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Abstract

Background: Science, technology, engineering, and math (STEM) jobs are expected to make up a significant
portion of the US. workforce. Unfortunately, the trend in retaining students in STEM majors has been going
down. If higher education institutions are going to retain more students in STEM majors, it will be important
to understand who leaves STEM fields and why. More than 32% of women college students who declare a
STEM major are likely to switch to non-STEM majors before they graduate, whereas only 25% of their male
counterparts do so, and women may be as much as 1.5 times more likely than men to leave STEM fields.
Thus, women represent a significant potential source for increasing STEM majors. Research suggests that
values and expectations are powerful predictors of motivation and persistence in a wide variety of
activities, tasks, and careers. This paper describes the development and validation of an instrument to
measure student motivation, particularly that of women, leading to decisions to persist in or switch out
of collegiate STEM programs.

Results: The Value-Expectancy STEM Assessment Scale (VESAS), adapted from the Values, Interest, and
Expectations Scale, or VIES, was validated with 356 women students from a Midwestern research university as
part of a larger study on the reasons that women persist or leave STEM majors. A confirmatory factor analysis
suggested a two-factor model, which reflected the components of Eccles et al’s expectancy-value model.
Cronbach’s alphas suggested that the VESAS subscales had high internal consistency. Statistically significant
differences were found between STEM switchers and persisters on all of the VESAS subscales, thus lending
additional support for the validity of the instrument.

Conclusions: The VESAS appears to be a valid scale for measuring female college students’ value for and
expectations regarding STEM majors. Suggestions are made for use of the VESAS in future studies to examine
how motivations of women students enrolled in STEM programs change over time and to better understand
when retention interventions might be needed and with whom.
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Statement of the problem

Science, technology, engineering, and math (STEM)
fields are considered the drivers of innovation in the
United States (U.S.) economy (Olson and Riordan 2012;
Palmer and Wood 2013), and STEM jobs are expected
to make up a significant portion of the U.S. workforce
(Chen 2013; Ellis et al. 2016; Olson and Riordan 2012).
The President’s Council of Advisors on Science and
Technology (Olson and Riordan 2012) report suggests
that academic institutions in the USA will need to in-
crease the number of STEM graduates by one million
over the next decade in order to meet the demand. In-
creasing the retention rate of STEM majors in the
“STEM pipeline” (Soe and Yakura 2008) by even a small
percentage would be a fast, cost-efficient way to produce
the additional STEM graduates required for the U.S.
workplace (Chen 2013; Ehrenberg 2010; Ellis et al. 2016;
Olson and Riordan 2012).

Unfortunately, many students in the USA leave
collegiate STEM programs after declaring their intention
to major in STEM fields. For instance, Wilson et al.
(2012) noted that, generally, less than half of the
first-year students who declare STEM majors in the
USA go on to graduate with STEM degrees. This finding
supports the work of Chen (2013), whose 6-year longitu-
dinal study of beginning postsecondary students in the
USA found that of the approximately 50% of students
who left their STEM fields, about half switched to
non-STEM fields and the remaining half dropped out of
college without earning any degree.

While the empirical research regarding the switching
rates among students across different academic majors is
limited, Chen’s (2013) research is worth noting. Findings
from her 6-year longitudinal study among students
majoring in humanities and education, for example,
show that about 56—62% switched majors as compared
to those in STEM fields (48%). This suggests that major
switching in STEM is actually lower than in other fields.
Chen further notes that the attrition rates for students
majoring in business and social sciences were 50 and
45%, respectively, which were comparable to those in
STEM fields.

Astorne-Figari and Speer (2017) point out that women
are nearly 75% more likely to switch out of STEM ma-
jors than their male counterparts irrespective of per-
formance (grades). In validating their model of major
switching using the National Longitudinal Survey of
Youth 1997 (a nationally representative dataset of 8984
youth born between 1980 and 1984), they found that the
switch-out rates for STEM overall are similar to those of
other majors, that being female was not a significant
predictor of switching out of a first major, that competi-
tiveness of the major was a larger predictor of switching
than GPA or gender, and that women switch out of
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competitive majors at twice the rate of males. Given
these data, it would seem that women are no more likely
to switch majors than men are and that they tend to
switch out of competitive majors (e.g, STEM majors)
more often than men for reasons other than grades.

If higher education institutions are going to retain
more students in STEM majors, it will be important to
understand who leaves STEM fields and why. The an-
swers to both questions are highly varied and continue
to be the subject of intense research. Research has led to
some consensus that women and non-Asian minority
students leave STEM fields at higher rates than their
counterparts (Chen 2015), as do first-generation stu-
dents' and those from low-income backgrounds (Shaw
and Barbuti 2010). More than 32% of women college
students who declare a STEM major are likely to switch
to non-STEM majors before they graduate, whereas only
25% of their male counterparts do so (Davignon 2016).
Other research has shown that women may be as much
as 1.5 times more likely than men to leave STEM fields
(Ellis et al. 2016).

Why do women and other underrepresented groups
leave STEM fields at higher rates than other groups?
Previous research indicates that there are various rea-
sons, including poor grades and performance in STEM
classes compared to non-STEM classes (Ost 2010; Rask
2010), loss of interest in STEM majors (Johnson 2012),
growing interest in non-STEM majors (Watkins and
Mazur 2013), lack of role models and mentors (Drury et
al. 2011), feelings of isolation because too few peers pur-
sue STEM majors (Chen 2013), and discrimination on
the basis of sex, race, or ethnicity in STEM education
and the workplace (Hill et al. 2010). Many of these rea-
sons are interrelated, creating difficulty in developing a
clear picture of the situation.

Because more than half of students who leave colle-
giate STEM programs are women, scholars have fo-
cused their efforts on understanding why women
leave STEM fields at a higher rate than men. Some
scholars argue that the underrepresentation of women
in STEM fields is attributable to attitude rather than
to aptitude (e.g, Chen 2013; Ehrenberg 2010;
Else-Quest et al. 2013; Palmer and Wood 2013), cit-
ing research that shows women who leave STEM
fields are often just as capable as those who remain
in STEM fields (Chen 2015; Hill et al. 2010). Other
scholars argue that the underrepresentation of women
in STEM fields is linked to the value that they attach
to, and their expectations for success in, STEM fields
and careers. Research suggests that values and expec-
tations are powerful predictors of motivation and per-
sistence in a wide variety of activities, tasks, and
careers (Eccles 2007, 2011a, 2011b; Wigfield 1994).
The expectancy-value model, developed by Eccles,
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Wigfield, and their colleagues (Eccles 1994, 2005;
Eccles et al. 1983; Wigfield 1994; Wigfield and Eccles
1992, 2000), may be among the most important
models for explaining the decision to seek, persist in,
or leave STEM majors. The purpose of this study was
to develop and validate a scale to measure the values
and expectations of women as they relate to their de-
cision to seek, persist, or switch out of STEM majors.

Theoretical framework

The expectancy-value model of achievement motivation
Research has shown that men and women differ in
terms of their educational and vocational choices
(Eccles 1994). In STEM fields, for instance, the pro-
portion of women in the medical, biological, and so-
cial sciences (especially psychology) is relatively high,
whereas in disciplines such as physical sciences, en-
gineering, and computer sciences, women are under-
represented as compared to men (Eccles 2011b; Rask
2010). The basic premise of the expectancy-value
model is that choice of achievement-related tasks,
performance, and persistence are most directly pre-
dicted by one’s expectations for success on those
tasks and the extent to which one values the tasks
(Eccles 2007, 2011a, 2011b; Wigfield 1994).

An individual’s expectations for success and sub-
jective task value are shaped over time by several
personal and cultural/social influences (Eccles 2007,
2011a, 2011b; Wigfield 1994). Influences from one’s
cultural/social milieu may include social role and
cultural stereotypes of subject matter and occupational
characteristics, an individual’s gender, the beliefs and be-
haviors of socializers (e.g., parents and teachers), and the
abilities and previous achievement-related experiences of
the individuals (Eccles et al. 1983). Personal influences
may include ability beliefs, socializer beliefs, expectations,
social roles and stereotypes, the perceived difficulty of the
related tasks, one’s goals, self-schemata, and affective
memories, as well as one’s interpretations of one’s
own previous achievement-related experiences and the
various social influences (Eccles 2007, 2011a, 2011b;
Wigfield 1994).

The expectations for success and subjective task value
are presumed to directly influence achievement-related
tasks, performance, and persistence (Wigfield and Eccles
2000). When expectations for success and value of
STEM fields and majors are high, the person is much
more likely to seek, persist in, and graduate from
STEM majors. The opposite is true when both factors
are low. However, these factors are not always
aligned. One can have low perceived value for STEM
but high expectations for success, and vice versa. The
interaction of these factors is expected to have differ-
ing effects on decisions to seek out, persist in, and
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graduate from STEM majors and is thus important to
researchers seeking to understand the reasons some
women do not choose STEM majors or choose to
leave STEM majors.

Expectations for success beliefs

Wigtield and Eccles (2000) define expectations for success
as one’s beliefs about how well one expects to perform on
a given task. Although there are many factors that influ-
ence expectations for success, self-efficacy is one of the
most important because it has been linked to expectan-
cies, performance, and persistence in achievement-related
tasks (Eccles 2005; Wigfield 1994; Wigfield and Eccles
1992). Achievement-related tasks include the decision to
choose and persist in STEM majors.

Self-efficacy beliefs refer to the beliefs that individuals
hold about their abilities to successfully execute those
activities necessary to achieve desired outcomes
(Bandura 1977; Hutchison et al. 2006). An individual
who has high self-efficacy would be more willing to en-
gage, work harder, and persist longer in the face of fail-
ure, challenges, and difficulties than an individual who
doubts his own abilities (Renninger and Hidi 2016).
Self-efficacy is associated with the anticipated level of at-
tainment required and with the strength of one’s belief
that that level of attainment is achievable. As such, it dif-
fers from self-confidence, which refers only to the
strength of a belief in one’s ability.

Research has linked self-efficacy beliefs of students
to their level of interest (Bong et al. 2015; Lent et al.
2003), performance (Hackett et al. 1992; Pajares
1996), and persistence (Lent et al. 1984; Multon et al.
1991) in college majors. Research has shown that,
compared to men, women have lower self-efficacy be-
liefs in STEM majors (Backer and Halualani 2012),
particularly mathematics, chemistry, engineering, and
computer science majors (Beyer 2014; Louis and Mis-
tele 2012). Studies also indicate that women who
switch collegiate STEM majors (switchers) have lower
STEM self-efficacy than women who persist in STEM
majors (persisters), even though they may have equal
or better levels of academic achievement (Backer and
Halualani 2012; Hutchison et al. 2006).

The literature identifies four primary influences from
which self-efficacy beliefs are formed: mastery experi-
ence, vicarious experience, social persuasion, and physio-
logical reaction (Hutchison et al. 2006; Plunkett et al.
2010; Rittmayer and Beier 2009; Zimmerman 2000).
Mastery experience has to do with the individual’s previ-
ous success (or failure) at performing a given task.
Vicarious experience refers to the knowledge and confi-
dence that an individual gains by observing others (e.g.,
role models) perform a task in a certain area or field
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(Hutchison et al. 2006; Rittmayer and Beier 2009). Social
persuasion refers to the feedback, encouragement, and
support that a person receives from others, especially
significant others such as parents and teachers (Plunkett
et al. 2010; Rittmayer and Beier 2009). Finally, physio-
logical reaction relates to physical reactions and emo-
tions (e.g., fear of failure, fatigue, stress, anxiety, and
nervousness) that an individual experiences during the
execution of a task (Hutchison et al. 2006; Plunkett et al.
2010; Rittmayer and Beier 2009; Zimmerman 2000).

Subjective task value beliefs

Eccles (2005) describes task value as “... a quality of the
task that contributes to the increasing or decreasing
probability that an individual will select it” (p. 109) and
further defines the quality of the task in terms of four
components: (1) attainment value, (2) intrinsic (interest)
value, (3) utility value, and (4) cost value.

The attainment value is defined as the personal import-
ance individuals attach to doing well on a given task
(Eccles 2005; Wigfield and Eccles 2000)—in other words,
how well the given task fits the individual’s self-identity. A
woman from a well-respected family known in the com-
munity as “a family of medical doctors” who is currently
enrolled in a premed major at her university would be ex-
pected to have a high attainment value for the said major
because doing well in this major might affirm her personal
or social identity (Eccles 2005; Eccles et al. 1983).

Intrinsic (interest) value has to do with the inherent,
immediate enjoyment that an individual gains from en-
gaging in a given task or the anticipated enjoyment that
individual expects to get while engaging in the task
(Eccles 2005; Eccles et al. 1983).

The utility value refers to the usefulness of the task or
how a given task fits into the future goals/plans of an in-
dividual, for example career goals (Eccles 2005; Wigfield
and Eccles 1992, 2000). A student aspiring to be a med-
ical doctor may dislike chemistry classes, yet because all
premed students are required to take a chemistry course,
and the instrumentality of chemistry helps achieve the
aspirational goal, which, in turn, imparts a high value to
the course (Eccles et al. 1983).

The relative cost refers to what an individual would
have to give up in order to engage in a given task (Eccles
2005; Wigfield 1994), and may include the effort re-
quired to succeed, the time lost for other valued tasks,
and the psychological cost of failure or emotional
trauma resulting from failure (Eccles et al. 1983). Stu-
dents must choose between various tasks, such as forgo-
ing a movie in order to do a biology assignment. The
relative cost is the movie the student did not attend.

Being able to measure these constructs and attitudes is
of critical importance to advancing research in how to
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retain more women in the STEM majors they choose.
Within the past decade, researchers have developed valid
and reliable instruments to measure students’ attitudes
toward STEM programs and careers. However, these in-
struments focused on middle and high school students’
attitudes toward STEM programs and careers rather
than on those of college students (e.g., Guzey et al. 2014;
Mahoney 2010; Tyler-Wood et al. 2010; Unfried et al.
2015). Furthermore, none of the instruments reported
here were based specifically on Eccles et al’s (1983)
expectancy-value model.

In 2015, the authors developed and validated the
Value, Interest, and Expectancy Scale (VIES) to measure
the motivational aspects of men and women who pursue
information computing technology (ICT) careers
(Appianing and Van Eck 2015). Because the researchers
sought to next study the reasons that women in particu-
lar do not pursue or persist in STEM majors, a new
scale was subsequently developed based on the VIES
with only minor changes to the wording of the scale
(e.g., to replace ICT with STEM). This new scale, the
Value-Expectancy STEM Assessment Scale (VESAS),
was validated as part of a larger study of the reasons that
women seek, persist in, or switch out of STEM majors
in college. As the purpose of the current article is to de-
scribe the validation of the VESAS, details relating to the
other aspects of the research are omitted except in cases
where their inclusion is necessary and/or related to the
purpose of this article.

Method

Participants and procedure

The sampling frame (Sérndal et al. 2003) comprised two
groups of female college students from a university with
an enrollment of approximately 14,000 in the upper
Midwest of the USA. The first group (STEM
“persisters”) consisted of female students who were en-
rolled in STEM programs” for the spring 2016 semester
who had completed at least one semester in a STEM
program or remained a STEM major at the time of the
study. The second group (STEM “switchers”) included
female students who were enrolled in non-STEM pro-
grams® (e.g,, all academic fields that are not considered
STEM) during spring 2016 semester, but who at one
time had been enrolled in STEM programs for at least
one semester. Students who switched between STEM
programs were also referred to as STEM switchers. The
school e-mail addresses of 2055 female students (includ-
ing STEM switchers and STEM persisters) were ran-
domly chosen by the institution’s office of information
research, which then invited students to participate in
the online survey. Of the 392 who responded to the invi-
tation, 356 started and finished the survey, yielding a
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final response rate of 17.32%. One reason that this re-
sponse rate may have been low when compared to the
average online survey response rate of about 25% (Fluid-
Surveys Team 2014) is that the online survey was ad-
ministered in the summer, when most students were on
break. Thus, it is possible that some students were not
checking their school e-mail accounts within the time
frame the survey was administered and, therefore, did
not respond to the survey. As Comrey and Lee (1992)
have noted, a relatively small sample size could affect
the reliability of survey instruments. Comrey and Lee
propose the following benchmark as a guide to deter-
mining the adequacy of total sample size for factor ana-
lysis in a research study: 50 = very poor, 100 = poor, 200
= fair, 300 = good, 500 = very good, and 1000 or more =
excellent (p. 217). Thus, the sample size of 356 partici-
pants for the current study is good.

The time frame for recruitment was driven by pro-
gram requirements for the primary researcher, whose
visa required completion of graduate studies by the fol-
lowing year. IRB approval was granted just before the
summer term, and it was determined that data collection
should begin and, if needed, be supplemented by add-
itional data collection in the fall term. Initial analysis
suggested that the response pool from the summer term
was representative and sufficient to proceed with ana-
lyses without further data collection.

All female students who participated in this study were
full-time undergraduate and graduate students. About
76% of the participants were enrolled in bachelor’s de-
gree programs, while the rest were enrolled in master’s
(13%) and doctoral (11%) degree programs. Of the total
number of undergraduate students who participated in
the study, 33.33% were first-year students (i.e., first year,
second semester), 28.15% were second-year students,
25.92% were third-year students, and 12.59% were in
their senior year. With regard to the total number of
graduate student participants, the majority of them
(38%) were first-year students (i.e., first year, second se-
mester). About 92% of the participants identified them-
selves as U.S. citizens or permanent residents. The
average age of the participants was 23.36 vyears
(SD = 5.84). The data analysis also revealed that 297 of
the total number of participants were STEM persisters,
while 59 of them were STEM switchers. Participants
who completed the survey and also agreed on the survey
to have their e-mail addresses entered into a random
drawing had the chance to win a $50 Amazon.com gift
card.

Because of privacy policies at the university, it was not
possible to ascertain whether the characteristics of those
who chose not to participate differed from those who
chose to participate. Because the researchers wanted to
focus exclusively on women for this study, the Office of
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Institutional Research was required to draw the sample
and to send the recruitment e-mail out to the students;
it was up to those students to self-select and identify
during the survey.

Measures

To measure the study participants’ attitudes toward
STEM education and careers, we adapted an instrument
from an initial study developed to assess college stu-
dents’ attitudes toward computer technology (see
Appianing and Eck 2015). That instrument, which was
called VIES and was also based on Eccles’
expectancy-value model, consisted of three subscales
made up of 22 Likert-type scale items (1 = “Strongly
Disagree” to 5 = “Strongly Agree”). The VIES was devel-
oped to measure college students’ attitudes and beliefs
about computer technology majors, and the three sub-
scales on the VIES measure the value that students place
on computer technology fields, their interest in pursuing
a degree in computer technology, and their expectations
for success in computer technology fields.

For the current study, in order to capture partici-
pants’ perceptions regarding STEM education and ca-
reers specifically, each of the 22 VIES subscale items
was adapted to include the word “STEM,” and all 22
items from the three subscales were presented with-
out categorization (i.e., they were intermingled regard-
less of subscale). While the VIES instrument had
been previously validated during the initial study, the
modification of items for the current study (in order
to focus the responses on STEM rather than comput-
ing technology) required that an additional confirma-
tory factor analysis be conducted.

Results

Prior to factor analysis, we performed descriptive statis-
tics (see Table 6 in Appendix 1) using SPSS version 24.0
(SPSS Inc., Chicago, IL, USA) in order to identify miss-
ing data and outliers in the VESAS survey data. The de-
scriptive statistics showed no missing data on the
VESAS subscales. Outliers were determined by calculat-
ing and examining the z-scores for the individual items
on the VESAS. Research suggests that z-scores that fall
within the range of + 3.29 and - 3.29 are not considered
outliers (Field 2009; Tabachnick and Fidell 2007). Be-
cause no z-scores fell outside this range, it was deter-
mined that there were no outliers in the VESAS survey
data. All negatively worded items (e.g., “I dislike STEM
courses” and “Working in a STEM field would be a
waste of my time”) were reverse-scored prior to analysis.
This was done to improve interpretability by ensuring
that high scores on the VESAS subscales reflect high
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levels of the attributes being measured (e.g., perceived
value of STEM fields). For instance, on our 5-point
Likert-type scale items, if a participant responded,
Strongly Disagree (where Strongly Disagree = 1) to the
statement “I dislike STEM courses,” the participant’s re-
sponse was recoded to a value of 5 in order to reflect
the high level of perceived value of STEM fields indi-
cated by the participant’s response. Put another way, re-
verse scoring a VESAS item is based on the assumption
that a participant who strongly disagrees with the state-
ment “I dislike STEM courses” is in effect saying that
she likes STEM courses, and therefore places a high
value on STEM fields. A standard convention level of
p < 0.05 was used for evaluating statistical significance
of all the quantitative analyses performed in this study.

Factor analysis

We performed a confirmatory factor analysis using
SPSS to test for the construct validity of the VESAS
subscale items. While the literature indicated differing
opinions regarding the sample size required to per-
form a factor analysis of scale items to which partici-
pants have responded, a number of studies (e.g.,
MacCallum et al. 1999; Pett and Lackey 2003;
Tabachnick and Fidell 2007; Williams et al. 2010) cite
the work of Comrey and Lee (1992). As referenced
earlier, Comrey and Lee’s guidelines suggest that the
sample size for the current study (356) was good and
thus sufficient for factor analysis.

Kaiser-Meyer-Olkin and Bartlett’s test of sphericity

Apart from reviewing literature, statistical tests were
also performed in SPSS to check whether the sample
size for the current study was adequate for factor
analysis. These tests included the Kaiser-Meyer-Olkin
(KMO) test, which is a measure of sampling ad-
equacy, and Bartlett’s test of sphericity, which tests
the null hypothesis that the correlation matrix is an
identity matrix (Hagemeier and Murawski 2014). The
value of the KMO can range between 0 and 1. The
sample size is said to be adequate for factor analysis
if the value of KMO is greater than .50, and Bartlett’s
test of sphericity result is statistically significant, that
is, p < 0.05 (Field 2009; Williams et al. 2010). For the
current survey data, the value of KMO was .96, indi-
cating that the sample size was adequate for factor
analysis. Furthermore, the significance level of Bar-
tlett’s test of sphericity was less than 0.01, indicating
the absence of an identity matrix. Thus, the results of
the KMO and Bartlett’s test of sphericity suggested
that the sample size in relation to the number of
items of the VESAS subscales was appropriate for fac-
tor analysis.
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Factor extraction

The current study used the principal component analysis
to test the underlying factor structure of the VESAS sub-
scale items. Several criteria were used in the process of
determining the number of factors to extract, including
Kaiser’s rule (eigenvalues > 1), the Scree Plot test, and
the cumulative percent of variance extracted. This ap-
proach to selecting factor items is recommended by sev-
eral studies (e.g., Costello and Osborne 2005; Field 2009;
Williams et al. 2010).

To determine the number of factors to extract, all 22
VESAS subscale items were included in the factor ana-
lysis. The first factor analysis test was performed with
the following specifications: all rotated factor loadings
below .10 were suppressed; the oblique rotation method
(direct oblimin) with factor extraction via eigenvalues
greater than 1 was used. The oblique rotation method
was used because the results of the initial study sug-
gested that the VESAS subscales were correlated.

Results from the initial factor analysis test produced
three factors from the principal component analysis with
eigenvalues greater than 1.0, suggesting a three-factor
structure (see Table 7 in Appendix 2 for the factor load-
ings from the first factor analysis). The three factors ex-
tracted accounted for 67.33% of the variance.
Commonalities were generally greater than or close to
.70, but the pattern matrix displayed several weak and/
or cross-loading items on all the factors. According to
Costello and Osborne (2005), any survey item that loads
at .32 or higher on two or more factors is a
cross-loading item. Further, the loadings on the third
factor were generally below .32, which is the minimum
loading value recommended by Costello and Osborne.
Finally, the Scree Plot test for the initial factor analysis
suggested a two-factor structure. Therefore, a second
factor analysis was conducted with the decision to ex-
tract only two factors, including suppressing rotated fac-
tor loadings below .40 in order to eliminate weak and
cross-loading items.

The pattern matrix table for the second factor analysis
revealed two distinct factors, with 14 items loading on
the first factor and 8 on the second factor (see Table 8 in
Appendix 3 for the loadings from the second factor ana-
lysis). The two factors extracted accounted for 62.29% of
the variance. The factor loadings were generally .60 or
higher. One possible reason why the principal compo-
nent analysis extracted a two-factor solution (ie.,
value-interest and expectations for success) for the
current student sample as compared to the three-factor
solution (value, interest, and expectations for success)
suggested by our initial study may be due to the dispar-
ity in sample sizes (sampling error) between the current
study and the initial study. As pointed out earlier, factor
loadings produced from larger samples tend to show
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“smaller standard deviations of loadings across repeated
samples” (MacCallum et al. 1999, p. 85). The result re-
vealed by the current factor analysis also suggested that
the students did not differentiate between value and
interest, which also supports the Eccles et al. (1983)
expectancy-value model that defines the construct of
interest as a component of the subjective task value.

All the 14 items that loaded on factor 1 were summed
into one scale, while the eight items that loaded on fac-
tor 2 were also summed into another scale. We carefully
examined descriptive statistics (see Table 1) including
skewness and kurtosis scores in order to identify items
that appeared to be problematic. Results of the descrip-
tive statistics indicated that the individual items and
summed-scale distributions all approached normality
based on the statistical values of skewness and kurtosis.
For the summed scales, the skewness and kurtosis values
were between the acceptable ranges of + 1.0, whereas
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the individual items were between the acceptable ranges
of +2.0, which is also considered acceptable (George
and Mallery 2010; Tabachnick and Fidell 2013).

Internal consistency tests To determine the internal
consistency of the two factors extracted, Cronbach’s
alpha coefficients were calculated. The reliability coeffi-
cient for the first factor was .95, while that of the second
factor was .90. Various literature sources indicated two
main schools of thoughts as to what values for alpha are
acceptable. The first school of thought is that values for
alpha ranging between .70 and .95 are acceptable (e.g.,
Bland and Altman 1997; George and Mallery 2005). The
second school of thought holds that values for alpha be-
tween .70 and .90 are acceptable (e.g., Streiner 2003;
Tavakol and Dennick 2011). While acknowledging the
differing views regarding acceptable values of alpha, the
current study adopted the second school of thought.

Table 1 Final rotated factor loadings, reliability coefficients, means, standard deviations, skewness, and kurtosis

[tem no. [tem wording Factor loadings M SD SK K
1 2
Perceived value of STEM fields (a = .90)
[tem 3 | find STEM-related jobs very interesting 91 - 4.24 82 -1.13 1.51
[tem 2 | would take a course in STEM even if 86 - 398 95 -1.02 97
it were not required
[tem 5 STEM is an important field for me 78 - 4.27 77 - 95 81
ltem 14 | dislike STEM courses (R) 73 - 4.03 87 —1.00 1.10
[tem 9 STEM is a good college major for me 72 - 4.00 1.01 - 91 22
[tem 4 | don't think working in a STEM field 61 - 4.15 1.03 -1.10 29
would help me achieve my professional
aspirations (R)
[tem 19 | feel | would have something to be proud 59 - 433 74 -1.19 2.16
of as a STEM professional
ltem 1 Working in a STEM field would be a waste 51 - 4.54 75 - 181 3.50
of my time (R)
Expectations for success in STEM careers (a = .89)
Item 20 | don't think I will succeed in a STEM field (R) - 88 407 95 —-1.12 1.10
[tem 18 | don't think | can make an impact if | take on - 85 4.07 93 1.06 88
a STEM-related job (R)
ltem 16 I would certainly feel useless in a STEM-related - 73 4.19 87 -1.19 1.64
job (R)
[tem 15 | feel | have what it takes to succeed in a - 70 4.07 86 - 81 44
STEM-related job
[tem 21 | would be able to succeed in a STEM field as - 68 403 87 —-.96 1.05
well as most other people
[tem 22 I do not think | can achieve anything meaningful - 66 4.26 83 -1 1.14
as a STEM professional (R)
[tem 17 | feel | have a number of good qualities to be - 65 417 74 - 99 218
successful in a STEM field
Eigenvalues 8.09 1.14
Percentage variance (%) 5392 757

Total variance explained by the two factors = 61.49%. “R” indicates that item was reverse-coded prior to analysis

M mean, SD standard deviation, SK skewness, K kurtosis



Appianing and Van Eck International Journal of STEM Education (2018) 5:24

Page 8 of 16

Table 2 Items that were removed from the VESAS subscales and their rationale for doing so

[tems removed from the VESAS subscales

Reason(s) for removal of item

[tem 11 (Being in a STEM class would be fun for me)

[tem 12 (The idea of being in a STEM
class excites me)

[tem 13 (I would enjoy taking STEM courses)
[tem 6 (I would enjoy working in a STEM field)
[tem 8 (I am not interested in a degree in STEM)
[tem 10 (STEM classes are boring)

ltem 7 (I would rather do something else than take on a STEM-related job)

These 4 items were too similar to item 2 (I would take a course
in STEM even if it were not required) and item 3 (I find STEM-related
jobs very interesting)

These 2 items were too similar to item 14 (I dislike STEM courses)

This item was removed to improve the internal consistency of the scale

This is because researchers within this school of thought
made a strong case as to why the acceptable values of
alpha should not exceed .90, maintaining that an alpha
value greater than .90 may suggest redundancy.

In other words, the scale items may be asking the
same question in many different ways. Since Cronbach’s
alpha for factor 1 exceeded the .90 ceiling, all of the 14
items that loaded on factor 1 were reexamined statisti-
cally for redundancy.

To examine factor 1 items further, we conducted reli-
ability analyses using SPSS by including inter-item corre-
lations (IICs) and examined changes in alpha levels if
each scale item was deleted. Results indicated that the
reliability of factor 1 subscale would be strengthened if
item 7 was removed. Additionally, as the initial Cron-
bach’s alpha was very high for factor 1 subscale (.95),
IICs were examined for items which may be too similar.
Items 6, 7, 8, 10, 11, 12, and 13 (see Table 2), all had IIC
coefficients between .75 and .80. While the literature
suggests .80 as a cutoff of IICs, the analysis showed that
removal of these items would still produce a strong sub-
scale. Accordingly, these items were removed along with
item 7 (Table 2).

Following the removal of the seven items from the
VIES subscales, a third factor analysis was performed
with the remaining 15 items by utilizing the same speci-
fications used during the second factor analysis. As ex-
pected, the principal component analysis extracted two
factors, with both the Scree Plot test and the total vari-
ance explained table in SPSS confirming a two-factor
structure. The total variance explained by the two fac-
tors extracted was 61.49%.

Commonalities were generally between .50 and .75.
Eight items loaded on factor 1, while seven items loaded
on factor 2, with factor loadings ranging from .51 to .91.
Table 1 shows the final rotated factor loadings, reliability
coefficients, means, standard deviations, skewness, and
kurtosis for the modified VIES subscales.

Content of the final 15 items retained

After carefully examining the final rotated factor load-
ings, we confirmed that the eight items that loaded on
factor 1 reflected the original VIES “value” subscale.
Therefore, factor 1 was named “Perceived Value of
STEM Fields.” The perceived value of STEM fields sub-
scale was used to assess the degree to which the partici-
pant valued STEM majors and careers. It was
determined that the perceived value of STEM fields sub-
scale items reflected the four key components of the
subjective task value identified by Eccles et al. (1983).
For example, item 2, “I would take a course in STEM
even if it were not required,” reflects intrinsic value; item
19, “I feel I would have something to be proud of as a
STEM professional,” reflects the attainment value; item
9, “STEM is a good college major for me,” echoes the
utility value; and item 1, “Working in a STEM field
would be a waste of my time,” mirrors the cost value
(see Table 3).

The seven items that loaded on factor 2 paralleled the
original VIES “expectations for success” subscale. There-
fore, factor 2 was named “Expectations for Success in
STEM Careers.” The expectations for success in STEM
careers was used to assess the degree to which partici-
pants expected to do well in STEM-related jobs. The

Table 3 Perceived value of STEM fields subscale items and their subjective task value match

[tem no. Item wording Subjective task value component
2 I would take a course in STEM even if it Intrinsic value
were not required
19 | feel | would have something to be proud Attainment value
of as a STEM professional
9 STEM is a good college major for me Utility value
1 Working in a STEM field would be a waste Cost value

of my time
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expectations for success in STEM Careers subscale also
reflected the expectation for success construct in
Wigfield and Eccles’s (1992) expectancy-value model.

Test of normality and reliability test of the final 15
items retained All of the items that assessed perceived
value of STEM fields were summed into one scale.
Higher scores meant participants valued STEM fields
and careers more. Items measuring expectations for suc-
cess in STEM careers were also summed into one scale.
Higher scores meant higher expectations for success in
STEM-related jobs. In order to determine whether the
survey data follow a normal distribution, descriptive sta-
tistics were calculated and examined for both individual
items and summed-scale distributions. Results of the de-
scriptive statistics indicated that the individual items
(Table 1) and summed-scale distributions (Table 4) all
approached normality based on the statistical values of
skewness and kurtosis.

For the summed scales, the skewness and kurtosis
values were within the acceptable range of + 1.0, whereas
the range for the individual items was between the ac-
ceptable ranges of +2.0. However, the kurtosis value for
item 1 (see Table 1) exceeded the + 2 threshold, which
was an indication that the item could be problematic.
This abnormality may have been the result of the fact
that a disproportionately high number of participants
(90%) indicated that working in a STEM field would not
be a waste of their time. Such a peaked frequency distri-
bution was expected since a majority of the participants
were STEM persisters, while STEM switchers who prob-
ably felt that working in a STEM field would be a waste
of their time were few. Indeed, the data analysis (Table 1)
showed that item 1 had the lowest factor loading of .51,
which means that it contributed relatively less to the
perceived value of STEM fields subscale. However, ac-
cording to Costello and Osborne (2005), a scale item
with a factor loading of .50 or higher is a good item. In
addition, item 1 was the only perceived value of the
STEM fields scale item that assessed cost value. There-
fore, item 1 was retained for further analysis.

To determine the internal consistencies (or reliabilities)
of the perceived value of STEM fields and expectations for
success in STEM careers subscale items, Cronbach’s alpha

Table 4 Summed-scale distributions for VESAS

Analysis Perceived value Expectations
of STEM fields for success
in STEM careers
Mean 3353 28.85
Standard deviation 543 471
Skewness —.87 —.58
Kurtosis 38 -.17
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coefficients were calculated. The reliability coefficient for
the perceived value of STEM fields subscale was .90, while
that of the expectations for success in STEM careers sub-
scale was .89 (see Table 1). These results suggested that
both the perceived value of STEM fields and expectations
for success in STEM careers subscale items had sufficient
internal consistency and could thus be used for assessing
variables of interest in the current study.

Correlation between the expectancy-value model
constructs

We expected that the VESAS subscales would be some-
what related if they are, in fact, measuring the aspects of
a common trait (i.e., motivational belief). Thus, a bivari-
ate correlation (Cronk 2012) was calculated to determine
the relationship between the subscales of the VESAS.
We found a strong, positive significant correlation be-
tween perceived value of STEM fields and expectations
for success in STEM careers (r = .76, p < 0.001). This
strong, positive correlation may be of particular interest
to achievement motivation theorists, including Eccles et
al. (1983), who believe that individuals’ educational and
vocational choices are influenced by both their subject-
ive values and expectations for success.

Group differences between STEM switchers and STEM
persisters on the VESAS subscales

Assuming the validity of Eccles et al’s (1983) theory of
values and expectations, an instrument such as the
VESAS which is designed to measure those factors
should be able to show that people with different levels
of values and expectations will behave in a manner con-
sistent with those levels. Accordingly, group means on
the VESAS were used to examine differences between
women STEM switchers and women STEM persisters.
The analyses revealed statistically significant differences
in means between women STEM persisters (M = 34.81,
SD = 4.52) and women STEM switchers (M = 29.64,
SD = 4.27) on the perceived value of STEM fields sub-
scale. Cohens™ (1988) effect size value suggested a very
large practical significance (d = 1.55). Similarly, we
found statistically significant differences in means be-
tween women STEM persisters (M = 29.64, SD = 4.27)
and women STEM switchers (M = 25.02, SD = 4.94) on
the expectations for success in STEM careers subscale.
Cohen’s effect size value suggested a very large practical
significance (Cohen d = 1.00). These results provide fur-
ther evidence that the VESAS produces results in the
direction predicted by Eccles et al.’s theory.

Discussion

We developed the VESAS as an instrument for measur-
ing college students’ attitudes toward STEM programs
and careers. Given that women are underrepresented in
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the STEM fields and careers (Chen 2013; Griffith 2010)
and the fact that the STEM literature indicates that fe-
male students are more likely to switch from STEM pro-
grams than their male counterparts (Chen 2015; Hill et
al. 2010), it is imperative to assess female college stu-
dents’ attitudes toward STEM. Furthermore, few, if any,
studies have measured female STEM persisters and fe-
male STEM switchers’ attitudes toward STEM using Ec-
cles et al.’s (1983) expectancy-value model.

Our analysis indicated that the VESAS is psychomet-
rically sound in terms of construct validity and internal
consistency. The analysis revealed the existence of two
independent constructs (factors) that relate to the study
participants’ expectations for success in STEM careers
and perceived value of STEM fields with high Cron-
bach’s alphas. Our analysis, therefore, suggests that the
two-factor structure of the VESAS supports Eccles et
al’s (1983) expectancy-value model.

The two-factor structure was anticipated because we be-
lieve, and the expectancy-value model holds (Eccles et al.
1983), that achievement-related tasks (i.e., the decision to
choose and persist in STEM majors) may be influenced by
the value that the individuals attach to STEM fields and
how well they expect to perform in STEM-related careers.
Thus, it was not surprising that the result of the current
study indicated that women who persisted in STEM ma-
jors had higher expectations for success in STEM careers
and placed a higher value on the STEM fields than did
women who switched from STEM majors.

The study also revealed that the expectations for success
that the participants held about STEM careers were sig-
nificantly related to the value that they attached to the
STEM fields. This strong relationship between perceived
value and expectancy implies that, all things being equal,
students with low expectations for success in STEM ca-
reers may have low perceived value for STEM fields. In
other words, students who do not expect to do well as
would-be chemical engineers, for example, may not show
much interest in chemical engineering-related classes, be-
cause those classes have neither attainment value nor util-
ity value for them. Thus, these students would view taking
chemical engineering classes as a waste of time (cost
value). As noted by Plunkett et al. (2010), expectation for
success for a future task is influenced by the success
achieved by the individual in a previous related task.
Therefore, the chemical engineering students with low ex-
pectations for success in STEM careers may have con-
cluded from their poor performance in STEM classes that
such performance was an indication of their inability to
do well in a chemical engineering career.

Implications
A full account of the ways the VESAS can be used to in-
form efforts to attract and retain women to STEM
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majors is beyond the scope of this article. We will
provide a more in-depth analysis based on the study
population referred to in this article in a future publi-
cation. For now, suffice it to say that the underrepre-
sentation of women in STEM fields is, in part, driven
by the number of women who seek and persist in
STEM majors in college and that the reasons they
may choose to seek non-STEM majors and/or switch
out of STEM is an important factor in developing in-
terventions to recruit and retain them. The VESAS
appears to be a valuable potential tool for achieving
this. To illustrate this, consider that the likelihood of
persisting through graduation in a STEM major may
be driven by the interaction of ability (the cognitive
skills required by the STEM field and its prerequisite
subjects) and the two constructs measured by the
VESAS. Table 5 presents all possible interactions of
these factors.

Ability is beyond the scope of this instrument. If
students are early in their educational experience
(precollege), educational interventions such as tutor-
ing and high-quality STEM class instruction may be
effective interventions to remediate for ability, thus
increasing the likelihood of recruiting and retaining
more students. If a student is in college, there may
not be time to address ability in the traditional 5-year
college plan and its attendant prerequisite courses. If
ability is not sufficient, it is likely that a student
would be counseled out of STEM majors (lack of suc-
cess will lead to low expectations for success and
thus to switching majors later in any case). There is
no evidence that women are innately less able to be
successful in STEM areas, and evidence suggests that
the underrepresentation of women in STEM is unre-
lated to ability (e.g., Astorne-Figari and Speer 2017;
Cheryan et al. 2016; Martin 2015).

However, if we assume that students have (or will have
by college) sufficient ability (students 1-4 in Table 5),
the VESAS may be valuable in identifying key students

Table 5 All possible interactions of ability, perceived value of
STEM fields, and expectations for success in STEM careers

Student Ability Value Expectations
High Low High Low

1 Sufficient X X

2 Sufficient X X

3 Sufficient X X

4 Sufficient X X

5 Insufficient X X

6 Insufficient X X

7 Insufficient X X

8 Insufficient X X
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who, with the right support structures, role models, or
high-quality STEM curriculum, may become persisters.

Various social phenomena (e.g., lack of role models,
portrayal of STEM as a male-dominated field in popular
culture, and biased expectations on the part of teachers
and parents) may disadvantage women in the areas of
value and expectation for success regarding STEM, thus
leading in part to their underrepresentation. One might
hypothesize that a significant portion of women who fail
to seek or who drop out of STEM majors and fields
comprise students with sufficient ability but low value
(student 3), low expectations for success (student 2), or
both (student 4). Student 1 needs no intervention—one
can easily imagine that a high proportion of STEM
graduates are in this classification. Student 2, on the
other hand, may be a key constituency for increasing
the likelihood of selecting STEM majors and being a
STEM persister. One can imagine many women, for
example, who have low expectations for success be-
cause of the culture of STEM (in popular media, in
STEM classes) and the lack of role models or support
structures (e.g., first-generation college students, no
friends who are STEM majors), either do not choose
or switch out of STEM majors. Student 3 has the
ability and expects to succeed but does not have a
high value for STEM and is less likely to find
long-term professional fulfillment. Student 3 might
benefit from considering other STEM majors he or
she would value or, with the right instructional inter-
vention, might come to see more value in STEM ap-
plications beyond the classroom. Student 4 probably
would be counseled out of STEM majors as well, un-
less he or she has simply not been exposed to the
right kinds of instructional experiences and if there
are time and resources to do so.

Taken together, the results of this study suggest that the
VESAS can be used as a tool to measure the expectancy
and value beliefs among female college students. For
example, the VESAS can be administered to students
prior to or during their first year in STEM programs
in order to see how their scores on the expectations
for success in STEM careers and perceived value in
STEM fields subscales change over time and to better
understand when interventions might be needed and
with whom. Thus, the purpose for administering
VESAS is to identify students with low self-efficacy
(Bandura 1977) and subjective task value (Eccles
2005) beliefs and to offer support and encouragement
to them before they make the decision to switch from
collegiate STEM programs.

Limitations
The VESAS, like all quantitative surveys, is based on
self-assessments rather than objective measures (Debois
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2016; Wyse 2012). Therefore, the results of the current
study should be interpreted with caution. Because the
sample population was drawn from a single institution
and because the response rate for the survey was rela-
tively low, future research should include larger and
more diverse sample populations. While the
expectancy-value model has been studied with diverse
populations and should therefore be equally valid with
men and women, the sample for this study was exclu-
sively female. Thus, future studies should validate the
VESAS with males.

Conclusions and future work

The VESAS is a valid instrument for measuring the
values and expectations female college STEM majors
have toward STEM. Researchers and college personnel
who are interested in using Eccles et al’s (1983)
expectancy-value theory to help understand who will
seek and persist in STEM majors and to use those re-
sults to inform recruiting and intervention programs can
adopt the VESAS for those purposes.

Endnotes

'First-generation students are defined as those who
are the first members of their families to go to college.

%In this study, the following academic fields are desig-
nated as STEM programs/majors: Air Traffic Control,
Airport Management, Applied Economics, Atmospheric
Sciences, Aviation, Aviation Management, Biology,
Biomedical Sciences, Chemical Engineering, Chemistry,
Civil Engineering, Commercial Aviation, Communica-
tion Science and Disorders, Computer Science, Clinical
Psychology, Earth System Science and Policy,
Electrical Engineering, Energy Engineering, Energy
Systems Engineering, Engineering, Environmental En-
gineering, Environmental Geoscience, Forensic Psych-
ology, Forensic Science, Geography, Geological
Engineering, Geology, Geographic Information Sci-
ence, Graphic Design Technology, Industrial Technol-
ogy, Information Systems, Applied Economics,
Mathematics, Mechanical Engineering, Medicine,
Nursing, Occupational Therapy, Petroleum Engineer-
ing, Physics, Unmanned Aircraft System Operator,
Psychology, Space Studies, and Technology.

3Examples of non-STEM majors include Anthropol-
ogy, Business, Education, Communications, Counseling,
Criminal Justice, English, Human Resources, Law, Man-
agement, Public Administration, Social Work, Sociology,
and MBA (Source: Office of Institutional Research, a
Midwestern Public University, 2016).

*Cohen (1988) offered a rough rating scale for deter-
mining effect sizes: small (d = 0.2), medium (d = 0.5),
and large (d = 0.8).
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Appendix 1
Table 6 Descriptive statistics for the individual VESAS items (N = 356)
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[tem no. Wording M SD SK K
[tem 1 Working in a STEM field would be a waste of my time (R) 454 75 —1.81 35
Item 2 | would take a course in STEM even if it were not required 398 95 —-1.02 97
[tem 3 | find STEM-related jobs very interesting 4.24 82 -1.13 1.51
[tem 4 | don't think working in a STEM field would help me achieve my professional aspirations (R) 4.15 1.03 -1.10 289
[tem 5 STEM is an important field for me 427 77 -.95 81
[tem 6 | would enjoy working in a STEM field 418 91 -1.22 1.38
[tem 7 | would rather do something else than take on a STEM-related job 377 1.04 -.59 -.30
[tem 8 | am not interested in a degree in STEM 4.10 1.06 -1.78 74
[tem 9 STEM is a good college major for me 4.00 1.01 - 91 22
[tem 10 STEM classes are boring 395 86 - .60 09
ltem 11 Being in a STEM class would be fun for me 394 89 - 92 1.02
[tem 12 The idea of being in a STEM class excites me 385 94 - 63 15
[tem 13 | would enjoy taking STEM courses 4,00 87 -1.02 142
[tem 14 | dislike STEM courses (R) 403 87 —1.00 1.10
[tem 15 | feel | have what it takes to succeed in a STEM-related job 407 86 - .81 A4
[tem 16 I would certainly feel useless in a STEM-related job (R) 4.19 87 -1.19 1.64
ltem 17 | feel | have a number of good qualities to be successful in a STEM field 417 74 - 99 218
[tem 18 | don't think | can make an impact if | take on a STEM-related job (R) 407 93 1.06 88
[tem 19 | feel I would have something to be proud of as a STEM professional 433 74 -1.19 2.16
[tem 20 | don't think | will succeed in a STEM field (R) 407 95 —-1.12 1.10
[tem 21 | would be able to succeed in a STEM field as well as most other people 4.03 87 -.96 1.05
[tem 22 | do not think | can achieve anything meaningful as a STEM professional (R) 4.26 83 - 1.1 1.14

“R” indicates that item was reverse-coded prior to analysis
M mean, SD standard deviation, SK skewness, K kurtosis
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Appendix 2

Table 7 Rotated factor loadings from the first factor analysis
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[tem Wording Factor loadings

no. 1 5 3
[tem 13 | would enjoy taking STEM courses 976 —.151 -117
[tem 12 The idea of being in a STEM class excites me 952 -.132

ltem 11 Being in a STEM class would be fun for me 936 —-.133 —-.107
[tem 3 | find STEM-related jobs very interesting 773 —.141
[tem 10 STEM classes are boring 725 109 208
[tem 2 | would take a course in STEM even if it were not required 712

[tem 14 | dislike STEM courses (R) 687 269 239
Item 6 | would enjoy working in a STEM field 677 186 -.127
[tem 9 STEM is a good college major for me 660 209 —-.139
[tem 5 STEM is an important field for me 624 129 —-.198
ltem 8 | am not interested in a degree in STEM 623 296 155
[tem 7 | would rather do something else than take on a STEM-related job 513 406 180
[tem 19 | feel I would have something to be proud of as a STEM professional 463 198 —-.320
ltem 10 STEM classes are boring -.123 810 —.145
[tem 22 | do not think | can achieve anything meaningful as a STEM professional (R) 804

[tem 16 | would certainly feel useless in a STEM-related job (R) 776 -.107
ltem 20 | don't think | will succeed in a STEM field (R) 765 -.178
[tem 1 Working in a STEM field would be a waste of my time (R) 222 629 122
[tem 4 | don't think working in a STEM field would help me achieve my professional aspirations (R) 352 561 180
ltem 21 | would be able to succeed in a STEM field as well as most other people 142 243 —.607
ltem 17 | feel | have a number of good qualities to be successful in a STEM field 267 219 —.607
[tem 15 | feel | have what it takes to succeed in a STEM-related job 300 280 —.528
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Appendix 3

Table 8 Rotated factor loadings (second factor analysis), means, and standard deviations
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[tem Wording Factor loadings M SD
no. 1 5

[tem 12 The idea of being in a STEM class excites me 969 - 385 94
[tem 13 I would enjoy taking STEM courses 968 - 4.00 87
ltem 11 Being in a STEM class would be fun for me 930 - 394 89
[tem 10 STEM classes are boring 797 - 395 86
ltem 14 | dislike STEM courses (R) 772 - 4.03 87
[tem 3 | find STEM-related jobs very interesting 761 - 4.24 82
[tem 2 | would take a course in STEM even if it were not required 713 - 398 95
ltem 8 | am not interested in a degree in STEM 687 - 4.10 1.06
[tem 6 | would enjoy working in a STEM field 672 - 418 91
[tem 9 STEM is a good college major for me 652 - 4.00 1.01
[tem 5 STEM is an important field for me 598 - 427 77
[tem 7 | would rather do something else than take on a STEM-related job 584 - 377 1.04
[tem 4 | don't think working in a STEM field would help me achieve my professional aspirations (R) 425 - 4.15 1.03
[tem 19 | feel | would have something to be proud of as a STEM professional 406 - 433 74
[tem 18 | don't think | can make an impact if | take on a STEM-related job (R) - 858 407 93
[tem 20 | don't think | will succeed in a STEM field (R) - 836 407 95
ltem 16 | would certainly feel useless in a STEM-related job (R) - 792 4.19 87
[tem 22 I do not think | can achieve anything meaningful as a STEM professional (R) - 774 4.26 83
[tem 21 | would be able to succeed in a STEM field as well as most other people - 663 403 87
ltem 17 | feel | have a number of good qualities to be successful in a STEM field - 635 417 74
[tem 15 | feel | have what it takes to succeed in a STEM-related job - 633 4.07 86
[tem 1 Working in a STEM field would be a waste of my time (R) - 481 454 75
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