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Abstract

Background: Large introductory STEM courses historically have high failure rates, and failing such courses often leads
students to change majors or even drop out of college. Instructional innovations such as the Learning Assistant model
can influence this trend by changing institutional norms. In collaboration with faculty who teach large-enrollment
introductory STEM courses, undergraduate learning assistants (LAs) use research-based instructional strategies designed
to encourage active student engagement and elicit student thinking. These instructional innovations help students
master the types of skills necessary for college success such as critical thinking and defending ideas. In this study, we
use logistic regression with pre-existing institutional data to investigate the relationship between exposure to LA
support in large introductory STEM courses and general failure rates in these same and other introductory courses at
University of Colorado Boulder.

Results: Our results indicate that exposure to LA support in any STEM gateway course is associated with a 63% reduction
in odds of failure for males and a 55% reduction in odds of failure for females in subsequent STEM gateway courses.

Conclusions: The LA program appears related to lower course failure rates in introductory STEM courses, but each
department involved in this study implements the LA program in different ways. We hypothesize that these differences
may influence student experiences in ways that are not apparent in the current analysis, but more work is necessary to
support this hypothesis. Despite this potential limitation, we see that the LA program is consistently associated with lower
failure rates in introductory STEM courses. These results extend the research base regarding the relationship between the
LA program and positive student outcomes.
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Background
Science, technology, engineering, and mathematics
(STEM) departments at institutes of higher education
historically offer introductory courses that can serve up
to 1000 students per semester. Introductory courses of
this size, often referred to as “gateway courses,” are
cost-effective due to the number of students able to
receive instruction in each semester, but they often lend
themselves to lecture as the primary method of instruc-
tion. Thus, there are few opportunities for substantive
interaction between the instructor and students or

among students (Matz et al., 2017; Talbot, Hartley, Mar-
zetta, & Wee, 2015). Further, these courses typically have
high failure rates (Webb, Stade, & Grover, 2014) and
lead many students who begin as STEM majors to either
switch majors or drop out of college without a degree
(Crisp, Nora, & Taggart, 2009). In efforts to address
these issues, STEM departments across the nation now
implement active engagement strategies in their classes
such as peer instruction and interactive student response
systems (i.e., clicker questions) during large lecture
meetings (Caldwell, 2007; Chan & Bauer, 2015; Mitchell,
Ippolito, & Lewis, 2012; Wilson & Varma-Nelson, 2016).
In addition to classroom-specific active engagement,* Correspondence: Jessica.Alzen@colorado.edu
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interventions are programs designed to guide larger
instructional innovations from an institution level, such
as the Learning Assistant (LA) model.
The LA model was established at University of Color-

ado Boulder in 2001. The program represents an effort
to change institutional values and practices through a
low-stakes, bottom-up system of course assistance. The
program supports faculty to facilitate increased learner-
centered instruction in ways that are most valued by the
individual faculty member. A key component of the LA
model is undergraduate learning assistants (LAs). LAs
are undergraduate students who, through guidance,
encourage active engagement in classes. LAs facilitate
discussions, help students manage course material, offer
study tips, and motivate students. LAs also benefit as
they develop content mastery, teaching, and leadership
skills. LAs get a monthly stipend for working 10 h per
week, and they also receive training in teaching and
learning theories by enrolling in a math and science edu-
cation seminar taught by discipline-based education
researchers. In addition, LAs meet with faculty members
once a week to develop deeper understanding of the
content, share insights about how students are learning,
and prepare for future class meetings (Otero, 2015).
LAs are not peer tutors and typically do not work

one-on-one with students. They do not provide direct
answers to questions or systematically work out prob-
lems with students. Instead, LAs facilitate discussion
about conceptual problems among groups of students
and they focus on eliciting student thinking and helping
students make connections between concepts. This is
typically done both in the larger lecture section of the
course as well as smaller meetings after the weekly lec-
tures, often referred to as recitation. LAs guide students
in learning specific content, but also in developing and
defending ideas—important skills for higher-order learn-
ing in general. The model for training LAs and the
design of the LA program at large are aimed at making a
difference in the ways students think and learn in college
overall and not just in specific courses. That is, we
expect exposure to the program to influence student
success in college generally.
Prior research indicates a positive relationship between

exposure to LAs and course learning outcomes in STEM
courses (Pollock, 2009; Talbot et al., 2015). Other
research suggests that modifying instruction to be more
learner-centered helps to address high failure rates (Cra-
colice & Deming, 2001; Close, Mailloux-Huberdeau,
Close, & Donnelly, 2018; Webb et al., 2014). This study
seeks to further understand the relationship between the
LA program and probability of student success. Specific-
ally, we answer the following research question: How do
failure rates in STEM gateway courses compare for stu-
dents who do and do not receive LA support in any

STEM gateway course? We investigate this question
because, as a model for institutional change, we expect
that LAs help students develop skills and dispositions
necessary for success in college such as higher-order
thinking skills, navigating course content, articulating
and defending ideas, and feelings of self-efficacy. Since
skills such as these extend beyond a single course, we in-
vestigate the extent to which students exposed to the LA
program have lower failure rates in STEM gateway
courses generally than students who are not exposed to
the program.

Literature review
The LA model is not itself a research-based instructional
strategy. Instead, it is a model of social and structural
organization that induces and supports the adoption of
existing (or creation of new) research-based instructional
strategies that require increased teacher-student ratio.
The LA program is at its core, a faculty development
program. However, it does not push specific reforms or
try to change faculty directly. Instead, the opt-in pro-
gram offers resources and structures that lead to changes
in values and practices among faculty, departments, stu-
dents, and the institution (Close et al., 2018; Sewell,
1992). Faculty members write proposals to receive LAs
(these proposals must involve course innovation using
active engagement and student collaboration), students
apply to be LAs, and departments match funding for
their faculty’s requests for LAs. Thus, the LA program
has become a valued part of the campus community.
The body of research that documents the relation-

ship between student outcomes and the LA program
is growing. Pollock (2006) provided evidence regard-
ing the relationship between instructional innovation
including LAs and course outcomes in introductory
physics courses at University of Colorado Boulder by
comparing three different introductory physics course
models (outlined in Table 1).
Pollock provides two sources of evidence related to

student outcomes regarding the relative effectiveness
of these three course models. First, he discussed aver-
age normalized learning gains on the force and
motion concept evaluation (FMCE; Thornton &
Sokoloff, 1998) generally. The FMCE is a concept in-
ventory commonly used in undergraduate physics
education to provide information about student learn-
ing on the topics of force and motion. Normalized
learning gains are calculated by finding the difference
in average post-test and pre-test in a class and divid-
ing that value by the difference between 100 and the
average pre-test score. It is conceptualized as the
amount the students learned divided by the amount
they could have learned (Hake, 1998).
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Prior research suggests that traditional instructional
strategies yield an average normalized learning gain of
about 15% and research-based instructional methods
such as active engagement and collaborative learning
yield on average about 63% average normalized learning
gains (Thornton, Kuhl, Cummings, & Marx, 2009). The
approach using the University of Washington Tutorials
with LAs saw a normalized learning gain of 66% on the
FMCE from pre-test to post-test. Average learning gains
for the approach using Knight’s (2004) workbooks with
TAs were about 59%, and average normalized learning
gains for the traditional approach were about 45%. The
average normalized learning gains for all three methods in
Pollock’s study are much higher than what the literature
would expect from traditional instruction, but the course
model including LAs is aligned with what is expected
from research-based instructional strategies. Second, Pol-
lock further investigated the impact of the different course
implementations on higher and lower achieving students
on FMCE scores. To do this, he considered students with
high pre-test scores (those with pre-test scores > 50%) and
students with low pre-test scores (those with pre-test
scores < 15%). For both groups of students, the course im-
plementation that included recitation facilitated by trained
TAs and LAs had the highest normalized learning gains as
measured by the FMCE.
In a similar study at Florida International University,

Goertzen et al. (2011) investigated the influence of
instructional innovations through the LA program in
introductory physics. As opposed to the University of
Washington Tutorials in the Pollock (2006) study, the
research-based curriculum materials used by Florida
International University were Open Source Tutorials
(Elby, Scherr, Goertzen, & Conlin, 2008) developed at
University of Maryland, College Park. Goertzen et al.
(2011) used the Force Concept Inventory (FCI; Hestenes,
Wells, & Swackhamer, 1992) as the outcome of interest
in their study. Despite the different curriculum from the
Pollock (2006) context, Goertzen et al. found that those
students exposed to the LA-supported courses had a

0.24 increase in mean raw gain in scores from pre-test
to post-test while students in classes that did not include
instructional innovations only saw raw gains of 0.16.
In an attempt to understand the broader relationship

between the LA program and student outcomes, White
et al. (2016) investigated the impacts of the LA model
on student learning in physics across institutions. In
their study, White et al. used paired pre-/post-tests from
four concept inventories (FCI, FMCE, Brief Electricity
and Magnetism Assessment [BEMA; Ding, Chabay,
Sherwood, & Beichner, 2006], and Conceptual Survey of
Electricity and Magnetism [CSEM]) at 17 different
institutions. Researchers used data contributed to the
Learning Assistant Alliance through their online assess-
ment tool, Learning About STEM Student Outcomes1

(LASSO). This platform allows institutions to administer
several common concept inventories, with data securely
stored on a central database to make investigation across
institutions possible (Learning Assistant Alliance, 2018).
In order to identify differences in learning gains for stu-
dents who did and did not receive LA support, White et
al. tested differences in course mean effect sizes between
the two groups using a two-sample t test. Across all of
the concept inventories, White et al. found average
Cohen’s d effect sizes 1.4 times higher for LA-supported
courses compared to courses that did not receive LA
support.
The research about the LA model shows that students

exposed to the model tend to have better outcomes than
those in more traditional lecture-based learning environ-
ments. However, due to the design of the program and
the goals of the LA model, there is a reason to expect
that there are implications for more long-term
outcomes. LAs are trained to help students develop
skills such as developing and defending ideas, making
connections between concepts, and solving conceptual
problems. Prior research suggests that skills such as
these develop higher-order thinking for students. Martin
et al. (2007) compared learning outcomes and innovative
problem-solving for biomedical engineering students in

Table 1 Pollock (2006) Physics I model descriptions

Name Key traits

#1: University of Washington Physics Tutorials materials
(McDermott & Shaffer, 2002) with LAs and TAs

Fall 2003; Spring 2004

Trained TAs and LAs facilitated small group work in recitation sections. Students worked on
homework assigned specifically for University of Washington Physics Tutorials. TAs and LAs
did not provide answers to the homework as much as guided discussion through
questioning techniques to help students construct their own knowledge via discussion.
TAs and LAs participated in weekly planning meetings to prepare for recitation meetings.

#2: Physics for Scientists and Engineers workbook
(Knight, 2004) with TAs
Fall 2004

TAs facilitated small group work in which students completed exercises in the Physics for
Scientists and Engineers workbook attached to a course textbook for half of the term.
During the last half of the semester, recitation was used to review homework in a more
traditional fashion, with TAs directly answering questions from the homework assignments.
Training for TAs was much more limited.

#3: Physics for Scientists and Engineers workbook with
traditional TAs
Spring 2005

No use of small group work. Recitation sessions oriented around the TA providing answers
to homework exercises rather than students working collaboratively to develop conceptual
understanding.
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inquiry-based, active engagement and traditional lecture
biotransport courses. They found that both groups
reached similar learning gains but that the active engage-
ment group showed greater improvement in innovative
thinking abilities. In a similar study, Jensen and Lawson
(2011) investigated achievement and reasoning gains for
students in either inquiry-based, active engagement or
lecture-based, didactic instruction in undergraduate biol-
ogy. Results indicated that students in active engagement
environments outperformed students in didactic envi-
ronments on more cognitively demanding items, while
the groups performed equally well on items requiring
low levels of cognition. In addition, students in active
engagement groups showed greater ability to transfer
reasoning among contexts.
This research suggests that active engagement such as

what is facilitated with the LA model may do more than
help students gain knowledge in a particular discipline
in a particular course. Over and above, active engage-
ment helps learners grow in reasoning and transfer
abilities generally. This increase in higher-order thinking
may help students to develop skills that extend beyond
the immediate course. However, there is only one study
focused on the LA model that investigates long-term
outcomes related to the program. Pollock (2009)
investigated the potential long-term relationship
between exposure to the LA program and conceptual
understanding in physics. In this line of inquiry, Pollock
compared BEMA assessment scores for those upper-div-
ision physics majors who did and did not receive LA
support in their introductory Physics II course, the
course in which electricity and magnetism is first cov-
ered. Pollock’s results indicate that those students who
received LA support in Physics II had higher BEMA
scores following upper-division physics courses than
those students who did not receive LA support in Phys-
ics II. This research provides some evidence to the
long-term relationship between exposure to the LA pro-
gram and conceptual learning. In the current study, we
continue this line of inquiry by investigating the rela-
tionship between receiving LA support in a gateway
course and the potential relationship to course failure in
subsequent gateway courses. This study also contributes
to the literature on the LA program as no prior research
attempts to examine the relationship between taking
LA-supported courses and student outcomes while con-
trolling for variables that may confound this relation-
ship. This study thus represents an extension of the
previous work regarding the LA model in terms of both
the methodology and the outcome of interest.

Data
Data for this study come from administrative records at
University of Colorado Boulder. We focus on 16 cohorts

of students who entered the university as full-time fresh-
men for the first time each fall semester from 2001 to
2016 and took Physics I/II, General Chemistry I/II, Calcu-
lus I/II (Math department), and/or Calculus I/II for Engi-
neers (Applied Math department). The dataset includes
information for 32,071 unique students, 23,074 of whom
took at least one of the above courses with LA support.
Student-level data includes information such as race/eth-
nicity, gender, first-generation status, and whether a stu-
dent ever received financial aid. Additional variables
include number of credits upon enrollment, high school
grade point average (GPA), and admissions test scores.
We translate SAT total scores to ACT Composite Scores
using a concordance table provided by the College Board
to have a common admissions test score for all students
(College Board, 2016). We exclude students with no
admissions test scores (about 6% of the sample). We also
have data on the instructor of record for each course. The
outcome of interest in this study is failing an introductory
STEM course. We define failing as receiving either a D or
an F or withdrawing from the course altogether after the
university drop date (i.e., “DFW”).
An important consideration in creating the data set

for this study is timing of receiving LA support relative
to taking any STEM gateway course. The data begin
with all students who took at least one of the courses
included in this study. We keep all students who took all
of their STEM LA courses either with or without LA
support. We also include all students who received LA
support in the very first STEM gateway course they
took, regardless of if they had LA support in subsequent
STEM gateway courses. We would exclude any student
who took a STEM gateway course without LA support
and then took another STEM gateway course in a subse-
quent semester with LA support.
This data limitation ensures that exposure to the LA

program happened before or at the same time as the
opportunity to fail any STEM gateway course. If it were
the case that a student failed a STEM gateway course
without LA support, say, in their first year and then took
LA-supported courses in the second year, this student
would be indicated as an LA student in the data, but the
courses taken during the first year would not have been
affected by the LA program. Students with experiences
such as this would misrepresent the relationship
between being exposed to the LA program and probabil-
ity of course failure. Conveniently, there were not any
students with this experience in the current dataset. In
other words, for every student in our study who took
more than one of the courses of interest, their first
experience with any of the STEM gateway courses under
consideration included LA support if there was ever
exposure to the LA program. Although we did not have
to exclude any students from our study for timing
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reasons, other institutions carrying out similar studies
should carefully consider such cases when finalizing
their data for analysis.
We provide Fig. 1 as a way for readers to gain a better

understanding of the adoption of the LA program in
each of the departments in this study. This figure also
gives information regarding the number of students
exposed to LAs or not in each department, course, and
term in our study.

Methods
Ideally, we would design a controlled experiment to esti-
mate the causal effect of LA exposure on the probability
of failing introductory STEM courses. To do this, we
would need two groups of students: first, those who
were exposed to LA support in a STEM gateway course,
and second, a comparable group, on average, that signifi-
cantly differed only in that they were not exposed to LA
support in any STEM gateway course. However, many
institutions do not begin their LA programs with such
studies in mind, so the available data do not come from
a controlled experiment. Instead, we must rely on histor-
ical institutional data that was not gathered for this type
of study. Thus, this study not only contributes to the
body of literature regarding the relationship between LA
exposure and student outcomes, but it also serves as a
model for other institutions with LA programs that

would like to use historical institutional data for similar
investigations.

Selection bias
The ways students are assigned to receive LA support in
each of the departments represented in this study are
not random, and the ways LAs are used in each depart-
ment are not identical. These characteristics of pre-exist-
ing institutional data manifest themselves as issues
related to selection bias within a study. For example, in
the chemistry department, LA support was only offered
in the “on semester” sections of chemistry from 2008 to
2013. “On semester” indicates General Chemistry I in
the fall and General Chemistry II in the spring. Thus,
there were few opportunities for those students who
took the sequence in the “off semester,” or General
Chemistry I in the spring and General Chemistry II in
the fall to receive LA support in these courses during
the span of time covered in this analysis. The most
typical reasons why students take classes in the “off se-
mester” are that they simply prioritize other courses
more in the fall semester, so there is insufficient space to
take General Chemistry I; they do not feel prepared for
General Chemistry I in the fall and take a more intro-
ductory chemistry class first; or they fail General Chem-
istry I the first time in the fall and re-take General
Chemistry I in the spring. This method of assignment to
receiving LA support may overstate the relationship

Fig. 1 Course enrollment over time by LA exposure
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between receiving LA support and course failure in this
department. That is, it might be the case that those stu-
dents who received LA support were those who were
more likely to pass introductory chemistry to begin with.
Our analysis includes prior achievement variables
(described below) to attempt to address these selection
bias issues.
In chemistry, LAs attend the weekly lecture meet-

ings and assist small groups of students during activ-
ities such as answering clicker questions. Instructors
present questions designed to elicit student levels of
conceptual understanding. The questions are pre-
sented to the students; they discuss the questions in
groups and then respond using individual clickers
based on their selection from one of several multiple-
choice options. LAs help students think about and
answer these questions in the large lecture meetings.
In addition, every student enrolled in General Chem-
istry I and II is also enrolled in a recitation section.
Recitations are smaller group meetings of approxi-
mately 20 students. In these recitation sections, LAs
work with graduate TAs to facilitate small group
activities related to the weekly lecture material. The
materials for these recitation sections are created by
the lead instructor for the course and are designed to
help students investigate common areas of confusion
related to the weekly material.
In the physics and math departments, the introduc-

tory courses went from no LA support in any section
in any semester to all sections in all semesters receiv-
ing LA support. This historical issue affects selection
bias in a different way than the off-semester chemis-
try sequence. One interpretation of decreased course
failure rates could be that LA support caused the
difference. However, we could not rule out the possi-
bility that failure rates decreased due to other factors
that also changed over time. It could be that the uni-
versity implemented other student supports in
addition to the LA model at the same time or that
the types of students who enrolled in STEM courses
changed. There is no way to determine conclusively
which of these (or other) factors may have caused
changes in failure rates. Thus, causal estimates of the
effect of LA support on failure rates would be threat-
ened by any historic changes that occurred. We have
no way of knowing if we might over or underestimate
the relationship between LA exposure and course fail-
ure rates due to the ways students were exposed (or
not) to the LA program in these departments. In
order to address this issue, we control for student
cohort. This adjustment, described below, attempts to
account for differences that might exist among co-
horts of students that might be related to probability
of failing a course.

The use of LAs in the math department only occurs
during weekly recitation meetings. During this weekly
meeting, students work in small groups to complete
carefully constructed activities designed to enhance
conceptual understanding of the materials covered
during the weekly lecture. An anomaly in the math
department is that though Calculus I/II are consid-
ered gateway courses, the math department at this in-
stitution is committed to keeping course enrollment
under 40. This means that LA support is tied to
smaller class sizes in this department. However, since
this condition is constant across the timeframe in our
study, it does not influence selection bias.
Similar to the math department, the physics depart-

ment only uses LAs in the weekly recitation meeting.
An additional anomaly in physics is that, not
incidentally, the switch to the LA model happened
concurrently with the adoption of the University of
Washington Tutorials in introductory physics
(McDermott & Shaffer, 2002). LAs facilitate small
group work with the materials in the University of
Washington Tutorials during recitation meetings. In
other words, it is not possible to separate the effects
of the content presentation in the Tutorials from the
LAs facilitating the learning of the content in this
department. Thus, data from this department might
overestimate the relationship between receiving LA
support and course failure. However, it should be
noted that the University of Washington Tutorials
require a low student-teacher ratio, and proper imple-
mentation of this curriculum is not possible without
the undergraduate LAs helping to make that ratio
possible.
Finally, every student in every section of Calculus I

and II in the applied math department had the
opportunity to be exposed to LA support. This is be-
cause LAs are not used in lecture or required recita-
tion meetings, but instead facilitate an additional
weekly one-unit course, called workgroup, that is
open to all students. Thus, students who sign up for
workgroup not only gain exposure to LA support, but
they also gain an additional 90 min of time each week
formally engaging in calculus material. It is not pos-
sible to know if lower failure rates might be due to
the additional time on task generally, or exposure to
LAs during that time specifically. This might cause us
to overestimate the relationship between LA support
and course failure. Additionally, those students who
are expected to struggle in calculus (based on place-
ment scores on the Assessment and LEarning in
Knowledge Spaces [ALEKS] assessment) or are not
confident in their own math abilities are more
strongly encouraged to sign up for the weekly meet-
ing by their instructors and advisors. Thus, those
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students who sign up for LA support might be more
likely to fail calculus. This might lead us to underesti-
mate the relationship between LA exposure and
course failure. Similar to the chemistry department,
we use prior achievement variables (described below)
to address this issue to the best of our abilities.
We mention one final assumption about the LA

model before describing our methods of statistical
adjustment. Our data span 32 semesters of 8 courses
(see Fig. 1). Although it is surely the case that the
LA model adapted and changed in some ways over
the course of this time, we make the assumption that
the program was relatively stable within department
throughout the time period represented in this study.

Statistical adjustment
Although we do not have a controlled experiment
that warrants causal claims, we desire to estimate a
causal effect. The current study includes a control
group, but it is not ideal because of the potential se-
lection bias in each department described above.
However, this study is warranted because it takes
advantage of historical data. Our analytic approach is
to control for some sources of selection bias. Specific-
ally, we use R to control for standardized high school
GPA, standardized admissions test scores, and stan-
dardized credits at entry to try and account for issues
related to prior aptitude. This helps to address the
selection bias issues in the chemistry and applied
math departments. Additionally, we control for stu-
dent cohort to account for some of the historical bias
in the physics and math departments. We also control
for instructor and course as well as gender (coded 1
= female; 0 = male), race/ethnicity (coded 1 = nonwhite;
0 = white), first-generation status (coded 1 = first-ge-
neration college student; 0 = not first-generation
college student), and financial aid status (coded 1 =
received financial aid ever; 0 = never received financial
aid) to disentangle other factors that might bias our
results in any department. Finally, we consider
possible interaction effects between exposure to LA
support and various student characteristics. Table 2
presents the successive model specifications explored
in this study. Model 1 controls only for student char-
acteristics. Model 2 adds course, cohort, and in-
structor factor variables. Model 3 adds an interaction
between exposure to the LA program and gender to
the model 2 specification.
The control variables in Table 2 help to account for

the selection bias described above as well as other
unobserved bias in our samples, but we are limited
by the availability of observed covariates. Thus, the
results presented here lie somewhere between “true”

causal effects and correlations. We know that our
results tell us more than simple correlations, but we
also know that we are surely missing key control vari-
ables that are typically not collected by institutes of
higher education such as a measure of student self-ef-
ficacy, social and emotional health, or family support.
Thus, we anticipate weak model fit, and the results
presented here are not direct causal effects. Instead,
they provide information about the partial association
between course failure and LA support.
We begin our analysis by providing raw counts of

failure rates for the students who did and did not
receive LA support in STEM gateway courses. Next,
we describe the differences between those students
who did and did not receive LA support with respect
to available covariates. If it is the case that we see
large differences in our covariates between the group
of students who did and did not receive LA support,
we expect that controlling for those factors in the
regression analysis will affect our results in meaning-
ful ways. Thus, we close with estimating logistic
regression models to disentangle some of the relation-
ship between LA-support and course failure. The
variable of most interest in this analysis is the indica-
tor for exposure to the LA program. A student
received a “1” for this variable if they were exposed
to the LA program either concurrently or prior to
taking STEM gateway courses, and a 0 if they took
any classes in the study but never had any LA sup-
port in those classes.

Results
Table 3 includes raw pass and failure rates across all
courses. Students are counted every time they

Table 2 Logistic regression model specifications

Model predictor 1 2 3

LA exposure X X X

Female X X X

Nonwhite X X X

First generation X X X

Financial aid recipient X X X

Standardized credits at entry X X X

Standardized HS GPA X X X

Standardized admissions test scores X X X

Course factor X X

Cohort factor X X

Instructor factor X

LA exposure-female interaction X**

**Interactions between LA exposure and nonwhite, first generation, financial
aid recipient, standardized HS GPA, and standardized admissions test scores
were also tested, but none were found to be statistically significant
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enrolled in one of the courses included in our study.
We see that those students who were exposed to the
LA program in at least one STEM gateway course
had 6% lower failure rates in concurrent or subse-
quent STEM gateway course. We also provide the
unadjusted odds ratios for ease of comparison with
the logistic regression results. The odds ratio repre-
sents the odds that course failure will occur given
exposure to the LA program, compared to the odds
of course failure occurring without LA exposure.
Odds ratios equal to 1.0 indicates the odds of failure
is the same for both groups. Odds ratios less than 1.0
indicates that exposure to LA support is associated
with a lower chance of failing, while odds ratios
greater than 1.0 indicates that exposure to LA sup-
port is associated with a higher chance of failing.
Thus, the odds ratio of 0.65 in Table 3 indicates a
lower chance of failure with LA exposure compared
to no LA exposure.
Although the raw data indicates that students

exposed to LA support have lower course failure
rates, these differences could be due, at least in part,
to factors outside of LA support. To explore this pos-
sibility, we next examine demographic and academic
achievement differences between the groups. In
Table 4, we present the mean values for all of our
predictor variables for students who did and did not
receive LA support. The top panel presents all of the
binary variables, so averages indicate the percentage
of students who identify with the respective charac-
teristics. The bottom panel shows the average for the
continuous variables. The p values are for the

comparisons of means from a t test across the two
groups for each variable. Table 4 indicates that stu-
dents exposed to the LA program were more likely to
be male, nonwhite, non-first-generation students who
did not received financial aid. They also had more
credits at entry, higher high school GPAs, and higher
admissions test scores. These higher prior achieve-
ment variables might lead us to think that students
exposed to LA support are more likely to pass STEM
gateway courses. If this is true, then the relationship
between LA exposure and failure in Table 3 may
overestimate the actual relationship between exposure
to LAs and probability for course failure. Thus, we
next use logistic regression to control for potentially
confounding variables and investigate any resulting
change in the odds ratio.
R calculates logistic regression estimates in logits,

but these estimates are often expressed in odds ra-
tios. We present abbreviated logit estimates in the
Appendix and abbreviated odds ratios estimates in
Table 5. Estimates for all factor variables (i.e.,
course, cohort, and instructor) are suppressed in
these tables for ease of presentation. In order to
make the transformation from logits to odds ratios,
the logit estimates were exponentiated to calculate
the odds ratios presented in Table 5. For example,
the logit estimate for exposure to LA in model 1
from the Appendix converts to the odds ratio esti-
mate in Table 5 by finding exp(− 1.41) = 0.24.
We start off by discussing the results for model 3

as it is the full model for this analysis. Discussion of
models 1 and 2 are saved for the discussion of
model fit below. The results in model 3 provide in-
formation about what we can expect, on average,
across all courses and instructors in the sample. We
include confidence intervals with the odds ratios.
Confidence intervals that include 1.0 suggest results
that are not statistically significant (Long, 1997). The
odds ratio estimate in Table 5 for model 3 is 0.367
for LA exposure with a confidence interval from
(0.337–0.400). Since the odds ratio is less than 1.0,
LA exposure is associated with a lower probability of
failing, on average, and the relationship is statisti-
cally significant because the confidence interval does
not include 1.0. Compared to the odds ratio in
Table 3 (0.65), these results indicate that covariate
adjustment has a large impact on this odds ratio.
Failure to adjust for possible sources of confounding
variables lead to an understatement of the “effect” of
exposure to the LA program on course failure.
Our results show that LA exposure is associated

with lower odds of failing STEM gateway courses.
We also see that the interaction between exposure
to the LA program and gender is statistically

Table 4 Descriptive statistics

Non-LA (%) LA (%) p value

Female 45 35 < 0.01

Nonwhite 24 27 < 0.01

First gen 18 16 < 0.01

Financial aid 48 46 0.02

Mean (SD) Mean (SD)

Credits at entry 7 (11) 9 (12) < 0.01

HS GPA 3.61 (0.35) 3.68 (0.34) < 0.01

Test score 26 (4) 27 (4) < 0.01

N 8997 23,074

Table 3 Raw data counts

Enrolled (N) Pass (N) Fail (N) Fail (%) Odds ratio

No-LA 16,496 13,144 3352 20 0.65

LA 64,797 55,622 9175 14

Difference 6

Alzen et al. International Journal of STEM Education            (2018) 5:56 Page 8 of 12



significant. The odds ratio of 0.37 for exposure to
LA support in Table 5 is for male students. In order
to find the relationship for female students, we must
exponentiate the logit estimates for exposure to the
LA program, female, and the interaction between the
two variables (i.e. exp[01.002–0.092 + 0.297] = 0.45;
see the Appendix). This means that the LA program
actually lowers the odds of failing for male students
slightly more than female students. Recall that
Table 3 illustrated that the raw odds ratio for failure
when exposed to LA support was 0.65. Our results
show that after controlling for possibly confounding
variables, the relationship between LA support and
odds of course failure is better for both male (0.37)
and female (0.45) students.

Discussion and limitations
Throughout this paper, we have been upfront about the
limitations of the current analysis. Secondary analysis of
institutional data for longstanding programs is complex
and difficult. In this penultimate section, we mention a
few other limitations to the study as well as identify
some ideas for future research that could potentially bol-
ster the results found here or identify where this analysis
may have gone astray.
First, and most closely related to the results presented

above is model fit. The McFadden pseudo R-squared
(Verbeek, 2008) values for the three models are 0.0708,
0.1793, and 0.1797 respectively. These values indicate
two things: (1) that the data do not fit any of the models
well and (2) that the addition of the interaction term
does little to improve model fit. This is also seen in the

comparison of AIC and log likelihood values in Table 5.
We spend significant time on the front end of this paper
describing why these data are not ideal for understand-
ing the relationship between exposure to the LA pro-
gram and probability of failing, so we do not spend
additional time here discussing this lack of goodness-
of-fit. Instead, we acknowledge this as a limitation of the
current analysis and reiterate the desire to conduct a
similar type analysis to what is presented here with data
more likely to fit the model. Such situations would
include institutions that have the ability to compare, for
example, large samples of students with and without LA
exposure within the same semester, course, and in-
structor. Another way to improve such data would be to
include a way to control for student confidence and feel-
ings of self-efficacy. For example, the descriptions of se-
lection bias above indicate that students in Applied
Math might systematically be students who differ in
terms of self-confidence. Data that could control for
such factors would better facilitate understanding of the
relationship between exposure to LA support and course
failure. Alternatively, it may be more appropriate to con-
sider the nested structure of the data (i.e., students
nested within courses nested within departments) in a
context with data better suited for such analysis. Hier-
archical linear modeling might even be appropriate for a
within-department study if it would be reasonable to
consider students nested within classes if there was
sufficient sample size at the instructor level.
Second, in addition to a measure of student

self-efficacy, there are other variables that might be in-
teresting to investigate such as transfer, out-of-state, or

Table 5 Logistic regression estimates in odds ratios with confidence intervals

Dependent variable

Failed (= 1)

(1) (2) (3)

LA exposure 0.244*** (0.237, 0.251) 0.411*** (0.381, 0.443) 0.367*** (0.337, 0.400)

Female 0.558*** (0.536, 0.581) 1.132*** (1.079, 1.188) 0.912* (0.835, 0.997)

Nonwhite 0.868*** (0.828, 0.909) 1.096*** (1.043, 1.152) 1.096*** (1.043, 1.151)

First generation 1.173*** (1.110, 1.240) 1.350*** (1.275, 1.428) 1.351*** (1.277, 1.430)

Financial aid recipient 0.568*** (0.547, 0.590) 1.050* (1.004, 1.098) 1.050* (1.004, 1.098)

Credits at entry 0.888*** (0.865, 0.911) 0.786*** (0.762, 0.811) 0.786*** (0.761, 0.810)

HS GPA 0.681*** (0.667, 0.694) 0.569*** (0.557, 0.582) 0.569*** (0.557. 0.582)

ACT 0.760*** (0.742, 0.778) 0.794* (0.773, 0.814) 0.793*** (0.773, 0.814)

LA exposure-female interaction 1.346*** (1.215, 1.491)

Observations 75,563 75,563 75,563

Log likelihood − 32,462.050 − 28,672.970 − 28,656.720

Akaike Inf. Crit. 64,940.100 57,949.940 57,919.430

Models 2–3 suppress course, cohort, and instructor factor variables
Note: *p < 0.05; **p < 0.01; ***p < 0.001

Alzen et al. International Journal of STEM Education            (2018) 5:56 Page 9 of 12



international student status; if students live
on-campus; and a better measure of socioeconomic
status than receiving financial aid. These are other im-
portant student characteristics that might uncover dif-
ferential relationships between the LA program and
particular types of students. Such analysis is important
because persistence and retention in gateway courses—
particularly for students from traditionally marginal-
ized groups—are an important concern for institutions
generally and STEM departments specifically. If we are
to maintain and even build diversity in these depart-
ments, it is crucial we have solid and clear work in
these areas.
Third, although this study controls for course- and

instructor-level factors, there are surely complications
introduced into this study due to the differential way
the LA program is implemented in each department.
A more careful study within department is another
interesting and valuable approach to understanding
the influence of the LA program but one that this
data is not well-suited for. Again, there is a need for
data which includes students exposed to the LA pro-
gram and not exposed within the same term, course,
and instructor to better disentangle the relationship.
Due to the nature of the way the LA program was
taken up at University of Colorado Boulder, we do
not have the appropriate data for such an analysis.
Finally, an interesting consideration is the choice of

outcome variable made in this analysis. Course failure
rates are particularly important in gateway courses
because failing such a course can lead students to
switch majors or drop out of college. We do see a
relationship between the LA model and lower failure
rates in the current analysis. However, other
approaches to course outcomes include course grades,
pass rates, average GPA in other courses, and average
grade anomaly (Freeman et al., 2014; Haak et al.,
2011; Matz et al., 2017; Webb, Stade, & Grover,
2014). Similar investigations to what is presented here
with other course outcomes are also of interest. For
example, course grades would provide more nuanced
information regarding how the LA model influences
student outcomes. A measure such as Matz et al.’s
(2017) average GPA in other courses could provide
more information about how the LA program impacts
course other than the ones in which the LA exposure
occurred. In either of these situations, it would be
interesting to see if the LA program would continue
to appear to have a greater impact for male students
than female. In short, there are a wide variety of stu-
dent outcomes that have yet to be fully investigated
with data from the LA model and more nuanced
information would be a valuable contribution to the
research literature.

Conclusion
In this study, we attempt to disentangle the relation-
ship between LA support and course failure in intro-
ductory STEM courses. Our results indicate that
failure to control for confounding variables underes-
timates the relationship between exposure to the LA
program and course failure. The results here extend
the prior literature regarding the LA model by
providing evidence to suggest that exposure to the
program increases student outcomes in subsequent
as well as current courses. Programs such as the LA
model that facilitate instructional innovations where
students are more likely to be successful increase
student retention.
Preliminary qualitative work suggests potential hy-

potheses for the relationship between LA support and
student success. Observations of student-LA interac-
tions indicate that LAs develop safe yet vulnerable
environments necessary for learning. Undergraduates
are more comfortable revealing their thinking to LAs
than to TAs and instructors and are therefore better
able to receive input about their ideas. Researchers
find that LAs exhibit pedagogical skills introduced in
the pedagogy course and course experience that pro-
mote deep understanding of relevant content as well
as critical thinking and questioning needed in higher
education (Top, Schoonraad, & Otero, 2018). Also,
through their interactions with LAs, faculty seem to
be learning how to embrace the diversity of student
identities and structure educational experiences ac-
cordingly. Finally, institutional norms are changing as
more courses adopt new ways of teaching students.
For example, the applied math department provides
additional time on task because of the LA program.
Although we do not know if it is the additional time
on task, the presence of LAs, or a combination of
both that drives the relationship between LA expos-
ure and lower course failure rates, both the additional
time and LA exposure occur because of the LA pro-
gram generally.
Further work is necessary to more fully understand

the relationship between the LA program and student
success. Although we controlled for several student-
level variables, we surely missed key variables that
contribute to these relationships. Despite this limita-
tion, the regression analysis represents an improve-
ment over unadjusted comparisons. We used the
available institutional data to control for variables
related to the selection bias present in each depart-
ment’s method of assigning students to receive LA
support. More research is needed to identify if the
emerging themes in the present study are apparent at
other institutions. Additional research with data better
suited to isolate potential causal effects is also needed
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to bolster the results presented here. Despite the
noted limitations discussed here, the current findings
are encouraging for further development and imple-
mentation of the LA program in STEM gateway
courses. Identifying relationships between models for
change and lower course failure rates are helpful for
informing future decisions regarding those models.

Endnotes
1For more information about joining LASSO and re-

sources available to support LA programs, visit https://
www.learningassistantalliance.org/
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