds of new problems (Streefland, 2003).
In mathematics education, several didactical models

are used to give students access to particular mathemat-
ical concepts, such as the number line or the bar model
for teaching fractions. The balance model is another
commonly used didactical model. This model is often
used to support students’ understanding of linear equa-
tion solving. Characteristic of the balance model is that
its form serves as a model for its function in solving lin-
ear equations: the balance can be used to refer to the
situation of equality of the expressions on the two sides
of an equation. The philosopher and mathematician
Gottfried Wilhelm Leibniz (1646–1716) already made
this connection when he mentioned the relation between
equality in a mathematical situation and a balance with
equal things on both sides (Leibniz, 1989).
In the context of a larger research project on algebraic

reasoning, we wanted to find indications for setting up a
teaching sequence on linear equation solving. We
searched for information about the use of the balance
model as a possible aid to assist students in developing
understanding of solving linear equations. The diverse
and scattered picture we got from this initial search
prompted us to investigate this more systematically.
Therefore, we planned to carry out a systematic review
of the literature of how the balance model turns up in
the large body of research and professional articles that
has been published about teaching linear equation solv-
ing. With this review, we aimed at answering the follow-
ing research question: What role does the balance model
play in studies on teaching linear equation solving?
In general, to learn more about a didactical model for

teaching students (mathematical) concepts, it is essential
to gain insight in various important aspects of a model.
The specific way of representing the model is important
to take into account, but also information related to pos-
sible reasons for choosing this particular model and tim-
ing of using the model in a teaching and learning
trajectory contribute to getting a complete picture of

how the model can be used. Lastly, to be able to evaluate
the use of a didactical model for fostering students’ con-
ceptual understanding, it is important to incorporate
students’ learning outcomes as well. To determine the
role balance models play in studies on teaching linear
equation solving, we looked into what authors reported
about why such a model is used, what types of models
are used, when they are used, and what learning out-
comes are associated with its use. Knowing this can be
helpful for teachers, researchers, and developers of in-
structional material for making informed decisions about
choosing the balance model for teaching linear equation
solving.

Method
Article search and selection
For selecting articles for the review, we searched in 93
peer-reviewed research journals in the areas of mathem-
atics education, educational sciences, pedagogics, devel-
opmental psychology, special education, and technology
in education. The search was conducted in Scopus and
ERIC for articles in English. The search query consisted
of terms such as equation*, equal sign*, equality, equiva-
lence, balanc*, algebra*, mathematic*, unknown*, and
solv*, and combinations thereof (see Additional file 1 for
the complete search queries). There was no limit with
regard to the date of publication.
The search, conducted in March 2017, resulted in 932

hits in Scopus and in 723 hits in ERIC, together resulting
in 1655 hits (see Fig. 1). After merging, 333 duplicates
were identified and removed, resulting in 1322 articles
from 92 journals. Thirty-two articles were removed
either because they, despite our search query, turned out
to be not in English, or because they did not originate
from peer-reviewed journals (e.g., were book chapters),
resulting in 1290 articles.
In a six-step procedure, titles and abstracts were

screened. Articles that were not in the field of math-
ematics education, did not touch upon the domain of
algebra, did not address equations, were not about
linear equations, or did not address teaching or learn-
ing linear equations, were excluded. This resulted in
287 articles. In the sixth and final step, the 282 arti-
cles of which we could obtain the full text were
inspected to make an accurate decision on whether
the concept of balance was discussed in relation to
linear equation solving. Based on this reading, 29 arti-
cles were selected in which the balance model was
used to teach linear equation solving. Lastly, snowbal-
ling was used to ensure that possible other relevant
literature was covered as well, which resulted in five
additional articles. Thus, the final collection com-
prised 34 articles from 22 journals.
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Data extraction
For each of the 34 articles, information was extracted re-
lated to the rationales and the limitations of using the
balance model, the appearances of the model, the situa-
tions in which the model was used, and students’ learn-
ing outcomes. Information was extracted in case at least
one sentence of the article was devoted to either of these
four categories. After the inventory of all rationales (in
26 articles) and appearances (in 34 articles), patterns

were identified to see whether classes of rationales and
types of models could be created. Multiple rationales for
using the model and multiple appeareances could be ex-
tracted from one article. To describe the situations in
which the balance model was used (in 34 articles), infor-
mation was extracted regarding the grade level of the
students, the duration of the intervention, the type of
tasks students worked on, and the type of instruction.
Students’ learning outcomes when using a balance

Fig. 1 Flow chart illustrating the systematic search process, resulting in 34 articles
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model for teaching linear equation solving were dis-
cussed in 19 articles. These different aspects of the
reviewed articles are summarized in Table 1.

Results
Why was the balance model used?
Rationales for using the balance model were provided in
26 articles. Three main classes of rationales could be
identified, which were all related to the specific features
of the context of the balance model. Articles constituting
the Equality class of rationales all directly referred to
using the balance to enhance students’ understanding of
the concept of equality. Direct references to equality are
directly focused on the mathematical equality, by em-
phasizing the analogy between the balance model and
equality in an equation. Articles in the remaining two
classes of rationales made more indirect references to
using the balance model for enhancing students’ under-
standing of equality. Indirect references to equality are,
for example, offering students physical experiences when
manipulating a balance model and thus feel, through the
experience of balancing, the concept of equality. Such
articles that made a reference to previous or concurrent
physical experiences related to the balance model fell in
the Physical Experiences class of rationales. Articles that
fell into the Models and Representations class of ratio-
nales referred to the use of models and representations
for enhancing students’ conceptual understanding in lin-
ear equation solving. Finally, limitations of using the bal-
ance model for teaching linear equation solving were
also extracted.

Rationales related to the equality concept
A majority of 15 articles (three from the same research
project) mentioned rationales for using the balance
model related to the concept of equality. It was often
stated that understanding the concept of equality can be
enhanced by making use of the model of a balance (e.g.,
Gavin & Sheffield, 2015; Leavy et al., 2013; Mann, 2004;
Taylor-Cox, 2003; Warren et al., 2009). Because both
sides of a balance model are of equal value and thus ex-
changeable, the model was described as being very suit-
able for demonstrating the idea of equality or
equilibrium (Figueira-Sampaio et al., 2009) and quantita-
tive sameness (e.g., Warren & Cooper, 2005). In line
with this, several authors referred to the use of the
balance model to enhance the understanding of the
equal sign as a symbol for representing equality (e.g.,
Vlassis, 2002; Warren & Cooper, 2009). Accordingly, the
balance model has often been described as suitable to
demonstrate the strategy of doing the same thing on
both sides of the equation, in which emphasis on the con-
cept of balance is crucial (e.g., Andrews & Sayers, 2012;
Figueira-Sampaio et al., 2009; Marschall & Andrews, 2015),

thereby helping students in forming, according to
Vlassis (2002), a mental picture of the operations they
have to apply. Another mentioned advantage of the
balance model is the possibility to keep track “of the
entire numerical relationship expressed by the equa-
tion while it is being subjected to transformations”
(Linchevski & Herscovics, 1996, p. 52), which makes
it suitable for demonstration of the cancelation of
identical terms on both sides of the equation (see also
Filloy & Rojano, 1989).

Rationales related to the physical experiences
The second class of rationales that was identified,
mentioned in 11 articles (all from different research pro-
jects), was related to learning through physical experi-
ences. In several articles, a reference was made to
previous physical experiences related to maintaining bal-
ance. Araya et al. (2010) argued that the process of
maintaining balance has a primary biological basis and is
therefore common physical knowledge for all human be-
ings. Through using the balance model, this biologically
primary knowledge can be connected to the abstract
idea of maintaining equality in an equation. Others em-
phasized the similarity between the model and a teeter-
totter (or see-saw) and referred to children’s (playing)
experiences with this object (Alibali, 1999; Kaplan &
Alon, 2013).
In other articles, the contribution of concurrent phys-

ical experiences with the balance model was pointed out
as being beneficial to the learning of linear equations.
Warren and Cooper (2009) underlined the importance
of movement (for example by acting out a balance) and
gestures during the learning trajectory to develop mental
models of mathematical ideas. They argued that refer-
ring to these experiences in later stages of the learning
process can be beneficial. Also, the importance of phys-
ical experiences with concrete objects for developing
understanding of linear equations was mentioned in sev-
eral articles. Offering young students experiences with
manipulation of balance scales, because through this
manipulation, equality can be recognized, defined, cre-
ated, and maintained, could enhance students’ under-
standing of this concept (Taylor-Cox, 2003). Suh and
Moyer (2007) mentioned that using manipulable con-
crete objects have a sense-making function, through
connecting procedural knowledge (manipulations on the
objects) and conceptual knowledge of algebraic equa-
tions. However, at the same time, these authors pointed
out that caution with using such manipulatives for
teaching formal equation solving is necessary, because
not all students automatically connect their actions on
manipulatives with their manipulations on abstract sym-
bols. Also Orlov (1971) commented that the balance
model as a physical instrument can help in forming
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abstract mathematical thought, because it represents an
intermediate degree between immediate sensory data
and mathematical abstraction. In this same line, Fyfe et
al. (2015) recommended a sequence based on fading
concreteness, where instruction begins with concrete
material and fades into abstract mathematical symbols.
The real-time feedback some models provide about
being in balance, which allows students to verify the
results of their manipulations and their reasoning pro-
cesses and as such to construct knowledge, was also
deemed important (Austin & Vollrath, 1989). When
combined with social experiences, physical experiences
were also said to contribute to the construction of
knowledge (Figueira-Sampaio et al., 2009), for example,
because it creates shared meaning between teacher and
students (Perry et al., 1995).

Rationales related to learning through models and
representations
The third class of rationales, mentioned in eight articles
(four from the same research project), included a more
general argumentation and referred to learning through
the use of models and representations. According to
Filloy and Rojano (1989), models such as the balance
model can provide an opportunity to semantically and
syntactically set a foundation for linear equation solving.
Here, the meaning of equality and algebraic operations
can first be derived from the context, while after stu-
dents have gone through a process of abstraction, mean-
ing at syntactic level is linked to this meaning of the
context. Researchers involved in the Australian Early
Algebraic Thinking Project (Cooper & Warren, 2008;
Warren & Cooper, 2009) argued that, through models,

mathematical ideas are presented externally as concrete
material, by iconic representations, language, or symbols,
while comprehension of these ideas occurs internally, in
mental models or internal cognitive representations of
mathematical ideas underlying the external representa-
tions. From this point of view, mathematical understand-
ing is determined by the number and strength of the
connections in the student’s internal network of repre-
sentations. Also the use of multiple representations in
teaching abstract mathematical concepts or strategies
was advocated (e.g., Berks & Vlasnik, 2014), because
experiencing different modes of representation and mak-
ing connections between and within these different
modes of representation could enhance deep mathemat-
ical understanding (Suh & Moyer, 2007). The sense-
making function of representations was elaborated on by
Caglayan and Olive (2010), who reasoned that students
can make sense of abstract symbolic equations through
connecting this symbolic equation with the equation as
expressed by its representation.
Also other reasons for using representations of the

balance model were suggested. For example that it can
create a shared language base which students can use
when explaining their solutions (Berks & Vlasnik, 2014;
Warren et al., 2009; Warren & Cooper, 2005) or that it
is supposed to lower students’ cognitive load during
equation solving processes (see Araya et al., 2010). The
latter contrasts with Boulton-Lewis et al. (1997) who hy-
pothesized an increased processing load caused by the
use of concrete representations. This might depend on
the students’ experience and the type of equation prob-
lems they have to solve: if students do not really need
the help of a concrete representation of the balance

Fig. 2 Physical balance models, examples from four articles (a-d)

Otten et al. International Journal of STEM Education            (2019) 6:30 Page 11 of 21



model anymore and they still have to use it, this could
indeed increase processing load.

Limitations of the balance model
Limitations of the balance model were described in eight
articles (all from different research projects). In her well-
known article, Vlassis (2002) described how eight-grade
students were taught formal linear equation solving by
making use of the balance model and concluded that
although the balance model was able to provide students
an “operative mental image” (p. 355) of the to-be-
applied equation solving strategies, this model also had
some shortcomings. For example, the model was not
helpful for equations containing negative numbers or for
other equations that are “detached from the model” (p.
354) and that no longer refer to a concrete model. Also,
several other articles referred to the restricted possibil-
ities the model has to represent equations with negative
quantities or subtractions (e.g., Filloy & Rojano, 1989;
Linchevski & Herscovics, 1996). As soon as negative
values are involved, such as in the case of the equation
x + 5 = 3, or equations with subtraction, such as 2x − 3 = 5,
the solution is difficult to express in terms of physical
weight which makes it difficult to construct meaning for
these equations (Caglayan & Olive, 2010).

Discussion of the findings regarding why the model was
used
Although the three classes of rationales all have unique
characteristics based on which they can be differentiated,
they are also interrelated. The most often mentioned
rationale was related to equality; understanding equality
is regarded as one of the main conceptual demands asso-
ciated with linear equation solving (e.g., Kieran et al.,

2016). Inherent properties of the balance were con-
nected to the concept of equality and the strategies that
can be applied while maintaining the balance. The two
remaining rationales were less often mentioned. These
rationales contained indirect references to using the bal-
ance model for enhancing students’ understanding of
equality in an equation, through referring to learning
through physical experiences or to learning through
models and representations.
Articles in the class of rationales related to physical

experiences referred either to the biological basis of
maintaining balance or to other physical experiences
with balance (such as with a teeter-totter), which,
through using the balance model, could be connected to
the idea of maintaining the balance in an equation.
These previous physical experiences with balance could
foster students’ understanding of equality in an equation.
This can be explained from the perspective of embodied
cognition theory, stating that the connection of percep-
tual and physical experiences that we have when we
interact with the world is fundamental for developing
conceptual knowledge and cognitive learning processes
(e.g., Barsalou, 2008; Wilson, 2002). Perceptuo-motor ex-
periences are considered essential for developing mathem-
atical concepts (e.g., Alibali & Nathan, 2012; Núñez,
Edwards, & Matos, 1999), and mathematical reasoning
is viewed as intricately linked with embodied actions
(Abrahamson, 2017; Alibali & Nathan, 2012). When
applying embodied cognition theory to teaching and
learning solving linear equations, it is assumed that
perceptuo-motor knowledge about the action of
balancing is a necessary foundation for developing un-
derstanding of the mathematical concept of equality (e.g.,
Antle, Corness, & Bevans, 2013). This perceptuo-motor

Fig. 3 Virtual balance models, examples from two articles (a-b)
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knowledge is built up from the very pervasive physical ex-
periences we have with balancing from a young age on
(Gibbs Jr, 2006), through walking without falling, standing
up and sitting down, or holding objects of different
weights (Alessandroni, 2018). Furthermore, the other arti-
cles in this class of rationales stressed the contribution of
concurrent physical experiences with the balance model
to the learning of linear equations. Through manipula-
tion of the model, students explore how to maintain
its balance; these strategies for maintaining the bal-
ance of the model could later be connected to strat-
egies for maintaining equality in an equation. This is
also in line with embodied cognition theory: offering
students opportunities to revitalize the basic
perceptuo-motor knowledge through making use of a
model of a balance through which they can imagine
(or experience anew) the situation of balancing, could
be beneficial for supporting students’ understanding

of equality in an equation and therefore for teaching
linear equation solving.
Articles in the class of rationales related to learning

through models and representations included more gen-
eral arguments for enhancing students’ understanding of
equality in an equation. However, these rationales have
some overlap with the rationales related to physical ex-
periences. Both classes are related to perceptuo-motor
experiences with balance. In the case of the Models and
Representations class, this experience is more related to
what the balance looks like. The balance as a device with
two arms and a fulcrum in the middle can be used to
represent an equation with on two sides of the equal
sign an expression of equal value. Learning through
models and representations can be connected to ideas of
Realistic Mathematics Education (RME). One of the
main instructional principles of RME is the use of didac-
tical models with the purpose to bridge the gap between

Fig. 4 Drawn balance models, examples from six articles (a-f)
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informal, context-related solution methods and the more
formal ones, and in this way to stimulate students to
come to higher levels of understanding (e.g., Van den
Heuvel-Panhuizen, 2003).

What types of balance models were used?
Three types of appearances of the balance models came
forward in the reviewed articles: physical, virtual, and
drawn balance models. Physical balance models are con-
crete balance scales. On these scales, students can repre-
sent equations by placing real objects, standing for
knowns and unknowns, on both sides of the model.
Characteristic for these models is that they are dynamic,
which means the students can operate on them and
get real-time feedback on their actions. In virtual bal-
ance models, the balance is implemented in a digital
environment. These models are mostly dynamic, in
that sense that the balance tilts in response to stu-
dents’ (digital) manipulations and in this way gives
real-time feedback. In drawn balance models, a sche-
matic version of a balance is presented on paper or
on the blackboard. The representations of these bal-
ance models are static: students cannot manipulate
them and cannot receive real-time feedback. Whereas
in most articles only one type of appearance of the
balance model was used, in other articles different
types appeared (e.g., Figueira-Sampaio et al., 2009) or
a sequence of different appearances was presented,
starting with the use of a physical model followed by
a drawn balance model (e.g., Fyfe et al., 2015).

Physical balance models
Physical balance models appeared in 14 articles (three
from the same research project). We drew schematic
versions of several of these physical balance models.
These drawings are shown in Fig. 2. The balance dis-
played in Fig. 2a was used by Fyfe et al. (2015) to repre-
sent, for example, 3 + 2 = 1 + 1 + __. Here, students could
put three red and two yellow bears on the left side and
one red and one yellow on the right, and then add the
missing number to get the scales to balance (for similar
models, see also, e.g., Warren et al., 2009). In Austin and
Vollrath’s balance model (1989; Fig. 2b), the equation
3x + 5 = 11 is portrayed by, on the left side, three con-
tainers with unknown content and five washers and 11
washers on the right side (for similar models, see also,
e.g., Andrews, 2003). A more complex example of a bal-
ance scale was utilized by Orlov (1971; Fig. 2c). His
model contains four scales, two on each side. For ex-
ample, by putting a weight on the left tray of the left part
of the scale, the left arm of the balance scale goes up. In
this way, negative numbers and unknowns can also be
handled by this model. The last type of described phys-
ical balance model is a balance model in which the

distance of the objects to the fulcrum can be adapted to
represent linear equations such as 8 + 4 + 2 = 4 + 4 + __
(Perry et al., 1995; Fig. 2d; for a similar model, see also
Smith, 1985). Here, all objects have the same weight, but
by putting them at a particular position on the beam
they represent a particular value.

Virtual balance models
Virtual balance models appeared in three articles (from
different research projects). Drawings of the used virtual
balance models are shown in Fig. 3. Most of these
models display a balance scale quite similar to the phys-
ical balance models. However, the digital environment
enables more possibilities in representations and func-
tions of the model.
In the digital model used by Figueira-Sampaio and

colleagues (2009; Fig. 3a), the equation 5x + 50 = 3x +
290 is represented by cans with the letter X depicting
the unknowns, and small labeled weights (e.g., 50 g,
100 g) depicting the numbers (for a similar model, see
also Suh & Moyer, 2007). Here, while students manipu-
late the virtual balance scale, the corresponding equation
is shown in formal algebraic symbols, which makes the
link between these manipulations and the changes in the
corresponding symbolic equation explicit. A further type
of virtual balance model was found in the article of
Kaplan and Alon (2013; Fig. 3b). In this model, students
can explore relationships between different shapes of un-
knowns and find new equations based on given ones.
For example, on the basis of the equations▲▲ = ●●●
and ▲▲ = ●●■■, a third equation can be created.

Drawn balance models
Drawn balance models appeared in 26 articles (four and
three from the same research projects). Drawings of the
used drawn balance models are shown in Fig. 4. Here, it
is noticeable that some drawn balance models are
depicted more realistically (Fig. 4a–c) and others more
schematically (Fig. 4d–f), with pictures of objects or
symbolic expressions to represent the knowns and
unknowns.
While drawn balance models were present in many

articles (e.g., Brodie & Shalem, 2011; Mann, 2004; Vlassis,
2002), the way in which the equations are represented in
these models varied widely. In the drawn balance model
found in the article of Vlassis (2002; Fig. 4a), the equation
7x + 38 = 3x + 74 is represented by squares for each x and
circles in which the numbers are indicated. The unknowns
in this model are depicted in an expanded way (i.e., 7x
and 3x are represented as seven separate x’s and three sep-
arate x’s). While in most models all unknowns are
depicted separately, in the model of Linchevski and
Herscovics (1996), the unknowns and knowns in the
equation 8n + 11 = 5n + 50 are partially shown in an
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expanded, respectively decomposed way, leading to the
equation 5n + 3n + 11 = 5n + 11 + 39. In this way, students
can see that the terms 5n and 11 appear on both sides of
the equation, which can cancel each other out. In the bal-
ances of Marschall and Andrews (2015; Fig. 4b) and
Warren and Cooper (2009; Fig. 4c), equations with nega-
tive values and subtractions can also be represented. In
Fig. 4b, the subtraction in the equation 4x − 3 = 2x + 5 is
represented by an arrow going down from one of the
scales, so that the action of “taking away” is made visible.
Alternatively, in Fig. 4c, a minus sign is included.
Another way in which drawn balance models appeared

in the articles is as an abstract drawing. Here, the bal-
ance functions as a metaphor to point students’ atten-
tion to the concept of equality. In Rystedt and colleagues
(2016, Fig. 4d), the equation 4x + 4 = 2x + 8 is repre-
sented with boxes for unknowns and dots for numbers.
In articles in which such a metaphorical use of the bal-
ance model was present (e.g., Caglayan & Olive, 2010),
this use was often accompanied by the instruction that
the balance in the equation had to be maintained when
solving the equation (Boulton-Lewis et al., 1997), or by
gestures representing a balance scale (Rystedt et al., 2016).
The use of a drawn balance model, especially for models
with an abstract drawing, often went together with the use
of manipulatives. For example, in the model of Boulton-
Lewis and colleagues (1997; Fig. 4e), the schematically no-
tated equation 2x + 3 = 7 is represented by two white cups
and three green counters on the left-hand side (indi-
cated by LHS) and seven green counters on the right-
hand side (indicated by RHS), while other colored
cups and counters are used to represent subtractions
or negative unknowns and numbers (for a similar ap-
proach, see, e.g., Suh & Moyer, 2007). Another ex-
ample is the drawn balance model used by Caglayan
and Olive (2010; Fig. 4f), where in the equation 4x −
3 = x + 6 the “− 3” is represented by gray tiles instead
of black ones. Moreover, the equal sign is directly
represented in this model.

Discussion of the findings regarding the types of used
balance models
Drawn models appeared the most and virtual models the
least, while the use of a physical model was often
followed by the use of a drawn model. When looking
into the relationship between the rationales and the ap-
pearances of the models, it seems that the use of a phys-
ical balance model most often goes together with
rationales related to learning through physical experi-
ences and the equality aspect. For the virtual models, all
rationales appear more or less equally often, and the
drawn balance models go most often together with the
equality aspect rationale and rationales related to learn-
ing through models and representations. Except for

rationales related to learning through physical experi-
ences, the remaining two classes of rationales most often
go together with the use of a drawn balance model. The
drawn model appears to be the most flexible model,
which means that it was used with all classes of
rationales.
Although all three appearances of the model have the

balance as a basic concept, they differ in their nature.
Whereas the physical balance model and partly the vir-
tual balance have a dynamic nature and as such can pro-
vide real-time feedback to the students about their
actions, the drawn balance model is static. Drawn
models, either presented on paper or on the blackboard,
can nonetheless be extended with dynamic aspects by
using manipulatives. For all three types of appearances
of the model it applies that most models consist at least
of a fulcrum, a horizontal balancing beam, and on both
sides a scale. In addition to this configuration of the bal-
ance model, in other models, extra features are added.
Through the addition of these features, the reach of the
balance model is extended to represent a wider range of
problems. For example, the additional scales in the phys-
ical model of Orlov (1971; Fig. 2c), the arrow going
down from the scales of the drawn balance model in the
article of Marschall and Andrews (2015; Fig. 4b), and the
different colored manipulatives added to the drawn
model of Boulton-Lewis and colleagues (1997; Fig. 4e)
are all examples of variations of the balance model
allowing the representation of negative numbers and
unknowns. Such additional features provide a solution
for the restricted possibilities that this model has (e.g.,
Vlassis, 2002), for example by allowing for the represen-
tation of equations with negative quantities or subtrac-
tions. In fact, this flexibility of the balance model is
exactly how models should work. When used as didacti-
cal models (Van den Heuvel-Panhuizen, 2003), models
should be flexible and not only suitable for solving one
type of equation. One way of ensuring this flexibility is
by allowing for adaptations without losing its primary
function. However, bearing in mind the concept of
model of … - model for … (Streefland, 2003), didactical
models are not meant as a tool that everlasting has to be
used for problem solving at a concrete, context-
connected level. Instead, the idea is that in a later phase
of the learning process, when a basis is laid for solving
linear equations and the students have to solve more dif-
ficult equations, the student’s thinking can still be sup-
ported by, and related to, the model without concretely
representing the equation in a physical model.

When was the balance model used?
The situations in which the balance model was used in
the articles when describing the teaching of linear equa-
tion solving, varied considerably with respect to the
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grade level of the students involved, the duration of the
intervention with the model, the type of equation prob-
lems that students worked on, and the type of instruc-
tion that was provided to the students.

Grade levels and intervention duration
The balance model was used to teach linear equation
solving to students from Kindergarten to Grade 9. Stu-
dents up to Grade 6, who do not have previous experi-
ence with algebra, had their first encounter with linear
equations through the balance model, which came for-
ward in different studies (e.g., Warren & Cooper, 2005).
In studies with students from Grades 7–9, who already
have some basic experience with linear equation solving
(with the exception of the seventh-grade students in the
study by Araya et al., 2010), the balance model was in-
troduced as a tool for solving equations (Vlassis, 2002)
or used to illustrate the balance method (i.e., perform
the same operations on both sides of the equation; Ngu
& Phan, 2016). The duration of the interventions in
which the balance model was used was also very
diverse. The shortest interventions comprised one ac-
tivity or one lesson (e.g., Figueira-Sampaio et al., 2009;
Rystedt et al., 2016), while in other studies the balance
model was integrated in a multiple-year teaching trajec-
tory (e.g., Orlov, 1971; Warren & Cooper, 2009).

Type of equation problems
With very young students (e.g., Kindergarten, Grades 1–
2), the balance model was mostly used for exploration of
the first ideas of equality and the equal sign (e.g.,
Taylor-Cox, 2003; Warren et al., 2009). Students’ task
was for example to weigh different objects to find out
which were the same and which were different. For
somewhat older students (e.g., Grades 3–6), the balance
model was for example used to assist them in solving
simple addition problems such as 8 = __ + 3 (e.g., Leavy
et al., 2013). Here, eight objects were put on the left side
of the balance and three objects on the right side, and
the students’ task was to figure out what they could do
to make both sides equal. The model was also used to
introduce algebraic symbols to students without prior al-
gebra experience, so that they could link the model to
the abstract symbols. Then students’ task was for ex-
ample to manipulate the objects on the scales in such a
way that they could determine the weight of the un-
known object, while in the meantime in the digital envir-
onment the corresponding symbolic equation was
shown (e.g., Figueira-Sampaio et al., 2009, see Fig. 3a;
Suh & Moyer, 2007). In research with students with
some algebra experience (i.e., from Grade 7 on),
students’ task was for example to represent symbolic
equations by making use of the balance model and to

use this representation to transform and solve the equa-
tions (Caglayan & Olive, 2010; see Fig. 4f). Or students’
task was to solve an equation by making use of a
physical balance model, while subsequently to repre-
sent the equation and the solution steps symbolically
(Andrews, 2003). There were also articles in which
two balance models with different unknowns were
presented simultaneously to create a system of equations
and to evoke the algebraic strategy of substitution (e.g.,
Austin & Vollrath, 1989; Berks & Vlasnik, 2014). Here,
students’ task was to combine the information of the
equations to find the values of the unknowns.
In most studies, students’ task was to determine the

value of the unknown(s). However, there were also arti-
cles in which the main purpose was to discover different
possibilities to maintain the balance of the model, with-
out focusing on finding values of unknowns. For ex-
ample, in the study by Kaplan and Alon (2013), the goal
was to create multiple balanced scales and to analyze the
relationships between unknowns (see Fig. 3b). Also in other
articles, the balance model was used to discover different
possibilities to maintain equality (Orlov, 1971) or to
discover which “legal moves” (Raymond & Leinenbach,
p. 288) could be made without disturbing the balance.
Lastly, there were large varieties between studies con-

cerning maintaining the balance model when teaching
equations. For example, in Warren and Cooper (2005),
first a physical balance model and later a drawn balance
model were used to model equations containing positive
values and additive operations (e.g.,? + 7 = 11). After
some lessons, these students also solved equations con-
taining subtraction (e.g.,? – 4 = 13), but these equations
were not represented with the balance model. In other
studies, the use of the balance model was maintained lon-
ger during the learning process. For example, one of the
teachers in the study by Marschall and Andrews (2015)
did not only use the model for teaching equations con-
taining positive values and addition, but extended the use
of the model to represent equations such as 4x – 3 = 2x +
5 (see Fig. 4b; for using the model for other type of equa-
tions, see also, e.g., Boulton-Lewis et al., 1997, see Fig. 4e;
Orlov, 1971, see Fig. 2c).

Type of instruction
When working with the balance model, students either re-
ceived classroom instruction by a teacher (e.g., Warren &
Cooper, 2009) or via a learning movie (Araya et al., 2010),
or they received individual instruction by a teacher (e.g.,
Perry et al., 1995), through instruction sheets (Ngu,
Chung, & Yeung, 2015), or through working individually
or in pairs with the balance (e.g., students working with
the virtual balance in Figueira-Sampaio et al., 2009).
Classroom instruction often concerned the teacher ma-
nipulating a balance model in front of the classroom (e.g.,
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students working with the physical balance model in
Figueira-Sampaio et al., 2009), while during individual
instruction, students more often got opportunities to
actively work with the balance model themselves (e.g.,
Suh & Moyer, 2007).

Discussion of the findings regarding when the balance
model was used
In what situations the balance model was used was very
diverse in the different studies. For what equation prob-
lems the balance model was used appeared to be related
to students’ experience with solving linear equations. For
students up to Grade 6, without previous experience
with algebra, most tasks concentrated around exploring
the basic ideas of balance and solving simple equations
(e.g., 8 = __ + 3), which went hand in hand with the
rationale that such activities can be beneficial for devel-
oping understanding of equality and a relational under-
standing of the equal sign. Physical and virtual balance
models were relatively often used to teach linear equa-
tion solving to students without prior algebra experi-
ence. In most of these studies, equations only contained
positive values and additive operations. The studies con-
ducted with students without prior experience in general
underpinned the use of the balance model for teaching
linear equation solving more thoroughly than studies
with students with some algebra experience. The ration-
ale that was relatively often mentioned in relation to
teaching students without prior algebra experiences is
the rationale related to the physical experiences, which
fits the using of the physical balance model to teach
these students. This also aligns with the common trend
of using concrete materials for teaching young students
rather than for teaching older students and with re-
search showing that the use of concrete materials in
mathematics education is in particular beneficial for chil-
dren aged 7–11, in the mathematical domains of fractions
and algebra (Carbonneau, Marley, & Selig, 2013).
With regard to studies conducted with students with

prior algebra experience (in general students from
Grades 7 and higher), students’ tasks when working with
the balance model were most often to model, to trans-
form, and to solve equations by means of the balance
model. Also in these studies, the rationale related to the
equality aspect was most prominent. On the contrary,
most of the studies in which no rationale for using the
model was provided were also conducted with students
with prior algebra experience. Most studies in which a
limitation of using the balance model was mentioned
involved these students. Drawn balance models were
mostly used to teach students with prior algebra experi-
ence and in more than half of these studies, students
were also taught equations containing negative values
and subtraction.

Learning outcomes
Nineteen articles evaluated students’ learning outcomes
related to the use of the balance model. The research de-
sign of these studies and the most important learning
outcomes are summarized in Table 1. Most studies were
descriptive in nature and less than one-third of the stud-
ies used a pre-posttest design combined with a compari-
son group. As described in “When was the balance
model used?” section, the studies showed large variations
as regards the age and algebra experience of the students
in their sample, the duration of the intervention, the
tasks students worked on, and the type of instruction
students received. Similar variations were detected upon
examining the learning outcomes of the different studies.
For example, Araya et al. (2010) found very positive re-
sults of using a learning movie with a drawn balance
model in Grade 7 with students without prior algebra
experience. These students outperformed students in the
comparison group who received symbolic linear equa-
tion solving instruction. Also, Suh and Moyer (2007) re-
ported positive effects of using balance models to teach
third-grade students linear equation solving. Contrast-
ingly, Boulton-Lewis et al. (1997) found that eighth-
grade students had difficulties with modeling and solving
linear equations when making use of the balance model.
These students preferred not to use the model. The
studies by Ngu and colleagues (2015), 2016, 2018) con-
sistently showed similar or lower performances for
Grade 7–9 students who used the method of performing
the same operations on both sides of the equation—
which was taught by making use of an instruction sheet
with the balance model—compared to students who
used the inverse method—which was taught as by refer-
ring to the change side, change sign-rule—for solving
equations. In this latter approach, in which for example
x − 4 = 6 becomes x = 6 + 4, students can conceptualize
the inverse operation of − 4 becoming + 4 as a means to
preserve the equality of equations. Therefore, the under-
standing of this inverse principle at a structural level is
considered to be very relevant for students’ learning of
algebraic thinking (see, e.g., Ding, 2016). Interesting to
notice here is that, although viewed superficially, the bal-
ance method differs from the inverse method, this latter
method bears much resemblance to “doing the same on
both sides.” When taking the example of x − 4 = 6, then
this rule means that on both sides 4 has to be added.
This makes x − 4 + 4 = 6 + 4, which after simplifying re-
sults into x = 6 + 4. In other words, the main difference
between “doing the same things on both sides” and
“change sides, change sign” involves that one comes dir-
ectly to the result by skipping the intermediate step of
adding 4 on both sides. However, despite the close rela-
tionship between these two approaches and the related
underlying principles, in only a few articles of our review
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study when authors refer to the use of the balance
model, they also refer to the inverse method. This indi-
cates that there has not been much research in which
both approaches have been put in relation or contrasted.
The large variation between studies in which the balance

model was used and the lack of studies with an experimental
research design make it very difficult to draw unequivocal
conclusions about the effects of using the balance model on
students’ learning outcomes. Nevertheless, some trends can
be identified. Overall, most mixed and negative results are
found for studies with somewhat older students (Grades 7–
9) who already had some (basic) experience in solving linear
equations (e.g., Ngu, Phan, Yeung, & Chung, 2018;
Vlassis, 2002). The main reasons for this finding
could be that the balance models in these studies,
which were all drawn, were used for teaching a broad
range of equations, including more difficult equations
such as equations containing negative numbers and
unknowns (e.g., Boulton-Lewis et al., 1997; Caglayan
& Olive, 2010; Vlassis, 2002). In general, more positive
results were found for studies conducted with younger stu-
dents (e.g., Suh & Moyer, 2007; Warren & Cooper, 2005) or
with students without prior knowledge on equation solving
(e.g., Araya et al., 2010). In these studies, more often a phys-
ical model (e.g., Perry et al., 1995; see Fig. 2d) or a virtual
model (e.g., Figueira-Sampaio et al., 2009; see Fig. 3a) was
used, which in some cases in later stages was followed by a
drawn model (e.g., Warren & Cooper, 2005). In most of
these studies, the balance model was used to teach linear
equations containing only positive values and addition.
However, there were some exceptions. For example, Orlov
(1971) found positive results for teaching different types of
linear equations (including negative values and subtraction)
to eighth-grade students by making use of a physical balance
model (see Fig. 2c).

Discussion of the learning outcomes
Overall, the balance model seems to have more positive
effects on learning outcomes related to linear equation
solving for (younger) students without prior knowledge
on linear equation solving. A possible explanation might
be that for younger students, the balance model is used
for laying a conceptual basis for linear equation solving,
while for older students, who already have such a basis
in solving linear equations, the model is more often used
to revitalize this basis. Younger students have their first
experience with exploring the concept of equality and
with linear equation solving by means of the balance
model. The tasks of older students when working with
the balance model are more often to model, to trans-
form, or to solve equations. In other words, the balance
model then is used to revitalize their knowledge on lin-
ear equation solving and assist in solving all kinds of
new equations. Warren and Cooper (2005) provide an

example of using the balance model to support students
in solving equations containing subtraction. In their
teaching sequence, they first used a physical model to let
students develop understanding of the concept of equal-
ity as “balance” and the strategy of doing the same things
on both sides. Later, students could use this strategy for
solving symbolically notated problems on paper, which
also contained subtraction.

Conclusions
Our systematic review reveals a rather kaleidoscopic
image of the balance model as an aid for teaching linear
equations. The findings on why a balance model was
used, what types of models were used, when they were
used, and what learning outcomes were associated with
its use, are diverse. Nevertheless, we could identify some
trends within this scattered picture. Physical and virtual
balance models were more often mentioned in the arti-
cles for teaching students during their first encounter
with linear equation solving. Also, authors of these arti-
cles were more explicit about their rationales for using
the balance model, with most rationales related to the
equality aspect and students’ physical experiences. The
equations taught to these students mostly only contained
positive values and addition, and these studies in general
reported positive effects of using the balance model on
students’ learning outcomes of linear equation solving.
Drawn balance models were more often used for stu-
dents who already had some previous algebra experi-
ence. Additional features (such as manipulatives) were
often added to these models, so that a wider range of
problems could be represented, such as equations with
negative values and subtraction. Articles in which drawn
balance models were used were less explicit about their
reasons for using the balance model, and in general re-
ported more mixed and negative effects of using the bal-
ance model on teaching linear equation solving.
However, it is important to note that within these
trends, there were still many differences between studies,
for example concerning the duration of the intervention
and the type of instruction provided to the students.
These trends should of course be interpreted with cau-

tion. First of all, our results are entirely based on what
the authors of the articles reported. In some articles, the
authors did not explicitly report their rationales for
using the balance model, which meant that they could
not be identified by our analysis. Secondly, although we
searched for articles in which the use of the balance
model was discussed in 93 peer-reviewed journals to en-
sure a good coverage of the research literature, we only
had a relatively small final sample of 34 articles that met
our inclusion criteria. In addition, within the limited
time we had available for this study, we could not con-
sider including textbooks or other curriculum
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documents. Furthermore, we decided to do the review
on articles in which the balance model was used for
teaching linear equation solving and leave out other
mathematical topics in which the balance model could
be used. Lastly, a limitation that also should be men-
tioned is that our study only focused on the balance
model and we did not compare it with other often used
methods for helping students to solving linear equations
such as the change side change sign-rule. Clearly, more
research is necessary in this respect.
Our study was meant to create an overview of the role

the balance model plays in teaching linear equation solv-
ing that might provide teachers, researchers, and devel-
opers of instructional materials with a source for making
informed instructional decisions. Our analysis of the 34
peer-reviewed journal articles shows that there exists a
considerable diversity in the rationales for using the
model, the appearances of the model, the situations in
which the model is used, and the found learning out-
comes. This offers many possibilities for making use of
the balance model. However, at the same time, our study
reveals a clear lack of in-depth knowledge about when
which type of balance models can be used effectively.
For gaining this knowledge, more research is necessary,
in particular (quasi-) experimental studies, allowing to
investigate the effects of using models of different ap-
pearances (e.g., physical, virtual, and drawn models, with
or without additional features such as added scales or
the use of manipulatives) and the effects of different sit-
uations of using the model (e.g., for students with or
without prior algebra experience, a short-time use of the
model or a more extensive intervention, with one type of
instruction or another) on students’ learning outcomes.
To provide a more theoretical grounding for the use of
the balance model as an aid for teaching linear equa-
tions, it is important that the type of model that is used
and the situations in which it is used are explicitly re-
lated to the rationales for using them. In summary, we
can conclude that the balance model, which at first sight
may seem to be a rather simple model—and maybe
therefore is often used to teach students linear equation
solving—is actually a rather complex model, of which
still a lot has to be discovered to be used optimally in
education.
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