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Abstract

Background: Fractions continue to pose a critical challenge for students and their teachers alike. Mathematics
education research indicates that the challenge with fractions may stem from the limitations of part-whole concepts of
fractions, which is the central focus of fractions curriculum and instruction in the USA. Students’ development of more
sophisticated concepts of fractions, beyond the part-whole concept, lays the groundwork for the later study of
important mathematical topics, such as algebra, ratios, and proportions, which are foundational understandings for
most STEM-related fields. In particular, the Common Core State Standards for Mathematics call for students to develop
measurement concepts of fractions. In order to support such concepts, it is important to understand the underlying
mental actions that undergird them so that teachers can design appropriate instructional opportunities. In this study,
we propose a learning progression for the measurement concept of fractions—one that focuses on students’ mental
actions and informs instructional design.

Results: A hierarchy of fraction schemes is charted outlining a progression from part-whole concepts to measurement
concepts of fractions: (a) part-whole scheme (PWS), (b) measurement scheme for unit fractions (MSUF), (c)
measurement scheme for proper fractions (MSPF), and (d) generalized measurement scheme for fractions (GMSF).
These schemes describe concepts with explicit attention to the mental actions that undergird them. A synthesis of
previous studies provides empirical evidence to support this learning progression.

Conclusions: Evidence from the synthesis of a series of research studies suggests that children’s measurement
concept of fractions develops through several distinct developmental stages characterized by the construction
of distinct schemes. The mental actions associated with these schemes provide a guide for teachers to design
instructional opportunities for children to advance their construction of a measurement concept of fractions.
Specifically, the collection of quantitative studies suggest that students need opportunities to engage in activities that
support two kinds of coordinations—the coordination of partitioning and iterating, and the coordination of three
levels of units inherent in fractions. Instructional implications are discussed with example tasks and activities designed
to provoke these coordinations.
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Background
Fractions continue to pose a critical challenge for American
students and their teachers alike (Lamon 2007; National
Mathematics Advisory Panel 2008; Common Core State
Standards for Mathematics [CCSSM] 2010). Mathematics
education research indicates that a central aspect of that
challenge consists in addressing the limitations of part-whole
concepts (Mack 2001; Pitkethly and Hunting 1996; Steffe

and Olive 2010; Streefland 1991), which remain the central
focus of fractions curriculum and instruction in the USA (Li
et al. 2009; Watanabe 2007). Students’ development of more
sophisticated concepts of fractions, beyond the part-whole
concept, lays the groundwork for the later study of important
mathematical topics, such as algebra (e.g., Hackenberg and
Lee 2015), which is foundational for all STEM-related fields.
In a part-whole conception, students interpret frac-

tions as a comparison of two numbers: the number of
equal parts in the whole and the number of parts taken
out of the whole to make the fraction. To understand
the limitations of such a concept, consider an improper

* Correspondence: wilkins@vt.edu
1School of Education, Virginia Tech, War Memorial Hall, RM 300C, 370
Drillfield Drive, Blacksburg, VA 24061, USA
Full list of author information is available at the end of the article

International Journal of
STEM Education

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Wilkins and Norton International Journal of STEM Education  (2018) 5:27 
https://doi.org/10.1186/s40594-018-0119-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-018-0119-2&domain=pdf
http://orcid.org/0000-0001-9362-6309
mailto:wilkins@vt.edu
http://creativecommons.org/licenses/by/4.0/


fraction, like 7/5. Because it is impossible to take seven
parts out of five parts, students (and many teachers) re-
flexively convert such fractions to mixed numbers (e.g.,
1 2/5) and avoid working with improper fractions
altogether (Thompson and Saldanha 2003; Tzur 1999).
Common Core State Standards for Mathematics call

on teachers to support more sophisticated concepts of
fractions. By the end of fourth grade, students should
understand non-unit fractions—even improper frac-
tions—as multiples of a unit fraction (CCSSM 2010). For
example, they should understand 3/5 as a fraction that is
three times as big as 1/5. This is a laudable and ambi-
tious goal that will involve supporting students’ recon-
ceptualization of fractions from part-whole concepts to
measurement concepts (Norton and Boyce 2013).
The part-whole and measurement concepts are among five

fractions subconstructs studied by the Rational Number
Project (Behr et al. 1983; Kieren 1980). Whereas the
part-whole subconstruct involves understanding a proper
fraction, m/n, as m equal parts taken out of n equal parts,
the measurement subconstruct involves understanding that
fraction as being m measures of the unit fraction, 1/n. The
Fractions Project (Steffe and Olive 2010) has built on results
of the Rational Number Project by specifying the mental ac-
tions—and their coordinations—that undergird various frac-
tion concepts/subconstructs. For example, part-whole
concepts rely on mental actions of partitioning and disem-
bedding, with which students can project n equal parts in a
continuous whole (partitioning) and pull out m of those
parts without losing track of their containment within the
whole (disembedding), resulting in the fractionm/n. One im-
portant mental action missing in the part-whole concept is
iterating, with which students can use a unit fraction to
measure off a longer part (e.g., a non-unit fraction or the
whole). Whereas partitioning involves the projection of n
equal parts into a continuous whole, iterating “involves men-
tally repeating a given length or area to produce a connected
whole that is n times as big as the given part” (Wilkins and
Norton 2011, p. 390). This coordination of actions involving
iteration is essential in the measurement subconstruct
(Kieren 1980), that is, understanding a non-unit fraction
or whole as made up of iterations of a unit fraction. Brief
descriptions of the mental actions included in our discus-
sion are presented in Table 1.
The decomposition of students’ fraction concepts into

the coordination of underlying mental actions has its roots
in Piaget’s (1972) genetic epistemology. In that epistemol-
ogy, mathematics is a product of psychology—derived
from mental actions that are characterized by their com-
posability and reversibility. For example, mental actions of
partitioning and iterating can be composed with one an-
other and can be considered as inverses of one another:
the mental action of partitioning a continuous whole into
n parts can be composed with the mental action of

iterating one of those parts n times, and the result is the
original whole (Wilkins and Norton 2011). Coordinations
of mental actions like these form group-like structures
that complement the sequential structures of schemes.
In this report, we share a hierarchy of fraction schemes

that chart a progression from part-whole concepts to
measurement concepts of fractions. These schemes de-
scribe concepts with explicit attention to the mental ac-
tions that undergird them. We then report on a
synthesis of a series of previously conducted quantitative
studies with regard to the hierarchy of schemes and re-
lated coordinations of actions. These studies provide
empirical evidence for the learning progression for the
measurement concept of fractions. Results should in-
form instruction while explaining the state of affairs in
students’ development of fractions knowledge. Specific-
ally, the collection of quantitative studies suggests that
students need opportunities to engage in activities that
support two kinds of coordinations—the coordination of
partitioning and iterating, and the coordination of three
levels of units inherent in fractions (the whole, the frac-
tion, and its associated unit fraction).

Theoretical framework
In addition to part-whole and measurement subcon-
structs, Kieren (1980) identified ratio, quotient, and op-
erator as subconstructs in children’s constructions of
rational number. We summarize the five subconstructs
in Table 2. He described the part-whole subconstruct as
a special case of the more general ratio subconstruct.
Both subconstructs involve comparing numbers of equal
parts, but the part-whole subconstruct has an additional
distinction in specifying a particular whole. Whereas 3/5
and 30/50 constitute the same ratio, they might refer to

Table 1 Description of mental actions

Mental action Description

Partitioning Projection of a composite unit into a
continuous whole to create equally
sized parts within the wholea

Iterating Repeating a unit of length or area to
produce a connected wholea

Disembedding Taking parts out of a whole as separate
units while maintaining their relationship
with the whole

Splitting Simultaneous composition of partitioning
and iterating, as inverse actions

Units coordination Maintaining relationships between the
various levels of units within a mathematical
experience; involves coordinating simpler
actions, such as partitioning, iterating, and
disembedding

aA whole unit can be continuous or discrete, but the discussion in this article
focuses on a continuous whole. Also note that splitting and units coordination,
as coordinations of other mental actions, are more advanced and separated in
the table
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different wholes (e.g., three heads in five coin flips or 30
heads in 50 coin flips); in a part-whole comparison, they
would refer to the same whole partitioned into different
numbers of equal parts. The quotient subconstruct again
refers to two numbers, but in this case, fractions are
understood as the result of dividing one whole number
by the other whole number.
The measurement subconstruct involves determin-

ing the fractional size of one magnitude (e.g., length
or area) relative to another by determining the num-
ber of times one fits into the other. In a longitudinal
study of the five subconstructs, Lamon (2007) found
that instruction based on the measurement subcon-
struct supported the most robust conceptions of frac-
tions, in terms of connecting to other subconstructs.
Specifically, she found that, for many students, the
operator subconstruct naturally arose from the meas-
urement subconstruct. The operator is a particularly
advanced subconstruct in which fractions refer to a
multiplicative mapping, such as mapping a figure to a
figure that is 2/3 of the original size.
In the remainder of this section, we describe a pro-

gression of fraction schemes and related mental actions
that elucidate students’ constructions of robust fraction
concepts. Those schemes centrally rely upon coordi-
nated mental actions, including those involved in coord-
inating multiple levels of units.

Fraction schemes
Based on Piaget’s (1972) genetic epistemology, von
Glasersfeld (1995) described schemes as three-part
structures through which students make sense of their
experiences (see Fig. 1): a recognition template that trig-
gers a sequence of mental actions, the mental actions
themselves, and an expected result from carrying out
those actions. A mathematical experience consists of a
situation in which particular kinds of mental actions are

called upon—reversible and composable mental actions,
such as partitioning and iterating. Here, we describe a pro-
gression of four fraction schemes that involve such mental
actions: the part-whole scheme (PWS), the measurement
scheme for unit fractions (MSUF), the measurement
scheme for proper fractions (MSPF), and the generalized
measurement scheme for fractions (GMSF). Brief descrip-
tions of these schemes are presented in Table 3.

Part-whole scheme
In addition to partitioning, the PWS utilizes the men-
tal action of disembedding parts from a whole.
Students use partitioning to break a continuous whole
into a specified number of equal parts; they use dis-
embedding to take any number of those parts as both
a separate collection and, at the same time, as parts
within the whole. When students do not disembed,
they sometimes consider the fraction to be the entire
picture, rather than the sub-collection, or in consider-
ing the sub-collection, they might lose track of the
whole and take the sub-collection as its own whole
(Olive and Vomvoridi 2006). For example, they might
name the entire picture of three parts shaded within
five parts as the whole, or they might name the three
parts pulled out of the five parts as three-thirds (see
Fig. 2). On the other hand, students who have con-
structed a PWS can make any proper fraction, m/n,
from a given whole by partitioning the whole into n
parts and disembedding m of them. Furthermore, on
the basis of disembedding, they can appropriately
identify the fraction as the m parts and appropriately
name that fraction as m/n.

Measurement scheme for unit fractions
The clearest distinction between measurement schemes
and the PWS lies in their use of the mental action of it-
eration. In the simplest case—the case of unit frac-
tions—students can iterate a smaller magnitude within a
larger magnitude to determine the number of times the
former fits into the latter (Steffe and Olive 2010; Steffe
2002). They can also appropriately name the unit frac-
tional size of the smaller magnitude relative to the larger
magnitude, based on the number of iterations. Specific-
ally, they understand the reciprocal relationship between
the number of iterations and the unit fractional size. For
example, consider Fig. 3.
Determining the fractional size of the small bar rela-

tive to the long (unpartitioned) bar is a situation that
would fit in the recognition template of the MSUF. For
students who have constructed such a scheme, the situ-
ation would trigger the mental action of iterating the
small bar within the long bar five times. The activity of
iterating suggests a partitioning of the long bar into five
parts (represented by the dotted lines), and the small

Table 2 Five subconstructs of rational number

Part-whole Understanding a rational number or fraction,
m/n, as m equal parts taken out of n equal parts

Quotient Understanding a rational number or fraction, m/n,
as dividing a quantity m into n equal parts

Measurement Understanding a rational number or fraction, m/n,
as being m measures of the unit fraction, 1/n, or m
iterations of 1/n

Ratio Understanding a rational number or fraction, m/n,
as a relationship between the two quantities m
and n, where either m + n =whole (part-part
relationship) or n =whole (part-whole relationship,
see part-whole subconstruct)

Operator Understanding a rational number or fraction, m/n,
as a function that multiplicatively maps a given
quantity to another quantity, i.e., it operates on
the given quantity

Based on Kieren (1980)
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bar is understood as one part disembedded from those
five parts.

Measurement scheme for proper fractions
Students who have constructed a MSUF can generalize that
way of operating to all proper fractions. However, with
non-unit fractions (e.g., 3/5), they need to iterate the unit
fraction, as if it were a unit of 1, to measure both the whole
and the non-unit fraction. For example, in producing the
fraction, 3/5, as a measure, students must understand the 1
to 5 relationship between the unit fraction (1/5) and the
whole, just as they would with the MSUF. Additionally,
they would need to produce 3/5 from 1/5 by iterating the
1/5 part three times, producing 3/5 as a composite unit—a
unit composed of three iterations of the 1/5 part.
Just as the iterative relationship between the unit

fraction and the whole suggests an inverse relation-
ship of partitioning the whole into unit fractions (as
described with regard to the MSUF), the iterative re-
lationship between the unit fraction (1/5) and the
non-unit proper fraction (3/5) suggests an inverse re-
lationship of partitioning that composite unit (3/5) in
three (1/5) units. Thus, students operating with a
MSPF can reproduce the whole from the proper frac-
tion by partitioning the proper fraction into three
equal parts (represented by the dotted lines in Fig. 4)
and iterating one of those (1/5) parts five times (see
Fig. 4). Note, however, that in treating the unit frac-
tion as a unit of 1, students operating with a MSPF
are not maintaining the relationships of all three units
(1/5, 3/5, and the whole) at once. Rather, they assimi-
late the goal of making the whole from a 3/5 part as
a goal of making 5 from 3.

Generalized measurement scheme for fractions
With the MSPF, there are two two-level relationships to
maintain in the fraction m/n: the 1-to-n relationship be-
tween the unit fraction and the whole and the 1-to-m re-
lationship between the unit fraction and the (non-unit)
proper fraction. Students can work across these two
two-level relationships, sequentially, by referencing the
whole. However, when the fraction exceeds the
whole—as in the case of improper fractions—the
whole is easily lost. Thus, to reliably work with im-
proper fractions, students must maintain all three
levels of units at once. That is not to say that the
GMFS only applies to improper fractions. Students
with a GMSF begin to understand all fractions as
“numbers in their own right” (Hackenberg 2007, p.
27), wherein m/n represents relationships between all
three levels of units, simultaneously. Still, the distinc-
tion is clearest when students are working with im-
proper fractions, like 7/5 (see Fig. 5).
Students might be able to produce improper fractions

from a given whole before they have constructed a
GMSF. However, these students will often refer to the
fraction they produced as 7/7 or even 5/7, because they
cannot maintain all three levels of units at the same
time. In the next section, we describe the coordinations
of mental actions involved in maintaining various levels
of units. We also describe how partitioning and iterating
are coordinated with one another within a new mental
action called splitting.

Splitting and units coordination
In addition to the three-part structure of schemes, Piaget
identified another kind of cognitive structure—one that

Fig. 1 Three-part structure of a scheme

Table 3 Progression of four fraction schemes

Scheme Associated actions

Part-whole scheme (PWS) Produce any proper fraction, m/n, from a given whole by partitioning the whole
into n parts and disembedding m of the parts.

Measurement scheme for unit fractions (MSUF) Determine the fractional size of a unit fraction, relative to a given unpartitioned
whole, through iterating the unit fraction to produce the whole.

Measurement scheme for proper fractions (MSPF) Produce an unknown whole from a proper fraction, m/n, by partitioning the proper
fraction of the whole into m equal parts to produce a unit fraction, 1/n, and iterating
1/n to determine the whole.

Generalized measurement scheme for fractions (GMSF) Produce an unknown whole from any fraction, m/n, including improper fractions, by
partitioning the fraction into m equal parts to produce a unit fraction, 1/n, and iterating
1/n to determine the whole.
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is particular to mathematics. These group-like structures
describe how mental actions are related to one another,
independent of the situations in which they might be ap-
plied. Here, “group” refers to a simple mathematical
structure wherein mental actions can be composed with
one another and every mental action has an associated
inverse action that undoes it (Piaget 1970). Consider, for
example, the mental actions of partitioning and iterating
(a brief description of the mental actions discussed here
is provided in Table 1).

Splitting
As noted previously, partitioning and iterating comprise
mental actions that can be composed with one another
and, more specifically, form inverses of one another so
that, when composed, they undo one another. Thus, they
form a simple group-like structure, called splitting (Steffe
2002; Wilkins and Norton 2011). The organization of par-
titioning and iterating as inverse elements within this
structure is what enables students to reverse their reason-
ing when working with the MSPF (producing the whole
from a given proper fraction as previously described;
Hackenberg 2010).
Note that splitting involves more than sequentially ap-

plying iterating and partitioning actions. Because parti-
tioning and iterating are organized within a single
structure, students who split can anticipate the result of
partitioning an iteration or iterating a partition (Wilkins
and Norton 2011). Returning to the example of 3/5, stu-
dents with a MSPF understand it as three iterations of a
1/5 part and, because they can split, anticipate that par-
titioning a 3/5-bar into three of those parts.

Units coordination
As with splitting, units coordination structures refer to
organizations of mental actions within structures for
composing and reversing them. Several researchers have

alluded to units coordination structures as serving import-
ant roles in students’ numerical cognition (e.g., Behr et al.
1983; Lamon 2007), and they play a particularly important
role in fraction schemes, as described by Steffe and Olive
(2010). Here, we elucidate one kind of units coordination
structure involved in conceptualizing fractions—one for
coordinating three levels of fractional units.
Understanding non-unit fractions as numbers involves

maintaining relationships between three levels of units:
the fraction itself, as a quantity; the unit fraction used to
measure it; and the referent whole. Maintaining all three
levels of units when working with fractions as numbers
requires a structure for organizing their relationships—
the n-to-1 relationship between the unit fraction (1/n)
and the whole, and the m-to-1 relationship between the
non-unit fraction (m/n) and the unit fraction. For this
reason, a units coordinating structure for simultaneously
coordinating three levels of fractional units is prerequis-
ite for the GMSF.

Purpose
The purpose of this study is to highlight the learning
progression outlined above based on the hierarchy of
fraction schemes (Steffe and Olive 2010). We draw on a
series of studies (Norton and Wilkins 2009, 2010, 2012,
2013; Norton et al. 2018; Wilkins and Norton 2011) that
have hypothesized and tested relationships among
smaller sets of schemes and mental actions associated

Fig. 2 Disembedding three-fifths from the whole

Fig. 3 Determining the unit fractional size of a part relative to the whole

Fig. 4 Producing the whole from a proper fraction

Fig. 5 7/5 as a unit of seven units of 1/5, five of which comprise the whole
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with the fractions hierarchy (Steffe and Olive 2010). We
synthesize the evidence from these studies to provide
support for the learning progression for the measure-
ment concept of fractions.
In order to focus on the measurement concept, we

have renamed some of the schemes and combined
others to remain consistent with the proposed theor-
etical framework. For reference to the previous re-
search, the measurement scheme for unit fractions
(MSUF) aligns with the partitive unit fraction scheme
(PUFS; Steffe and Olive 2010). The measurement
scheme for proper fractions (MSPF) represents a
combination of the partitive fraction scheme (PFS)
and the reversible partitive fraction scheme (RPFS)
(Steffe and Olive 2010; also see Norton and Wilkins
2010 for an examination of the partitive fraction
schemes). In previous research, these two schemes
(PFS and RPFS) were investigated separately to re-
main consistent with the hierarchy proposed by Steffe
and Olive (2010). This combination resulting in the
MSPF represents a theoretical criterion for the interi-
orization of a scheme—that the mental actions of the
scheme are both composable and reversible (Piaget
1970). Finally, the generalized measurement scheme
for fractions (GMSF) aligns with the iterative fraction
scheme (IFS; Steffe and Olive 2010). The naming of
the part-whole scheme and the various mental actions
remain consistent with Steffe and Olive (2010).

Model of the learning progression for the
measurement concept of fractions
In Fig. 6, we present a model of the learning progression
for developing measurement concepts of fractions. The
four schemes are represented with rectangles and are
presented horizontally. The thicker single-headed arrows
represent the order of the developmental progression of
the schemes. The thinner single-headed arrows repre-
sent a developmental prerequisite. For example, the par-
titioning and iterating actions are presented in circles
with thinner single-headed arrows representing their
basis as developmental prerequisites for the construction

of subsequent fraction schemes and the more advanced
mental action of splitting, presented in a diamond.
Splitting is shown to be a developmental prerequisite

for the construction of the MSPF and three levels of units
coordination (also in a diamond). Splitting is represented
as a necessary prerequisite for the construction of the
MSPF and the GMSF, with the coordination of three levels
of units also necessary for the GMSF. The MSUF is repre-
sented as a developmental prerequisite of splitting.
The construction of the MSPF is associated with the

interiorization of three levels of units coordination, but
they develop alongside one another (represented by a
two-headed arrow), that is, there is a relationship be-
tween the construction of a MSPF and units coordin-
ation, but the order of development is not directional.
The MSPF does involve three levels of units, but because
the units are within the whole, it is possible for children
to coordinate these units two at a time. As previously
discussed, the simultaneous coordination of three levels
of units is necessary for the construction of the GMSF
(represented by a thin single-headed arrow).

Methods and background of studies
Together, the studies that we draw on included more
than 300 students in grades 5, 6, 7, and 8. Students were
from schools in the midwestern (Norton and Wilkins
2009) and southeastern (Norton and Wilkins 2010,
2012, 2013; Wilkins and Norton 2011) USA, as well as
from China (Norton et al. 2018). Research procedures in
these studies were approved by the Institutional Review
Board for research involving human subjects. Tasks used
in these studies were created to elicit the different ways
of operating associated with the different fraction
schemes and associated mental actions (see, e.g., Norton
and Wilkins 2012; Norton et al. 2018; Wilkins and
Norton 2011; Wilkins et al. 2013). In these studies, sets
of four items designed specifically for each scheme or
operation were used to determine whether students had
constructed each scheme and operation. Relationships
between schemes and operations were analyzed using
descriptive statistics and measures of association (e.g.,

Fig. 6 Hierarchy of schemes and mental actions
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gamma statistic). For more specific information on the
design and analyses used in these studies, see Wilkins
and Norton (2011).

Results and discussion
In Table 4, we summarize the percentage of students
within each of the studies who had indications of having
constructed each of the particular schemes and mental
actions. We use these percentages as initial evidence of
the developmental progression of schemes outlined
above. However, these percentages alone do not substan-
tiate the interrelationships shown in the model in Fig. 6.
Further evidence will be discussed, drawing on add-
itional findings from within the separate studies. These
additional findings from within the separate studies are
documented based on statistical analyses that consider
and test for the interrelationships among the different
schemes and mental actions.
Looking across the four fraction schemes PWS ➔

MSUF ➔ MSPF ➔ GMSF, the percentages provide evi-
dence for the hierarchical development of the four
schemes (see Fig. 6 and Table 4). For example, consider
column one for a sample of fifth graders (Norton and
Wilkins 2009). The percentage decreases from 58% for
the PWS to 52% for the MSUF and 14% for the MSPF
and then 14% for the GMSF. Looking across different
studies, the evidence is most pronounced for the first
three schemes (PWS ➔ MSUF ➔ MSPF); in all cases,
the percentage of students within each study having con-
structed the scheme decreases as the scheme becomes
more advanced. Overall, these percentages provide evi-
dence in support of the learning progression for the de-
velopment of the measurement concept of fractions.

Further considering the developmental progression
from PWS to MSUF, this relationship was hypothesized
and tested in a study of 76 fifth and sixth graders in
China (see Fig. 6, path d; see Table 4, columns 2 and 4;
Norton et al. 2018). As hypothesized, the construction of
a PWS was documented to developmentally precede the
construction of the MSUF.
The interrelationships among partitioning, iterating,

splitting, and the MSUF were hypothesized and tested in
a study of 66 sixth graders (Wilkins and Norton 2011;
see Fig. 6 paths b, c, e, f, and h; see Table 4, column 5).
As hypothesized, partitioning and iterating were both
found to developmentally precede MSUF and splitting.
Furthermore, the construction of a MSUF, as a result of
composing iterating and partitioning, was documented
to mediate the construction of splitting, which repre-
sents an important developmental transition. The im-
portance of this transition was further highlighted in
another study (Norton and Wilkins 2013) in which it
was documented that students who had constructed an
MSUF by the end of sixth grade were approximately 13
times more likely to construct splitting by the end of
seventh grade than the students who had not con-
structed an MSUF. These findings emphasize the im-
portance of developing even the earliest forms of the
measurement concept.
The construction of splitting and the coordination of

units are important for their roles in the construction of
more advanced fraction schemes and mental actions. The
interrelationships among splitting, units coordination, the
MSPF, and the GMSF are shown in Fig. 6 and were hy-
pothesized and tested in a study of 58 eighth graders
(Norton and Wilkins 2012; see Fig. 6, paths i, j, k, l, m,

Table 4 Percentage of students with indication of fraction schemes and associated mental actions by grade

Grade 5a

(N = 44)
Grade 5b

(N = 45)
Grade 6a

(N = 40)
Grade 6b

(N = 31)
Grade 6c

(N = 66)
Grade 6d

(N = 49)
Grade 7e

(N = 56)
Grade 7g

(N = 49)
Grade 8h

(N = 58)

Scheme/action % % % % % % % % %

Partitioning 88

Part-whole 58 80 78 100

Iterating 86

MSUF 52 67 70 81 61 59 61 65

Splitting 34 42 36 77 44 41 55 63 66

MSPF 14 16 18 19 (17) 13f 19

Units coordination 26

GMSF 14 20 12

Percentage in parentheses represents only the composability component of the MSPF and does not include tasks testing for reversibility
aFrom Norton and Wilkins 2009
bFrom Norton et al. 2018
cFrom Wilkins and Norton 2011
dFrom Norton and Wilkins 2013, subset of children in Wilkins and Norton 2011
eFrom Norton and Wilkins 2010
fNot previously published, but associated with students in Norton and Wilkins 2010
gFrom Norton and Wilkins 2013
hFrom Norton and Wilkins 2012
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and n; see Table 4, column 9). As hypothesized, splitting
was documented as a developmental prerequisite for the
construction of a MSPF (also see Table 4 with reference to
Norton and Wilkins 2009 and Norton et al. 2018) and a
GMSF. Findings from this study also provided evidence
that splitting precedes the simultaneous coordination of
three levels of units. In addition, as hypothesized, the con-
struction of a MSPF was shown to precede the construc-
tion of a GMSF (also see Norton and Wilkins 2009, 2012).
Key to the distinction between the construction of a

MSPF and the GMSF, children’s simultaneous coord-
ination of units was documented as a developmental
prerequisite for the construction of a GMSF; however,
simultaneous coordination of units was not found to
be a developmental prerequisite for the construction
of a MSPF. Although the construction of a MSPF was
found to be positively related with the simultaneous
coordination of three levels of units, several students
were documented to have constructed a MSPF with-
out simultaneously coordinating three levels of units.
However, no students were found to have constructed
a GMSF without first being able to simultaneously
coordinate three levels of units. This finding is con-
sistent with the proposed learning progression, in that
some children who are only able to coordinate a
three-level structure sequentially as two two-level
structures can still solve tasks like that presented in
Fig. 4 (a task designed to indicate the construction of
a MSPF). However, this sequential coordination of
units is not sufficient for the construction of a GMSF,
which is required for tasks like the one presented in
Fig. 5.
In summary, splitting affords students the ability to re-

verse their reasoning with fractions as measures, which
enables them to construct the MSPF. Students who are
able to simultaneously coordinate three levels of units
are then poised to reorganize their MSPF to deal with
fractions of any size, including improper fractions, that
is, to construct a GMSF. At this point, students are able
to produce any fraction from a given whole or recreate
the whole from a fraction of any size.
Finally, the developmental hierarchy between MSUF

and MSPF was hypothesized and tested in several
studies across grades 5, 6, and 7 (Norton and Wilkins
2009, 2010; Norton et al. 2018; see Fig. 6, path g; Table 4,
columns 1, 2, 3, 4, and 7). As discussed previously, in all
cases, the percentage of students having constructed a
MSUF was much larger than the percentage of students
having constructed a MSPF. In addition, in each of these
studies, it was statistically documented that the MSUF
preceded the development of the MSPF. Therefore, it is
clear from these studies that there are developmental
differences for students when dealing with measurement
situations associated with proper fractions as compared

to unit fractions. This is interesting from an instruc-
tional perspective as the same has not been found to be
true for students working in part-whole situations, that
is, there are no operational differences between unit and
proper fractions when dealing with part-whole situations
(Norton and Wilkins 2009).

Conclusions
Kieren’s (1980) five subconstructs (see Table 2) provide a
way of understanding the many facets of rational num-
ber and point to the importance of “developing mecha-
nisms for building rational number concepts” (p. 127)
that can inform instruction. We have provided evidence
for underlying mechanisms, in the form of schemes and
mental actions, particularly with regard to the measure-
ment subconstruct. Kieren (1980) alluded to the import-
ance of partitioning and iterating in the formation of the
measurement construct, and we highlight their import-
ance in constructing splitting and the coordination of
three levels of units that make possible the construction
of the more advanced measurement schemes (Norton
and Wilkins 2012; Wilkins and Norton 2011; Hacken-
berg 2007). We highlight these mechanisms as they dis-
tinguish children’s mental actions with unit fractions,
proper fractions, and improper fractions.
As Lamon (2007) documented in her study, instruc-

tion on the measurement subconstruct leads to the most
robust conceptions of fractions. We have outlined and
provided support for a learning progression from the
part-whole subconstruct to the construction of a gener-
alized measurement concept of fractions, the GMSF.
Kieren (1980) highlighted the interaction among the
subconstructs, and with the construction of a GMSF,
children are further poised to understand the operator
subconstruct (Lamon 2007; Norton and Wilkins 2012;
cf. Thompson and Saldanha 2003)—an understanding
that affords children the ability to map one rational
number to another in a multiplicative way (Hackenberg
and Tillema 2009).
The learning progression outlined above provides a

theoretical guide to design instructional tasks that pro-
vide opportunities for students to construct the schemes
and mental actions necessary to build a measurement
concept of fractions. We offer sample tasks and activities
that could fill out a trajectory with learning opportun-
ities for students to move through the progression. We
start with example tasks meant to move students from a
part-whole conception of fractions to construct a MSUF.
This can be done by engaging students in tasks involving
the production of connected multiples from a given unit
(e.g., Steffe 2002). Steffe concluded that such tasks create
a bridge between students’ use of iterating in discrete,
whole-number contexts (e.g., part-whole) to their use of
iteration in continuous, fractional contexts (e.g., MSUF).
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Figure 7 illustrates such tasks. In Fig. 7a, children are
asked to create multiples of the stick through iteration.
There is no fractional language in the task, but solving
the task involves measuring one length with a given unit
of length—a precursor to measuring the whole or a
non-unit fraction, with a unit fraction, as a unit of meas-
ure. For the task shown in Fig. 7b, fraction language
connects students’ iterating activity to a specific magni-
tude (1/6) to determine the number of times the unit
fraction fits into the whole—essential understanding for
the construction of a MSUF.
To help transition children from a MSUF to a MSPF, a

task like that in Fig. 7c would require children to under-
stand the 1 to 5 relationship between the unit fraction
(1/5) and the whole, as with the MSUF, but additionally,
they would need to create 3/5 from 1/5 by iterating the
1/5 unit three times, producing 3/5 as a composite
unit—a unit composed of three 1/5 parts. A task like
that shown in Fig. 7d would challenge students to re-
verse that reasoning to create the unit fraction (1/7) as-
sociated with 3/7 and iterate it to create the whole
(Hackenberg 2010). This level of thinking and activity
characterizes the understandings associated with a
MSPF.
In addition to tasks like those in Fig. 7, recent develop-

ment of educational video games offer dynamic environ-
ments in which to help children coordinate their actions
of partitioning and iterating (Aslan et al. 2012; Norton et
al. 2014). In the game CandyFactory (version 2.0; Aslan
et al. 2012), children work for a company filling orders
for candy that meet the specific requirements, through

the use of partitioning and iterating. As highlighted earl-
ier, splitting is necessary for students to reverse their
partitive thinking and construct a MSPF. The construc-
tion of splitting seems to develop through continued op-
portunities for children to coordinate their partitive
thinking with unit fractions (Norton and Wilkins 2013;
Steffe 2002). As discussed earlier, the MSUF involves the
sequential use of partitioning and iterating. Through
continued opportunities to partition figures to create
units that can then be iterated to reform the whole and
at the same time iterate units to create a whole that can
then be partitioned to reform a unit, students begin to
see these sequential mental actions as a single simultan-
eous mental action, splitting (see Table 1). Tasks like
those in Fig. 7 and CandyFactory not only support the
development of a MSUF but also lay the groundwork for
the construction of splitting.
Finally, in order to construct a GMSF, children must

first be able to coordinate at least three levels of units at
a time. Giving children opportunities to solve tasks that
involve multiple levels of units can lead to growth in
children’s coordination of units (Norton and Boyce
2015). Norton and Boyce (2015, p. 216) systematically
designed scenarios involving four levels: boxes of cups,
number of chips in a cup, and a price for a chip, e.g., 2
chips in a cup, 5 cups in a box, and 2 cents per chip.
They then asked questions that involved the manipula-
tion of the multiple units: “How much is a box worth?”;
“If you have 14 cents, how many more chips do you
need to make a box?” (p. 216). Similar tasks have also
been developed as part of an educational video game,

a)

b)

c)

d)

Fig. 7 a–d Examples of tasks for transitioning children from a PWS to MSUF to MSPF
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CandyDepot (version 2.0), in which children work for a
shipping company packing bars in bundles and bundles
in boxes in the most efficient way (Aslan et al. 2013; also
see Norton et al. 2015).
Through the careful use of tasks and activities that

focus on the underlying mechanisms or mental actions
that support the development of fraction concepts, chil-
dren can construct more robust concepts of fractions. In
particular, by purposefully choosing tasks that provoke
children’s actions associated with the coordination of
partitioning and iterating, as well as the coordination of
multiple levels of units, children can construct powerful
measurement concepts for fractions. Moreover, the
power of these measurement concepts extends beyond
the domain of fractions.
CCSSM (2010) calls for children to extend their un-

derstanding of the number line to include rational num-
bers. In that context, unit fractions become units of
measure, just as described here for the MSPF and the
GMSF. Whereas measurements in units of 1 generate
the number line for natural numbers, measurements in
units of 1/n extend that line to all positive rational num-
bers (Kallai and Tzelgov 2009). Additionally, the MSPF
and GMSF open doors for students to develop algebraic
reasoning, wherein they operate on unknown quantities
(Booth and Newton 2012; Hackenberg and Lee 2015).
Like 1 and unit fractions, an unknown quantity, x, be-
comes a unit that students can partition and iterate,
while coordinating associated units, to build relation-
ships that they can represent with algebraic equations.
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