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Multiple-true-false questions reveal more
thoroughly the complexity of student
thinking than multiple-choice questions: a
Bayesian item response model comparison
Chad E. Brassil and Brian A. Couch*

Abstract

Background: Within undergraduate science courses, instructors often assess student thinking using closed-ended
question formats, such as multiple-choice (MC) and multiple-true-false (MTF), where students provide answers with
respect to predetermined response options. While MC and MTF questions both consist of a question stem followed
by a series of options, MC questions require students to select just one answer, whereas MTF questions enable
students to evaluate each option as either true or false. We employed an experimental design in which identical
questions were posed to students in either format and used Bayesian item response modeling to understand how
responses in each format compared to inferred student thinking regarding the different options.

Results: Our data support a quantitative model in which students approach each question with varying degrees of
comprehension, which we label as mastery, partial mastery, and informed reasoning, rather than uniform random
guessing. MTF responses more closely estimate the proportion of students inferred to have complete mastery of all
the answer options as well as more accurately identify students holding misconceptions. The depth of instructional
information elicited by MTF questions is demonstrated by the ability of MTF results to predict the MC results, but
not vice-versa. We further discuss how MTF responses can be processed and interpreted by instructors.

Conclusions: This research supports the hypothesis that students approach MC and MTF questions with varying
levels of understanding and demonstrates that the MTF format has a greater capacity to characterize student
thinking regarding the various response options.

Keywords: Assessment, Bayesian analysis, Item response theory, Mixed conceptions, Multiple-choice, Multiple-true-
false, Question format, Undergraduate

Introduction
While assessment instruments have been used com-
monly in undergraduate science education to measure
student achievement for the purposes of assigning
grades, these instruments can also play a formative role
in the learning process (Angelo, 1998; Handelsman,
Miller, & Pfund, 2007). In particular, formative assess-
ment provides an opportunity for students to practice
answering questions, gives instructors information they
can use to alter their teaching, and creates opportunities

for students to receive feedback on their progress (Black
& Wiliam, 2009; Ericsson, Krampe, & Tesch-romer,
1993). Given that instructors often infer student under-
standing based on aggregate responses to individual
questions, assessment items must provide accurate infor-
mation that can be used to diagnose and give feedback
to students with respect to specific conceptions.
When designing an instrument or activity, assessment

developers choose a question format (i.e., item type) that
meets their needs while considering various practical
constraints, such as limited assessment time and grading
resources. In many cases, instructors use closed-ended
formats where students select from a predetermined list
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of response options. Multiple-choice (MC) questions
represent a common closed-ended format used through-
out undergraduate science education (Eagan et al.,
2014). By having students select a single correct answer
among a list of plausible distractors, MC questions pro-
vide an estimate of how many students endorse correct
versus incorrect ideas. The MC format has been
employed in a wide variety of contexts, from low-stakes
daily activities to high-stakes assessments determining
professional advancement. Education researchers have
also developed tools that employ MC questions for for-
mative purposes. For example, MC “clicker” questions
serve as in-class check-ins that can facilitate student dis-
cussion and provide real-time feedback to inform in-
structional decisions (Crouch & Mazur, 2001; Hubbard
& Couch, 2018; Vickrey, Rosploch, Rahmanian, Pilarz, &
Stains, 2015; Wood, 2004). Similarly, numerous MC
research-based assessments (RBAs) and concept inven-
tories have been developed to help instructors diagnose
student understandings and guide larger-scale changes
to curriculum and instruction (e.g., Hestenes, Wells, &
Swackhamer, 1992; Smith, Wood, & Knight, 2008).
Despite the widespread use of the MC format, research

into student mental models has exposed potential limita-
tions of MC questions. Students often have mixed and
incoherent understandings of natural phenomena, mean-
ing that they can simultaneously hold both correct and
incorrect ideas regarding particular concepts (Nehm &
Reilly, 2007; Nehm & Schonfeld, 2008). This presents a
problem for the MC format because students who select
the correct answer may still consider one or more of the
distractors to also be correct (Parker et al., 2012). In
light of this issue, some assessment developers have
adopted multiple-response formats that allow students
to evaluate each response option (Kalas, O’Neill, Pollock,
& Birol, 2013; Newman, Snyder, Fisk, & Wright, 2016).
Multiple-true-false (MTF) questions represent a

multiple-response format that retains the question stem
and response option structure of MC questions but re-
quires students to separately mark each option as true
or false, rather than selecting one correct option. Early
work in comparing MC and MTF questions focused on
quantifying reliability, difficulty, and the amount of time
needed to complete questions (Dudley, 2006; Frisbie,
1992; Haladyna, Downing, & Rodriguez, 2002; Javid,
2014). In general, the MTF format yields superior in-
ternal test reliability determined by coefficient alpha,
even when accounting for item number and test dur-
ation (Couch, Hubbard, & Brassil, 2018; Frisbie & Swee-
ney, 1982; Kreiter & Frisbie, 1989). While students are
known to employ test-taking strategies (e.g., option
length comparisons, option elimination) for MC ques-
tions (Ellis & Ryan, 2003; Kim (Yoon & Goetz, 1993;
Stenlund, Eklöf, & Lyrén, 2017), less is known about

how students approach MTF questions. Studies produce
conflicting results with respect to how response patterns
differ based on being asked to only endorse true state-
ments versus being asked to also mark false statements
(Cronbach, 1941; Pomplun & Omar, 1997). Recent work
has highlighted how MTF questions reveal the preva-
lence of mixed and partial understandings among stu-
dents, even within upper-division courses consisting
mostly of graduating seniors (Couch, Wood, & Knight,
2015; Parker et al., 2012).
To understand the effects of question format on stu-

dent responses, members of our research team previ-
ously conducted a within-subjects controlled experiment
where similar groups of students answered identical
questions in either the MC or MTF format (Couch et al.,
2018). On average, nearly half of the students who cor-
rectly answered a MC question likely would have en-
dorsed one or more of the remaining distractors, if given
the opportunity. The MC format underestimated the
proportion of students who would have endorsed the
correct answer as well as each incorrect distractor in the
MTF format. These findings collectively suggested that
the MC format systematically misrepresents student
thinking by failing to reflect the partial understandings
that most students hold regarding the various response
options. This has implications when using the MC for-
mat for formative and diagnostic purposes because it
could lead instructors and students to make instruc-
tional decisions based on incomplete or inaccurate
information.
While initial analyses suggested that MTF questions

reveal partial understandings otherwise obscured by the
MC format, these results warranted further investigation
to understand how students process the two question
formats and address alternative explanations for previ-
ous results. A major difference between the MC and
MTF formats lies in their putative guess rates. When
students engage in uniform random guessing, each MC
option will be selected roughly 25% of the time, whereas
each MTF statement will be endorsed 50% of the time.
Thus, the previous finding that students endorse both
correct and incorrect statements more in the MTF for-
mat than the MC format could be partially explained by
the different guess rates. Further, the MTF format could
have induced acquiescence bias, where students system-
atically tend to mark true for MTF statements, leading
to inflated endorsement rates based on non-content rea-
sons (Cronbach, 1941). Finally, the presence of weak dis-
tractors could have led the MC format to overestimate
question mastery because adequate alternatives were not
presented to attract students with partial understandings.
Response modeling represents an approach re-

searchers can use to estimate underlying parameters that
are not directly apparent in raw responses. Item
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response theory (IRT) models person ability and item
parameters (i.e., difficulty, discrimination, and pseudo-
guessing) based on student responses across an instru-
ment (de Ayala, 2008). When applied to MC questions,
IRT typically considers responses as dichotomous
correct/incorrect variables, and thus, does not provide
insights on student thinking regarding the various re-
sponse options. However, polytomous responses from
MC option selections can be incorporated into IRT
models, known as nominal response models, enabling
one to estimate the probability of a student selecting a
particular response option based on a student’s overall
ability level (Bock, 1972). This approach can lead to
more accurate person ability estimates (Baker & Kim,
2004; Briggs, Alonzo, Schwab, & Wilson, 2006) and
more refined information regarding the relative attractive-
ness of the different response options for students at dif-
ferent ability levels (Bolt, Cohen, & Wollack, 2001;
Thissen, Steinberg, & Fitzpatrick, 1989). However, since
the MC format intrinsically depends on students selecting
only one answer, this approach requires modification for
use with MTF questions, where students separately evalu-
ate each response option associated with a question stem.
We sought to develop a response model that could

simultaneously be applied to both MC and MTF ques-
tions to understand how student thinking becomes
manifest in responses to each format. We developed a
variant of a Bayesian item response model that included
MC and MTF responses, incorporating information on
how students responded to each option. In part, our
model represents a reparameterization of a traditional
IRT model. Terms such as item difficulty and discrimin-
ation map onto particular IRT parameters and also
frame an implied interpretation of student cognitive pro-
cessing. We utilize the unique nature of our paired, ex-
perimental questions to develop a model that can be
derived from IRT parameters, such as item difficulty, but
that ultimately parameterizes new terms. These new
terms frame the interpretation of our analysis in terms
of student understanding with respect to different
response options. Consequently, these terms imply a
different cognitive model of student processing that can
guide instructors in considering specific student
misconceptions.
In developing this model, we wanted to understand

how student responses varied with respect to specific
questions, rather than focusing on how well each format
estimates overall student ability levels. Specifically, we
aimed to address several related research questions.

� How well do MC and MTF response rates
approximate the proportion of students that have
complete, partial, or little understanding of the
response options?

� To what extent do MC and MTF responses reflect
random guessing?

� To what extent can responses for each format be
used to predict responses to the other format?

� What is the potential utility of MC, as compared to
MTF, to reveal student question mastery, even with
different distractor characteristics?

� How should MTF responses be processed and
interpreted by educators in light of the model?

In answering these questions, we sought to generate
practical insights that instructors can follow to use
closed-ended assessments in a manner that best captures
the complexity of student thinking.

Methods
Experimental design
The current analyses utilize a previously reported dataset
(Couch et al., 2018) but do not overlap with this previ-
ous publication. Briefly, we implemented a crossover ex-
perimental design within four unit exams of an
introductory biology course. Our question development
aligned with typical instructor construction and inter-
pretation of unit exams, where questions do not undergo
“think-aloud” interviews and individual questions are
used to make conclusions about student understanding
of specific topics. Experimental MC ×MTF questions
were written that contained one correct/true option and
three incorrect/false distractors, enabling them to be
presented with identical wording in either the MC or
MTF formats (i.e., the formats differed only in how stu-
dents input their respective answers). We followed
established item writing guidelines to maximize the ex-
tent to which questions were clear, concise, and
well-targeted for the intended group (Frey, Petersen, Ed-
wards, Pedrotti, & Peyton, 2005). For each experimental
question, the MC form of the question was given on one
exam version, and the MTF form was given on the other
exam version. A total of 36 MC ×MTF questions were
implemented across the semester in a counterbalanced
fashion, such that each student answered half the experi-
mental questions in the MC form and half in the MTF
form. This design made our investigation of question
format robust to issues of question writing because the
same wording appeared across both formats. These ex-
perimental questions were embedded in an exam with a
mix of additional MC and MTF questions. All MC and
MTF questions had four response options or statements,
and the entire MTF section on each exam had a rela-
tively even balance of questions with one, two, or three
true statements. Alternate exam versions were distrib-
uted to students in a semi-random fashion, and students
recorded their responses to closed-ended questions on
Scantron sheets.
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For an individual MC ×MTF question, the MC
response options and corresponding MTF statements
appeared in an identical order on exams. Across the dif-
ferent MC ×MTF questions, the position of the correct/
true option varied in a semi-random fashion, such that
each of the four answer positions received roughly equal
representation. For the purpose of data analysis and
presentation, the response options have been reordered:
the first option corresponds to the correct/true option
and the remaining incorrect/false options are ordered
sequentially according to their average selection/en-
dorsement rates, with the most frequently selected dis-
tractor coming first and the least frequently selected
distractor coming last. Thus, the correct response to
MC questions will be A, and options B–D will represent
the distractors in order of decreasing selection/endorse-
ment rates. MTF question responses will be represented
by a four-digit code, corresponding to answers to each
of the four statements. For example, a fully correct an-
swer will be represented by TFFF, meaning that the stu-
dent correctly answered true for the true statement and
correctly answered false for the three false statements.
A total of 194 students consented to have their exam

data released for research purposes, representing 78% of
total course enrollment. Student data was included in
the data set on an available case basis (i.e., students who
missed one or more exams typically due to course with-
drawal still had their available data included). All student
data was analyzed at once after the semester; we did not
separately analyze the data for each exam. Students had
a raw average of 72 ± 13% SD across the four exams, in-
cluding the other non-experimental questions. Add-
itional file 1: Supplementary Material 1 provides a
summary of student demographic characteristics. This
research was classified as exempt from the Institutional
Review Board review, Project ID 14314.

Analyses
A Bayesian approach to modeling student responses
(Fox, 2010) allowed us to construct a model of student
thinking and utilize that model to compare the two
question formats. Our response model builds on the idea
that students have certain incoming understandings of
the various response options when they encounter an
experimental exam question. These understandings are
then translated into specific responses depending on the
format of the question. In the process of model con-
struction, we formulated latent (i.e., not directly ob-
served) parameters describing student approaches, and
we calculated a set of shared parameters for each MC ×
MTF question to simultaneously predict aggregate
population-level student response probabilities in both
formats. At the same time, we accounted for differences
in individual student performance, a hierarchical feature

of the data for which a Bayesian approach is well suited
when used in combination with a structured model. In
our case, the utility of priors was not a motivating
feature of a Bayesian approach. Therefore, weak, or
vague, priors were utilized throughout, essential in elim-
inating the influence of priors in this analysis. The
repeated measures aspect of the data in which each stu-
dent answers multiple questions was accounted for when
we included a student ability parameter (see individual
student performance, as described below). We fit the
best parameters for alternative models and compared
the fit of each model to the empirical data. In the
best-fit model, students process questions via a decision
tree involving mastery, partial mastery, informed reason-
ing, and endorsement bias (Fig. 1). Additional file 1:
Supplementary Material 2 includes a mathematical
description of the Bayesian model for the most sup-
ported model.

Mastery
The mastery component modeled the proportion of stu-
dents that had correct understandings of all the response
options and therefore provided a fully correct response
in either format (i.e., they answered A for the MC for-
mat or TFFF for the MTF format). While all students
with mastery answered A or TFFF, not all students with
these responses fell under mastery because some stu-
dents may have arrived at fully correct answers via an-
other approach (i.e., partial mastery or informed
reasoning, as described below). Mastery was a latent
variable inferred based on student responses (i.e., it was
not determined using an external tool) and limited to
the context of the particular statement options in each
question. While this definition of mastery has limitations
for extrapolation beyond the statement options, it is ap-
propriately used as a comparison metric between the
two formats within this study.

Partial mastery
Partial mastery modeled the proportion of students that
had a correct understanding of the correct/true state-
ment but also mistakenly believed that one of the dis-
tractors was also true, albeit to a lesser extent. For a MC
question, these students answered A, and for an MTF
question, they endorsed the correct answer along with
the first distractor (i.e., they answered TTFF). In the first
alternative structure, students with partial mastery en-
dorsed the correct answer in the MTF format along with
either the first or second distractor (i.e., they answered
TTFF or TFTF). In the second alternative structure, stu-
dents with partial mastery endorsed the correct answer
in the MTF format along with either the first, second, or
third distractor (i.e., they answered TTFF, TFTF, or
TFFT). Again, while all students with partial mastery
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answered A or TTFF, not all students with these
responses fell under partial mastery because they may
have arrived at these answers via another approach (i.e.,
informed reasoning, as described below).

Informed reasoning based on option attractiveness
Students that did not have either mastery or partial mas-
tery were modeled as using informed reasoning to
choose a response based on the underlying attractiveness
of the various response options/statements. Attractive-
ness values, latent variables in the model, were estimated
for each option/statement, representing the independent
probability of endorsing each option/statement. On a
pedagogical level, attractiveness values provide insights
into the degree to which struggling students were in-
clined to select/endorse the various options and, there-
fore, the degree to which students consider distractors
as valid concepts.
In the MTF format, the probability that a student

using informed reasoning would endorse a statement as
being true was calculated as the attractiveness of that
option. Thus, the probability of selecting a particular an-
swer pattern for a MTF question was the product of the
associated attractiveness values for the four individual

statements. For the MC format, the probability that a
student using informed reasoning would select a particu-
lar option was based on the probabilities of the four
different MTF answer patterns specifying singular en-
dorsement of each option (i.e., TFFF, FTFF, FFTF, and
FFFT corresponding to A, B, C, and D, respectively).
The probability of selecting a particular MC option was
calculated as the probability of that particular response
pattern divided by the sum of all four single-T probabil-
ities (see Additional file 1: Supplementary Material 3 for
further description).

Informed reasoning with MTF endorsement bias
Within the MTF format, we also recognized that stu-
dents may have tendencies to endorse certain answer
patterns instead of considering each statement inde-
pendently from other statements. Students operating
under double-T endorsement bias still weighed the vari-
ous statements according to their underlying attractive-
ness values but had a bias to select among the answer
patterns containing two true answers (i.e., TTFF, TFTF,
TFFT, FTTF, FTFT, or FFTT) above that expected based
on attractiveness alone. In the first alternative structure,
students operating under multi-T bias favored response

Fig. 1 Decision tree representation of the best-fit model describing how students approached a multiple-choice (MC) and b multiple-true-false
(MTF) questions. In the MC format, “A” represented selection of the correct statement. Students with mastery or partial mastery were modeled as
selecting A in the MC format. Students outside these categories engaged in informed reasoning based on the attractiveness values of all the
options. In the MTF format, “T” and “F” represent true and false answer selections for a question, with the first position referring to the answer to
the true statement and the remaining positions referring to answers to the false statements in order of decreasing attractiveness. Students with
mastery provided a fully correct answer of TFFF in the MTF format. Students with partial mastery answered TTFF, meaning they correctly said true
for the true statement, incorrectly said true for the most attractive false statement, and correctly said false for the remaining false statements.
Students outside the mastery and partial mastery categories engaged in informed reasoning alone based on the attractiveness of each statement.
An additional group of students engaged in informed reasoning with endorsement bias, which restricted their responses to patterns with two
true answers
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patterns containing two or more true answers. In the
second alternative structure, rather than calculating
double-T bias for each question, a double-T bias value
was calculated for each student based on the hypothesis
that each student may have their own intrinsic tendency
for this bias.
Note, the model structure for endorsement bias was

superficially similar to partial mastery in that students
were restricted to a subset of all the possible answer per-
mutations. However, endorsement bias applies to those
students engaged in informed reasoning with the correct
answer being weighed against other options. In contrast,
partial mastery describes students with not only a de-
fined understanding of the correct answer, but also a de-
fined misunderstanding of a distractor.

Random guessing
We tested an additional component to account for ran-
dom guessing. Students engaged in random guessing
were modeled as having a 25% probability of selecting
each MC option and a 50% chance of selecting true for
each MTF statement (i.e., uniform random). In one case,
random guessing was an alternative to informed reason-
ing. In another case, random guessing was modeled in
addition to informed reasoning (i.e., students not in
mastery, partial mastery, or informed reasoning were
modeled to be engaged in random guessing).

Individual student performance
We included an additional individual student perform-
ance parameter to account for differences in the particu-
lar sample of students taking each question version.
Each individual student performance parameter was
based on the extent to which they demonstrated mastery
across all the questions. The probability of a student
answering a particular question via mastery was thus
modeled based on the mastery level of the question as
well as the student’s individual performance across all
questions.

Relationship to IRT models
We developed a specifically structured polytomous item
response model. In terms of a traditional binary item
response model, our model maps onto the equivalent of
a one-parameter logistic model, or Rasch model (Rasch,
1960). The item difficulty is the negative of the question
mastery parameter (− ui), and we model the ability level
for each individual (vj). We did not include the discrim-
ination parameter from a two-parameter logistic model
because our interest is not in determining an individual,
assessment-level ability. Rather, our interest is in con-
trasting these two question formats in their ability to
provide information on the item difficulty and on the
attractiveness of options for individual questions. We

included a structure accounting for informed reasoning,
which is similar to but provides richer information than
the pseudo-guessing parameter of the three-parameter
logistic model. We model a complex polytomous re-
sponse and construct a unique model relating MC re-
sponses to MTF responses with a common set of
parameters. Therefore, our model is a derived version of
IRT, specifically structured for our comparison between
these question formats. Our data consists of the joint re-
sponses across all students and across both formats of
the question.

Model fit
The above structures were each modeled at the question
level. The independent variables were the question for-
mat being answered and the student answering. The
response variable in all models was the selection of a
MC option or selection of true or false for the four MTF
statements for each question by each student. All pa-
rameters with the exception of question-level mastery
were modeled hierarchically (i.e., by fitting mean and
dispersion parameters for the entire question distribu-
tion from which individual question values were drawn).
In mixed-models parlance, this equated to considering
these parameters as “random effects.” Question-level
mastery was fit independently for each question (i.e., as
a “fixed effect”). This decision was informed by prelimin-
ary analyses indicating that mastery levels were fairly uni-
formly spread, while the values of other question-level
parameters clustered into distributions (Additional file 1:
Supplementary Material 4).
To justify the inclusion of each structure, model

comparisons were made using a Watanabe–Akaike in-
formation criterion (WAIC), a recently recommended
Bayesian analog to AIC (Gelman, Hwang, & Vehtari,
2014; Vehtari, Gelman, & Gabry, 2017). The best-fit
model was compared with and without each parameter
structure, resulting in nested models. Components were
retained when their absence increased WAIC by more
than 2, a suggested threshold for model comparison
(Gelman et al., 2014). For nested models, a decrease in
WAIC of less than 2 was assumed to be consistent with
a component of little to no real effect and therefore
dropped for parsimony. Models were also compared
with non-nested, alternative structures, and the structure
that provided the largest WAIC decrease was selected
for model inclusion. To be clear, the structure of the
most supported model is derived from the data and not
a single a priori hypothesis. However, the structures are
based on potential types of student processing, and our
analysis is consistent with multi-model inference (Burn-
ham & Anderson, 2002).
Overall, priors were non-informative or weak-inform-

ative so as to have no practical influence on the model
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fit. Non-informative, uniform priors were used for all pa-
rameters with beta distributions (α = 1 and β = 1 for those
having probabilities constrained between 0 and 1).
Half-Cauchy priors (Gelman, 2006) were used as
weak-information priors (σ = 2.5) for the dispersal param-
eter of the hierarchical probability values (i.e., the distribu-
tions from which the question-level values were drawn).
Weak-information normal priors (centered at the mean
with a standard deviation = 2) were used for mastery
parameters, which were themselves components in a logit
link function (Additional file 1: Supplementary Material
2). Model parameterization was conducted using the pro-
gram Stan in R with the package rstan (Stan Development
Team, 2017). Model comparison via WAIC was calculated
in R using the package loo.

Results
Model identification
By comparing the fit statistics for various model permu-
tations, we arrived at a best-fit model that included
structures for mastery, partial mastery, informed reason-
ing based on option attractiveness, informed reasoning
with endorsement bias, and individual student perform-
ance (Table 1, model A). Comparisons among alternative
structures enabled us to understand student response
tendencies. The most supported model provides a hier-
archical and probabilistic representation of how students
processed MC and MTF questions (Fig. 1). The param-
eter distributions for the various parameters were consist-
ent with either the hierarchical or independent nature of

each component (Additional file 1: Supplementary Material
4). The best-fit model also produced reasonable posterior
predictive checks in which computed values were com-
pared to observed response data.
With respect to alternative model structures, students

with partial mastery were best modeled as selecting
TTFF (Table 1, model A), rather than alternative models
in which these students correctly selected true for the
true statement and also selected true for any one of the
two most attractive false statements (model D) or any
one of the three false statements (model E). These find-
ings support the notion that some students had an un-
derstanding of three out of four response options, but
they held a misconception regarding the most attractive
distractor. For most questions, partial mastery made lit-
tle contribution, but for roughly seven questions, partial
mastery enabled a sufficiently better fit to warrant reten-
tion in the final model (Additional file 1: Supplementary
Material 4).
Students without mastery or partial mastery were best

modeled as engaging in informed reasoning based on
statement attractiveness. This structure was the most
strongly supported of any element in the model in that
replacing it with random guessing resulted in the largest
WAIC increase (model F). While some students within
this group selected answers based solely on their attract-
iveness, we also tested structures in which students en-
gaged in informed reasoning biased their responses
toward patterns with two true answers (double-T
endorsement bias) or multiple true answers (multi-T

Table 1 Support for model structures. Model A was the best-supported model in italics. Changes in structures from model A are
indicated. The differences in WAIC compared to model A were greater than 13 for all models, except model J. Given that model J
was more complex, that model A was nested within model J, and that the WAIC difference was small (less than 2), the simpler
model A was accepted for parsimony

Model structures WAIC ΔWAIC WAIC SE PWAIC

A Mastery, TTFF partial mastery, informed reasoning based on attractiveness,
informed reasoning with double-T endorsement bias, individual student performance

18,520.7 0 200.0 342.1

B − remove question-level mastery 18,927.0 − 406.3 199.1 288.7

C − remove TTFF partial mastery 18,566.0 − 45.3 200.2 328.9

D − remove TTFF partial mastery
+ replace with TTFF-TFTF partial mastery

18,534.3 − 13.6 199.7 341.8

E − remove TTFF partial mastery
+ replace with TTFF-TFTF-TFFT partial mastery

18,536.5 − 15.8 199.5 333.5

F − remove informed reasoning based on attractiveness
+ replace with random guessing

19,582.4 − 1061.7 203.4 268.4

G − remove double-T bias 18,656.1 − 135.4 201.4 330.3

H − remove double-T bias
+ replace with multi-T bias

18,533.4 − 12.7 200.3 344.6

I − remove question-level double-T bias
+ replace with global double-T bias for each student

18,539.6 − 18.9 200.0 325.1

J + add random guessing for students not in mastery, partial mastery, or
informed reasoning

18,519.9 + 0.8 199.9 356.1

K − remove individual student performance 19,448.5 − 927.8 196.7 180.2
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endorsement bias). We found that double-T bias was
more strongly supported than multi-T bias (model H).
While the distribution of double-T bias values was
closely clustered, there was stronger support for
question-level bias values over student-level bias (model
I). To further address the possibility of random guessing,
we tested an additional model in which students without
mastery, partial mastery, or informed reasoning engaged
in random guessing (model J). For a nested model,
WAIC did not decrease more than would be expected
by chance alone, and so this structure was not included
in the best-fit model. Thus, in no case did the random
guessing structure provide sufficient explanatory power
to warrant inclusion in the final, best-fit model.
In summary, when considering how students proc-

essed MC and MTF questions, a reasonable initial model
would have been one in which all students engaged in
informed reasoning based on option attractiveness. A
joint attractiveness value for each response option/state-
ment could have been estimated and converted into a
predicted selection/endorsement probability in the MC
and MTF formats (Fig. 2). In practice, this model pro-
vides a poor approximation of observed student re-
sponses, particularly underestimating the proportion of
students that selected the correct (A) and fully correct

(TFFF) answers in the MC and MTF formats, respect-
ively. Additional structures helped account for the
prevalence of certain observed response patterns. In the
MC format, mastery and partial mastery each typically
increased the proportion of students predicted to answer
correctly. In the MTF format, mastery typically raised
the predicted number of fully correct responses (TFFF),
and partial mastery increased the predicted partially
correct TTFF responses. Double-T endorsement bias
slightly suppressed predicted TFFF responses while ele-
vating all the response combinations with two true an-
swers. The addition of these structures brought
predicted responses into closer alignment with observed
response rates, consistent with the notion that each
structure represented an approximation of how subsets
of students approached the questions.
In the MTF format, the selection of TFFF is most

strongly influenced by mastery and is generally robust to
the consequences of partial mastery and endorsement
bias (Fig. 2). Partial mastery and endorsement bias can
have fairly large effects on the rate of students that
choose TTFF. Thus, quantifying partial mastery is a key
asset of the MTF format that cannot be recapitulated by
MC questions. Endorsement bias, while generally small,
does cloud fine-scale interpretation of distractors.

Fig. 2 Diagram illustrating how the addition of different components leads to changes in estimated parameter values. Panels show best-fit
parameters averaged across all questions, with the right-hand panel re-scaled for clarity. For each format, the predicted proportion of student
answers is first shown under a simplified model in which all students only use informed reasoning based on the attractiveness of the response
options. Subsequent columns include the stated model component in addition to parameters to the left
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However, endorsement bias pulls students engaging in
informed reasoning away from TFFF, distilling the selec-
tion of TFFF as a more honest representation of mastery.

Format comparison
Calculating parameter values for each structure provided
an estimation of the proportion of students that oper-
ated according to a given structure for each question.
Comparing observed student responses to these inferred
values revealed the extent to which each format pro-
vided raw answers that adequately captured inferred stu-
dent approaches. To understand the degree to which
each format identified students with complete under-
standings of all the response options, we compared the
rates at which students selected the correct response in
the MC format or provided a fully correct answer in the
MTF format to the inferred mastery level for each ques-
tion (Fig. 3). We found that correct answer rates in the
MC format overestimated inferred mastery to a large
degree, and the degree of overestimation varied mark-
edly among questions. Conversely, the fully correct re-
sponse rate in the MTF format had close to a
one-to-one relationship with inferred mastery levels.
The greater variation in MC questions could not be

attributed to an unexplained error in the model (i.e.,

the inherent noise in choosing one out of four op-
tions), since predicted response rates closely matched
observed response rates. A good fit is illustrated for
both MC and MTF formats, without major bias. The
greater differences between the open (predicted) and
closed (observed) values for the multiple choice format
is simply a consequence of the inherent noise in a
four-option MC response as opposed to an effectively
16-option MTF response pattern. Conversely, the vari-
ance between MC correct responses and inferred mas-
tery resulted from variance in the attractiveness of the
response options comprising each question (i.e., some
combinations of attractiveness values enabled the cor-
rect option to more closely approximate inferred mas-
tery than other combinations). For example,
distractors with low attractiveness would lead most
students using informed reasoning to choose the cor-
rect answer in MC, whereas relatively even attractive-
ness among distractors would result in students using
informed reasoning to choose an incorrect answer in
MC. In contrast, a fully correct MTF response pro-
vided a more consistent estimate of inferred mastery
because MTF answer patterns were not as heavily in-
fluenced by the particular combination of statement
attractiveness comprising each question.

Fig. 3 Multiple-choice (MC) correct response rates provide a poor estimation of inferred mastery, while multiple-true-false (MTF) fully correct
response rates provide a close approximation of inferred mastery. The x-axis represents the inferred mastery levels for each question derived from
student responses in both formats. The y-axis represents the proportion of correct (A) or fully correct (TFFF) responses for MC and MTF questions,
respectively. Closed circles represent observed values, and open circles represent predicted values. Vertical lines connect the observed and
predicted values for an individual question in a particular format. The long solid lines represent the best fit of the parameter averages for each
format. The one-to-one line is shown in solid gray
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To further understand how student answers corre-
sponded to underlying question approaches, we visual-
ized the proportion of students modeled as selecting
each answer choice through a particular approach. In
the MC format, some students selected the correct an-
swer based on mastery, but many additional students
also selected the correct answer based on partial mastery
or informed reasoning (Fig. 4a). Thus, students could ar-
rive at the correct answer through three distinct ap-
proaches. The mastery students chose the correct
answer based on their correct understanding of all the
options. The partial mastery students selected the cor-
rect MC answer, but they would have incorrectly en-
dorsed the first distractor, if given the opportunity. The
students using informed reasoning did not have cer-
tainty regarding any of the statements, but they chose
the correct answer based on a comparison of the relative
merits of each option. Finally, students could arrive at
the incorrect answer through informed reasoning that in-
volved comparing the attractiveness of the different an-
swer options.
In the MTF format, student answers showed closer

alignment with their approaches. Some students selected
a fully correct answer based on mastery, while only a
small proportion arrived at this answer pattern via

informed reasoning (Fig. 4b). Some students selected a
partially correct answer based on either partial mastery
or informed reasoning. These answer patterns better
reflected their proportional understanding of the various
statements. Partial mastery students correctly answered
three out of four statements, while students using in-
formed reasoning earned credit in a manner that ap-
proximated their understanding of the four statements.
To contrast the differing information content in MC

and MTF questions, we determined the extent to which
responses from one format could predict response to the
other format. Generally, the root-mean-square deviation
(RMSD) of the data points from the one-to-one line was
higher when MC data alone was used to estimate ob-
served MTF statement endorsement rates (Fig. 5a), while
MTF data provided a much closer estimation of ob-
served MC option selection rates (Fig. 5b). Furthermore,
for the comparison of MC statement a and MTF option
a, which had similar RMSD, the use of MC data alone
was biased (Piñeiro, Perelman, Guerschman, & Paruelo,
2008) in the prediction of MTF endorsement, as indi-
cated by a significantly non-zero intercept (0.36, t = 5.99,
p < 0.0001) and a slope significantly different from one
(− 1.41, t = − 5.23, p < 0.0001). Conversely, the use of
MTF data alone accurately predicted the MC selection

A

B

Fig. 4 Proportion of responses by category for each question in the a multiple-choice (MC) and b multiple-true-false (MTF) formats, as predicted
by best-fit model parameters. Questions are ordered by average mastery level across the two formats, such that “harder” questions are to the left
and “easier” questions are to the right. Bar colors represent the modeled proportion of students giving an answer pattern through a particular
approach, as described in the legends. T*** represents a correct answer to the true statement and at least one incorrect answer to one of the
remaining false statements. F*** represents an incorrect answer to the true statement and any combination of answers to the remaining
statements. Correct and fully correct responses are bolded, which highlights the distribution of approaches by which students can select the
correct MC answer as opposed to the MTF format where students achieve a fully correct answer more strictly through a mastery approach
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rate, as indicated by an intercept that did not signifi-
cantly differ from zero (0.002, t = 0.026, p = 0.98) and a
slope that did not significantly differ from one (1.03, t =
0.253, p = 0.80).

Use of MTF format
We also wished to understand theoretically how the re-
lationship between MC correct responses and inferred
mastery levels was affected by distractor characteristics.
For students engaged in informed reasoning, the pres-
ence of more attractive distractors might draw students
away from the correct answer and reveal their limited
understandings. This is illustrated in two calculations in

which the attractiveness values of the distractors were
artificially changed (Fig. 6). In the first, all distractors
were as attractive as the most attractive distractor (i.e., a
practical limit), and in the second, the distractors were
each as attractive as the correct option (i.e., a theoretical
limit). While either of these conditions enabled MC cor-
rect responses to better approximate inferred mastery
levels, the relationship still lay far from the one-to-one
line. Conversely, the relationship for MTF questions lays
close to the one-to-one line in all cases.
Finally, while our model provided estimations of the

proportion of students that processed questions via dif-
ferent approaches, it would be impractical for an

A B

Fig. 5 a Multiple-choice (MC) data alone fails to predict the endorsement rates of multiple-true-false (MTF) statements, while b MTF data alone
more closely predicts MC results. The black filled circles represent predicted values using only data from the a MC or b MTF format. For
comparison purposes, the gray open circles represent predicted values using the full data set (i.e., including both MC and MTF response data).
One-to-one lines are shown in solid gray. Root-mean-square deviation (RMSD) is the mean deviation from the one-to-one line in the units of
endorsement or selection rate
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instructor to fit a complex Bayesian model for each
exam. Thus, we aimed to determine how instructors
could estimate the extent to which students had fully
achieved the specified learning objectives (i.e., mastery)
and to diagnose where remaining students had residual
difficulties (i.e., statement attractiveness). For MC ques-
tions, there was no way to use student responses to de-
termine underlying mastery of all the question options
because MC correct answer selection rates had an in-
consistent relation to inferred mastery levels (see Fig. 3).
Furthermore, MC selection rates for each answer option
provided a relatively weak approximation of option
attractiveness (Fig. 7a). For MTF questions, the propor-
tion of students that gave a fully correct response (TFFF)
correlated closely with inferred mastery levels (see Fig. 3).
The MTF endorsement rates among students who did
not answer fully correct also provided better approxima-
tions of the statement attractiveness values (Fig. 7a). In
practice, endorsement bias had a very minimal effect on
net endorsement rates per statement (Additional file 1:
Supplementary Material 5).
Consequently, statement endorsement rates for MTF

questions can be meaningfully processed by plotting the
fraction of students correctly endorsing each statement,
overlaid with a dashed line for the proportion of stu-
dents answering fully correct (Fig. 7b). We have included

processed results from four sample questions to illus-
trate how instructors can use MTF questions to under-
stand question performance and prioritize feedback
(Fig. 7b). In the first question, very few students pro-
vided a fully correct answer, indicative of low mastery
levels. The students struggled with the false statements
to varying degrees. For the second question, closer to
half of the students provided a fully correct answer,
while most of the remaining students incorrectly identi-
fied the first false statement as true. For the third and
fourth question, a high proportion answered fully cor-
rect, but the remaining students struggled to identify the
correct answer at various levels across the first three
statements, including the true statement. In each case,
the number of fully correct responses can serve as a
close approximation of full student comprehension,
while statement selection rates among the remaining
students can help pinpoint areas where struggling stu-
dents need additional support.

Discussion
How well do MC and MTF response rates approximate
the proportion of students that have complete, partial, or
little understanding of the response options?
With respect to ascertaining the degree of understand-
ing, we found MC correct answers provided a poor

Fig. 6 How predicted responses relate to inferred mastery with different distractor characteristics. Blue and orange lines represent predicted
correct/fully correct responses at the given inferred mastery level for multiple-choice (MC) and multiple-true-false (MTF) questions, respectively.
Solid lines represent mean parameters from observed data, dashed lines represent the practical limit where all distractors are as attractive as the
most attractive distractor, and dotted lines represent the theoretical limit where all distractors are as attractive as the correct answer. The one-to-
one line is shown in solid gray
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estimation of a student’s mastery of all the answer
options. Indeed, the proportion of students answering
a MC question correctly was substantially, but incon-
sistently, higher than the level of inferred question
mastery (Fig. 3). As a consequence, the MC format
failed to detect the large fraction of students who se-
lected the correct answer based on partial mastery or
informed reasoning of the various answer options
(Fig. 4). Granted, while it is impossible to quantify
partial mastery from MC responses alone, the finding
that a partial mastery structure explains MTF re-
sponses demonstrates that MC questions inherently
hide information on students inclined to simultan-
eously ascribe support to the correct answer and an
incorrect answer.

Conversely, the proportion of students that gave a
completely correct MTF answer (i.e., TFFF) correlated
closely with inferred mastery (Fig. 3), and very few stu-
dents achieved complete correctness based on informed
reasoning (Fig. 4). In short, this is because of the infor-
mation potential embedded in an MTF question. The
combined MTF response across four statements repre-
sents one of 16 statement combinations, while an MC
response can be only one of four outcomes. For students
with incomplete understandings, MC selection rates pro-
vided poor estimations of the independent attractiveness
of each option, whereas MTF statement responses corre-
lated more closely with statement attractiveness (Fig. 7a).
Taken together, these data provide compelling evidence
that selection of the correct MC answer did not preclude

A B

Fig. 7 a Relationship of multiple-choice (MC, blue circles) and multiple-true-false (MTF, orange circles) endorsement rates to option/statement
attractiveness values across all questions among students not giving fully correct answers. b Response pattern from four representative MTF
questions. The dashed line represents the proportion of students providing a fully correct answer (TFFF). The column labeled a represents the
proportion of students that answered correctly the true statement, and the columns labeled b–d represent the proportion of students that
answered correctly each false statement
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misunderstanding of other options. Rather, the MC format
masked important layers of student thinking that the
MTF format revealed.

To what extent do MC and MTF responses reflect random
guessing?
One of the most salient differences between the MC and
MTF formats stems from the different theoretical rates
at which students are able to guess the correct answer.
Contrary to common expectations, we found that purely
random guessing was not broadly characteristic of stu-
dent responses. Instead, students with limited under-
standings were better modeled as making selections
based on some type of informed reasoning. The in-
formed reasoning structure has similarities to the “pseu-
do-guessing” parameter from IRT, which specifies the
probability at which low performing students will select
the correct answer (Hambleton, Swaminathan, & Rogers,
1991). However, the informed reasoning structure has
the additional benefit of accounting for mixed and
partial understanding across options. This result also
resonates with previous findings related to guessing be-
haviors on closed-ended questions. Indeed, Cronbach
(1941) concluded decades ago that “No guess is a com-
pletely random response; even the student without
knowledge consciously reacts to the tone and general
character of the statement.” Similarly, a meta-analysis of
the MC literature found that students typically select the
fourth and fifth options (ranked by student endorsement
rates) less than 5 % of the time and that removing these
options has little effect on overall test reliability (Rodri-
guez, 2005). This meta-analysis underscores the notion
that the theoretical guess rate (Fig. 3) has limited rele-
vance for MC questions because students can normally
eliminate certain options.
Given the potential for random guessing to artificially

inflate student scores, assessment developers have de-
vised approaches to either decrease guessing behaviors
or apply post hoc guessing corrections (Chiu & Camilli,
2013). For the MC format, test administrators often use
formula scoring that discourages guessing by penalizing
students for incorrect responses by an amount propor-
tional to the number of answer options (Frary, 1988).
This adjustment relies on the implicit assumption that a
student who does not know the correct answer ran-
domly chooses an option. Under this scoring scheme,
students are advised to answer questions if they can
eliminate at least one option and to leave questions
blank if they have no knowledge of any of the options.
By reducing the tendency to engage in random guessing,
this scoring scheme has been shown to yield moderate
increases in score reliabilities and validities (Alnabhan,
2002; Burton, 2002; Diamond & Evans, 1973). However,
this method also introduces confounding variables

related to personality and risk-taking behaviors and fails
to account for intermediate levels of understanding
between fully correct and random guessing (Ávila &
Torrubia, 2004). Our results further call formula scoring
into question on two levels. First, the finding that a ran-
dom guessing term does not fit the model suggests that
students rarely adopted this type of behavior in the given
assessment context. Second, the finding that an appre-
ciable number of students approach questions with
either partial mastery or informed reasoning demon-
strates that non-mastery students typically have some
underlying knowledge or intuitions regarding a question.

To what extent can responses for each format be used to
predict responses to the other format?
Correct MC responses were biased in predicting the
proportion of students that endorsed the corresponding
true statement in the MTF format. This was particu-
larly manifest on challenging questions where observed
MTF endorsement rates for true statements were
higher than endorsement rates predicted by MC data
alone (Fig. 5a, statement a). In other words, students
were drawn away from selecting the correct option by a
distractor in the MC format, but they were free to en-
dorse the correct statement in the MTF format inde-
pendent of the distractor.
Correct MC responses could not predict the rate of

fully correct MTF responses, and the selection rates for
MC distractors could not predict endorsement rates for
false statements in the MTF format (Fig. 5a). MC ques-
tions were particularly poor at capturing the extent to
which students believe incorrect ideas, likely because
this format forces students to select only one answer
when they may believe more than one to be correct.
Conversely, the MTF format enables students to separ-
ately endorse each answer option, thus revealing student
thinking in a manner that is less dependent on other op-
tions. As a consequence, MTF answer patterns alone fairly
accurately predicted the selection rates for both the cor-
rect and incorrect MC answers (Fig. 5b). Thus, from an
instructional standpoint, MC responses had more limited
informational content than MTF responses, particularly
with respect to the incorrect/false distractors.

What is the potential utility of MC, as compared to MTF,
to reveal student question mastery, even with different
distractor characteristics?
While we endeavored to write questions that could cap-
ture common correct and incorrect understandings
related to a given conceptual area, we also wished to in-
vestigate theoretically how distractor characteristics in-
fluence the ability of questions to diagnose student
conceptions. We reasoned that perhaps more attractive
distractors would draw non-mastery students away in
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the MC format, thus revealing their lack of complete un-
derstanding. Our calculations not only illustrated how
this could improve MC questions, but it also revealed
the fundamental limitations of the MC format in com-
parison to the MTF format (Fig. 6). This difference
between formats reflected the problem that, even with
highly attractive distractors, a substantial number of stu-
dents would have selected the MC correct answer based
on partial mastery or informed reasoning. These findings
support the notion that—for questions with independent
response options—the MC format will have an intrinsic
inability to estimate mastery of all the answer options
because the options have been reduced to a forced,
non-independent selection process.

How can MTF responses be appropriately processed and
interpreted by educators?
We propose the following scheme for processing MTF
responses for instructors. First, the percent of students
giving a fully correct answer can be calculated for each
question stem. These students provide a close estimation
of the students who have achieved question mastery and
reflect the relative extent to which the question remains
problematic. Then, the percent correct for each T/F
statement can be calculated to determine where the
remaining students are having difficulties. While this
processing does not incorporate the statistical structure
of the Bayesian model, it aligns closely with the statis-
tical analysis while providing a relatively convenient way
to parse assessment results according to two instructor
goals. On one level, the instructor wants to know how
many students have achieved mastery. On a second
level, the instructor wants to know where students with-
out mastery are still struggling in order to provide
appropriate feedback.

Conclusions
When used for diagnostic purposes, the efficacy of
closed-ended questions rests on the premise that selec-
tion of predefined response options can capture under-
lying student thinking (Adams & Wieman, 2011).
Building on our previous findings, we sought to address
several research questions related to how MC and MTF
questions reveal student understandings of the various
response options. We chose to develop a variant of a
Bayesian item response model because it enabled us to
propose that certain types of student understanding exist
within the population and simultaneously predict how
these understandings become manifest in the MC and
MTF formats. Our modeling took advantage of the
crossover experimental design by fitting joint parameters
for individual MC ×MTF questions, which permitted us
to test specific hypotheses regarding the relationship be-
tween question format-independent understandings and

question format-dependent response tendencies. By
comparing models with and without each model struc-
ture and alternative structures, we were able to deter-
mine the degree to which various latent student
understandings and approaches were consistent with ob-
served responses. Our analyses indicate that low per-
forming students use informed reasoning based on
option attractiveness but do not engage in uniform ran-
dom guessing.
Our findings further support the notion that MC re-

sponses provide limited insight into the degree to which
students believe the various answer options, while the
MTF format provides a more detailed way to capture
varying degrees of understanding within an individual
question. This work provides an empirically grounded
perspective to help address the stated need for theory on
the relationship between item formats and cognitive be-
havior (Haladyna et al., 2002). In considering our results,
it is important to note that our Bayesian analysis can
only identify structures and parameters supported by the
data. We must then interpret and align these with a
given student processing approach. Given the inherent
limitations of any forced-response format, there are add-
itional layers of complexity that we cannot capture, such
as the cognitive processes guiding informed reasoning
(e.g., to what extent does statement attractiveness stem
from underlying knowledge versus superficial item
cues?). While the experimental questions compared in
the Bayesian model were necessarily restricted to MTF
questions with a single true statement, we have no rea-
son to believe that this model of student processing
would be substantially different for MTF questions with
multiple true statements. We further note that the MTF
format takes longer for a student to process than an
equivalent MC question (Frisbie, 1992), but the moder-
ate increase in time required is considerably outweighed
by the several fold increase in response information
provided.
Our assessment development process aligns with typ-

ical instructor practice but differs from the development
of research-based assessments (RBAs) or concept inven-
tories. We did not analyze overall student ability with re-
spect to a broader construct, and our questions did not
undergo student interviews or pilot testing. While it is
possible that they would have different question proper-
ties, many of these MC-based instruments use questions
where distractors are not mutually exclusive from the
correct answer, and so we predict that they would simi-
larly overestimate the degree to which students have
question-level mastery. In light of this limitation, several
recent RBAs have elected to use the MTF format (Couch
et al., 2015, 2019; Semsar et al., 2019; Summers et al.,
2018). In this context, the MTF format helps improve
content validity through its ability to cover a broad
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range of concepts in a comparatively short time span as
well as item generalizability by addressing a particular
concept across multiple questions. Additional research is
needed to determine the applicability of our findings to
MC questions that have undergone a more thorough
development process. Given the important role that
research-based assessments have played in discipline-
based education research (National Research Council
(NRC), 2012), understanding the properties of different
question formats represents an important step to the
proper interpretation and use of assessment results.
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