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Abstract

Background: Specialized content knowledge (SCK) is a type of mathematical content knowledge specifically
needed for teaching. This type of knowledge, although serving as a critical component for preservice teacher
education, is often challenging to develop with preservice elementary teachers (PTs). The purpose of this study is
to investigate PTs' development of SCK for teaching fundamental mathematical ideas in a university methods
course. Focusing on the case of the associative property (AP) of multiplication, the author as the course instructor
identified three instructional opportunities (a formal introduction and two delayed revisits) to stress two SCK
components, representations, and explanations. PTs' learning progresses were assessed through three diagnostic
tests (a pretest, a mid-term exam, and a final exam) and two prompts, which informed the upcoming lesson
design. Meanwhile, the course instructor conducted ongoing reflections on PTs’ learning, which also informed the
corresponding lessons.

Results: It was found that PTs initially generated abstract number sentences without reasoning about the contexts
of word problems. This representational sequence indicates a symbol precedence view. When prompted for
explanations, PTs focused on individual numbers rather than quantitative relationships, and they could not
consistently apply the basic meaning of multiplication for reasoning. The methods course, when designed to
address these issues, promoted PTs" SCK development. At the end of the course, the majority of PTs were able

to generate number sentences based on the word problem structures and provided reasonable explanations;
however, the methods course also faced dilemmas due to PTs' robust symbol precedence view and the tension
between PTs' learning and children’s learning.

Conclusions: Very few studies have explored ways to support PTs' knowledge growth in SCK, especially for
teaching fundamental mathematical ideas. This study, by carefully documenting the successes and challenges

in developing PTs' SCK, contributes to the existing literature. Based on our findings, this study highlights the
importance of stressing basic meanings so as to develop PTs explanation skills. Meanwhile, to develop PTs'
representation skills, university instructors should be aware of the tension between PTs" and children’s learning as
manifested by PTs" symbol precedence view. Finally, to support PTs" SCK growth, it is also important to emphasize
the role of elementary textbooks.
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Background

Mathematics education programs should support preser-
vice elementary teachers’ (PTs) learning of specialized
content knowledge (SCK), which is a type of mathemat-
ical content knowledge specifically needed for teaching
(Ball et al. 2008). Such knowledge addresses both math-
ematics substance and pedagogical appropriateness. For
example, in order to help elementary students make
sense of abstract mathematical ideas such as the associa-
tive property (AP), a teacher may need to know how to
illustrate AP through concrete word problem contexts.
According to Morris et al. (2009), SCK is critical for
teaching but often challenging to develop. This is be-
cause this type of knowledge focuses on unpacking a
mathematical concept into its subcomponents to make
it comprehensible for children. Thus, SCK does not rely
on particular teaching contexts or particular students
and therefore can be developed through university educa-
tion programs. However, the acquisition of SCK demands
PTs" well-connected mathematical knowledge and the
awareness of children’s learning, which is often found to
be lacking in PT’s existing conception (Borko et al. 1992;
Ding et al. 2013; Morris and Hiebert 2009; Simon and
Blume 1994). Such deficiency may be more problematic
when developing PTs” SCK for teaching fundamental
mathematical ideas (e.g., basic properties of operations)
that are the core principles of mathematics but too
abstract for children. As such, in order to better teach
elementary children fundamental mathematical ideas,
there is a need to investigate ways to support PTs develop-
ment of SCK. The purpose of this study is to explore,
through the case of the AP of multiplication, PTs” develop-
ment of SCK and ways to support PTs’ SCK development
in a mathematics methods course. By documenting PTs’
knowledge growth and the successes and challenges in
learning to teach AP of multiplication, this study aims to
contribute a small but vital piece to the knowledge base of
teacher education (Morris et al. 2009), particularly in the
area of teaching fundamental mathematical ideas.

Literature review

Teaching fundamental mathematical ideas: the case of AP
The associative property (AP) is a representative among
fundamental mathematical ideas. This property, together
with the commutative property (CP), and distributive
property (DP) are the basic laws of arithmetic, which
can be learned in early grades and will lay a foundation
for future learning of algebra such as solving equations.
As such, researchers view these fundamental mathemat-
ical ideas as early algebra topics (Carpenter et al. 2003;
Kaput et al. 2008). Due to the limited scope, this study
will focus only on the AP of multiplication (ab)c = a(bc),
which is harder than AP of addition (Carpenter et al.
2003). The significance of the AP of multiplication
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warrants this focus. For instance, the Common Core
State Standards (Common Core State Standards Initia-
tive 2010) has clearly stressed that elementary students
should learn and understand the AP of multiplication
starting from the third grade. Ding et al. (2013) also
reviewed several important aspects of this property.
First, along with the other properties, the AP provides
tremendous flexibility for computation (Bruner 1960).
For instance, to compute (3 x 4) x 25, one may use the
AP to first multiply the latter two numbers, 3 x (4 x 25),
and obtain the answer quickly. Second, the AP of multi-
plication may serve as a powerful tool for justification,
reasoning, and proof (Carpenter et al. 2003). The ex-
ample given by Carpenter et al. was to prove the follow-
ing mathematical statement, “when you multiply an even
number times any whole number, you get an even num-
ber.” One may use “2n” and “m” to represent any even
number and whole number, respectively, and then use
the AP to obtain (2n)m = 2(nm). Third, students’ under-
standing of the AP may be transferred to later learning
to solve algebraic equations and to learn more advanced
concepts such as elementary group theory (Larsen
2010). Due to the significance of AP of multiplication, it
is reasonable to expect PTs to obtain the necessary SCK
for teaching this property through methods courses. Due
to the fact that AP of multiplication is only one of the
many fundamental mathematical ideas (e.g., CP, DD, in-
verse relations), findings from this study are also expected
to serve as a window for developing PTs’ SCK to teach
other fundamental mathematical ideas.

Although fundamental mathematical ideas like the AP
of multiplication are powerful, they are abstract in nature
(Goldstone and Son 2005). Very often, students obtain
only inert knowledge of these ideas (e.g., memorization of
formulas) but lack the ability to flexibly retrieve them. For
instance, when facing (3 x 4) x 25, a student may compute
from the left to the right, (3 x4) x 25=12 x 25, without
noticing the possibility of applying the AP. Such an
inability to activate the AP is likely due to a lack of deep
and meaningful initial learning (Chi and VanLehn 2012).
In order to help students obtain meaningful initial learn-
ing, it is important for teachers (including PTs) to develop
specialized content knowledge that will enable them to
unpack an abstract concept in meaningful ways.

Specialized content knowledge

SCK is a key component of mathematical knowledge for
teaching, a notion developed by Ball and colleagues (Ball
et al. 2008) including common content knowledge
(CCK), specialized content knowledge (SCK), knowledge
of content and students (KCS), and knowledge of con-
tent and teaching (KCT). According to these researchers,
SCK is a type of mathematical knowledge that is needed
only for teaching rather than any other work. “This work
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involves an uncanny kind of unpacking of mathematics
that is not needed—or even desirable—in settings other
than teaching.” (Ball et al. 2008, p. 400). SCK is different
from CCK in that it is possessed by every educated
adult; it is also different from KCS and KCT, which
demand knowledge of specific students and teaching
context. Therefore, SCK serves as a good candidate for
topics to be covered in preservice teacher education
(Morris et al. 2009). Note that although these knowledge
components are distinguished in theory, they are not
disjoint in actual teaching. For instance, SCK demands
but also promotes CCK.

Even though Ball et al. (2008) provided a list of SCK
tasks that are unique for teaching mathematics (e.g.,
“explaining mathematical goals and purposes to parents,”
“Inspecting equivalencies,” p. 400), this study focused
mostly on teachers’ representations and explanations,
which are the core to unpacking a concept to make it vis-
ible and meaningful for students. Venkat (2015) argued
that a focus on representations and explanations can sim-
ultaneously support teachers’ mathematical learning and
their learning about mathematics teaching. In fact, repre-
sentations and explanations are not disjoint (e.g., one may
explain the connections between representations). This
study mainly stresses PTs’ ability in (a) making connec-
tions between representations through a specific sequence,
from concrete to abstract, and (b) explaining the meaning
of an abstract number sentence by referring it to concrete
contexts. As to be reviewed below, these two SCK compo-
nents are largely emphasized by the existing literature,
serving as a theoretical framework for this study.

Representations Ball et al. (2008) stressed teachers’
ability in “selecting representations for particular pur-
poses,” “recognizing what is involved in using a particular
representation,” and “linking representations to underlying
ideas and to other representations” (p. 400). Repre-
sentations can be concrete (manipulatives, visual images,
real-world contexts) or abstract (symbols). Both types of
representations have strengths and limitations. For in-
stance, concrete representations can activate students’ per-
sonal experiences to aid sensemaking; however, these
representations can contain irrelevant information that
may hinder students from seeing the underlying mathem-
atical ideas (Kaminski et al. 2008). Abstract representa-
tions support students’ learning of powerful mathematical
ideas; yet, these representations are often distant from stu-
dents’ personal experiences and thus may be learned in
the form of inert knowledge. As such, it was suggested
that teachers should help students make connections be-
tween concrete and abstract representations (National
Mathematics Advisory Panel 2008; Pashler et al. 2007).
Recent research particularly stresses a sequence of fading
from concrete into abstract (also called “concreteness
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fading,” Goldstone and Son 2005). This representational
sequence is well aligned with how students learn and has
been found to be effective in supporting both learning and
transfer (Goldstone and Son 2005; McNeil and Fyfe 2012).

In this study, we expect PTs to illustrate fundamental
ideas through word problem contexts. Thus, the repre-
sentational sequence begins from concrete word prob-
lem situations. We consider word problems as concrete
because the real-world situations provided by such prob-
lems “have the potential to offer memorable imagery
that can act as a touchstone for teachers and learners in
building and discussing abstract concepts” (Gerofsky
2009, p. 36). However, in order to make the underlying
fundamental mathematical ideas explicit, we also expect
that PTs will solve word problems symbolically, which
can be generalized to reveal the underlying mathematical
principle. The above sequence is consistent with a ver-
bal precedence view (Nathan and Koedinger 2000) that
emphasizes reasoning from verbal to symbol. This se-
quence is found well aligned with students’ mathemat-
ical development (Koedinger and Nathan 2004; Nathan
et al. 2002).

Explanations The second SCK component target in this
study is explanation of mathematical ideas. Ball et al.
(2008) highlighted tasks of “presenting mathematical
ideas,” “finding an example to make a specific mathem-
atical point,” and “giving or evaluating mathematical ex-
planations” (p. 400). Prior studies have pointed out that
students’ self-explanations of mathematical ideas pro-
mote learning (Chi et al. 1994; Cobb 1994; Hiebert et al.
1997; Lewis 1988). However, in order to facilitate stu-
dent explanations, teachers themselves should be able to
explain. At times, teachers who are able to ask good
question may not necessarily know the deep explana-
tions to their own questions (Ding and Carlson 2013).
Therefore, it is important to develop teachers’ deep and
meaningful explanations of a mathematical concept. Ac-
cording to Chi and VanLehn (2012), deep explanations
refer to structural relationships rather than surface fea-
tures or interactions among quantities rather than only
individual numbers. Teachers whose explanations focus
on structural relationships or quantitative interactions
will likely have a better chance to develop students’ self-
explanations of the target concepts and thus decreases
the risk of rote memorization.

SCK for teaching AP of multiplication Based on the
above SCK framework, we expect PTs to situate the
teaching of AP of multiplication in word problem con-
texts, which can be unpacked through representation
uses and explanations. Ding et al. (2012) reported
that a widely used US textbook (Greenes et al. 2005)
introduced AP through the following word problem
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“Mr. Levin’s students are tasting foods grown in rainfor-
ests. He put 5 pieces of mango on each plate and put 2
plates on each table. There are 3 tables. How many pieces
of mango are there?” (see Fig. 1). One may notice that the
number choices in this problem do not effectively show
the power of the AP as in the instance of (3 x4) x 25 =
3 x (4 x 25); yet, for initial learning where the goal was to
help student make sense of the AP, this mango problem
context has a potential to serve the purpose. According to
Ding et al., a teacher with SCK may first draw a diagram
to represent the problem structure: 3 tables of 2 plates of
5 mangos (see Fig. 2). Such a diagram may serve as a me-
diating tool for classroom discussion and facilitate stu-
dents’ schema acquisition (Larkin and Simon 1987). Next,
a teacher may guide students to reason by using the dia-
gram to generate two mathematical solutions: (3 x 2) x5
and 3 x (2x5). Finally, a teacher may guide students
to compare two solutions to generate an instance of
the AP, (3x2)x5=3x(2x5), which may lead to fur-
ther generalization of the algebraic formula, (ab)c = a(bc).
The above representational sequence—word problem,
diagram, arithmetic solutions, and algebraic formu-
la—indicates an inductive reasoning sequence, moving
from concrete to abstract and from specific to general (see
Fig. 2).

To ensure students’ understanding of the numerical so-
lutions, explanations should be incorporated so students
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could understand the meaning of these number sentences.
For example, a teacher should help students understand
why one multiplies certain numbers together (e.g., 3 x 2,
6 x 5,2 x5, 3 x 10) and what each step actually meant. Ac-
cording to the problem structure, one may first find out
how many plates are in total (3 tables of 2 plates thus 3 x
2=6") and then how many mangoes are in total (6 plates
of 5 mangos thus 6 x 5 = 30), resulting in the first solution
(3 x 2) x 5. Alternatively, one may first find out how many
mangos are on one table (2 plates of 5 mangos thus 2 x 5 =
10) and then how many mangos are in total (3 tables of 10
mangos thus 3 x 10 = 30), resulting in the second solution,
3 x (2 x 5). The above explanations of the meaning of each
step demands one’s understanding of the quantitative def-
inition of multiplication a x b, which refers to “a groups of
b.” This definition or the basic meaning of multiplication
is the core in the multiplicative conceptual field serving as
a foundation for mathematical reasoning (Beckmann and
Izsédk 2015; Beckmann et al. 2015). More importantly, this
definition should be used consistently to enable the rea-
soning process (Beckmann et al. 2015). Consider, for ex-
ample, if a teacher sometimes uses 3x2 to refer to 3
groups of 2 and then other times to refer to 2 groups of 3,
students will have difficulties constructing an under-
standing of multiplication and mathematics will be-
come spurious and meaningless (Schwartz 2008). With
a consistent use of the basic meaning, students will be

T

Learn About It

There are 3 tables. How many pieces
of mango are there?

5 X 2 b4 3 =
pieces number number
of mango of plates of tables

p You can multiply 5 x 2 first.

(5x2)x3
10x3=130

the product will be the same.

Mr. Levin's students are tasting foods grown
in rainforests. He put 5 pieces of mango on
each plate and put 2 plates on each table.

Associative Property of Multiplication

The way factors are grouped does not change the product.

No matter which two factors are multiplied first,

Solution: There are 30 pieces of mango.

P You can multiply 2 x 3 first.

5x(2x3)
5x6=30

: Hemembn;r
{ The parentheses (§
tell you which faclos

to multiply I'irsl.

Fig. 1 The third grade elementary textbook page that presents the mango problem in Houghton Mifflin (Greenes et al. 2005)




Ding International Journal of STEM Education (2016) 3:9

1. Represent:

@D

e

L)

G@®

Solution 2

(1) How many mangos are on one table?
2x5=10 (mangos)

(2) How many mangos are in total?
3x10=30 (mangos)

2. Solve:
Solution 1
(1) How many plates are there?
3x2 =6 (plates)
(2) How many mangos are in total?
6x5 =30 (Mangos)

Or: (3x2)x5 = 30 (mangos) Or: 3%(2x5) = 30 (mangos)

3. Compare: (3%2)x5 =3x(2x5)

4. Reveal: This is AP of multiplication, (ab)c = a(bc)

Fig. 2 The suggested teaching approach in Ding et al. (2012)

able to make inferences and link a number sentence
back to the story problem situation to provide mean-
ingful explanations.

Developing PTs’ SCK: the challenges

PTs, as well as many other educated adults, possess
compressed and abstract knowledge when they enter
education programs. This type of knowledge, although
demonstrating procedural fluency, is not sufficient for
teaching children who need to construct knowledge
based on their prior understanding. In particular with
the AP of multiplication, Ding et al. (2013) reported
that, when PTs first entered education programs, many
of them did not remember the AP (CCK). For those who
did remember, they had difficulties in illustrating the AP
through concrete contexts (SCK). For instance, for a
word problem with a structure of 3 groups of 2 groups
of 4, many PTs generated number sentences such as
(3x4)x2,o0r (4x3)x2,or 2x(3x4). Although all these
number sentences can produce a correct answer, they
were not aligned with the word problem structure and
each step cannot be explained in terms of the word
problem situation. When prompted to explain these
number sentences, PTs attended to the individual quan-
tities (e.g., 3 boxes, 2 sets, 4 pencils) but not the interac-
tions between them or the meaning of each step (e.g., 3
boxes of 2 sets thus 3 x 2 = 6 sets). These findings indicate
PTs" procedural knowledge and their attention to number
manipulation rather than quantitative relationships. In
addition, many PTs directly presented the number sen-
tences without reasoning upon the word problem situa-
tions (e.g., no pictures were drawn before presenting a
number sentence). This finding echoes prior reports that
US teachers (and textbooks) commonly possessed a symbol
precedence view (as opposed to a verbal precedence view,
Nathan and Koedinger 2000; Nathan et al. 2002). With this
view, teachers and textbooks tended to treat manipulation
with symbols as easier than word problems. Therefore,
they often presented computations earlier than word
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problems because they thought word problems were too
complex for students to learn. However, these researchers’
experimental studies show that students indeed performed
much better on word problems than the parallel algebraic
equations, likely due to the fact that word problem con-
texts have elicited students personal knowledge to aid stu-
dents’ problem solving. Nathan and others’ findings show
that the commonly held symbol precedence view contra-
dicts how students learn (Koedinger and Nathan 2004).

Prior findings on PTs SCK for the AP of multiplica-
tion were consistent with a broader literature on PTs’
learning to teach. Simon and Blume (1994) found that
many PTs know the area formula “length x width,” yet
they could not explain why this formula worked through
illustrations. Recently, Morris et al. (2009) found that PTs
had incredible difficulty in unpacking decimal addition
into sub-concepts that involve decimal units and the cor-
responding relations. These findings indicate the challenge
to help PTs unpack their compressed knowledge. When
getting frustrated, some PTs complained about these tasks
as “the needlessly complicating things that should be
straightforward” (Suzuka et al. 2010, p. 17). In fact, PTs
who have taken methods courses may still not be able to
unpack a task in ways that are comprehensible for chil-
dren. As reported by Borko et al. (1992), when a student
asked for the reasons of the inverse and multiply proced-
ure for computing fraction division, a PT attempted to
draw pictures to explain the process but failed to do so.
This PT ended up telling students to just follow the pro-
cedure she provided. These findings call for a greater en-
deavor in developing PTs’ SCK and a closer investigation
of the role that university methods courses may play in
supporting PTs” SCK development.

Prior research has shed light on this study; however,
most of the SCK-related studies (e.g., Borko et al. 1992;
Simon and Blume 1994; Morris and Hiebert 2009) have
not explored the area of teaching fundamental mathem-
atical ideas that undergird the mathematical system.
Ding et al. (2013) did focus on SCK for teaching funda-
mental mathematical ideas and reported the levels of
SCK PTs brought to teacher education; yet, this study
did not investigate how PTs may be supported to grow
this type of knowledge. Indeed, very few studies have
tracked PTs” growth with SCK in university classrooms.
The current study therefore aims to extend and continue
this line of research. In particular, this research explores
two questions: (1) How do PTs develop SCK for teaching
the AP of multiplication through word problem con-
texts? and (2) How does the methods course instruction
play a role in developing PTs’ SCK?

Methods
This study employs a case study model (Stake 1995).
The case in focus is PTs’ learning to teach the AP of
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multiplication, which serves as a window that foreshadows
the process of PTs’ SCK development and the ways in
which a methods course may support PTs’ SCK develop-
ment for teaching fundamental mathematical ideas.

Participants

This study was part of a methods course in a 4-year uni-
versity in the USA. As the course instructor, the author
conducted systemic reflections and improvements over a
semester. Among the six course goals, one of them was
to develop PTs’ SCK for teaching fundamental mathem-
atical ideas, which was discussed mainly through the
case of teaching the AP of multiplication. It was ex-
pected that the intended SCK for teaching the AP of
multiplication would help develop PTs’ teaching schema
and would enable them to teach other fundamental
mathematical ideas such as CP, DP, and beyond. The
current study documents the part of investigation with
the AP of multiplication.

There were 25 PTs who took the methods course. This
is the first but also the last course for PTs to learn to
teach mathematics before they leave for elementary
school jobs. Among these PTs, 24 PTs were female
(96 %) and one was a male (4.0 %). All of the PTs were
Caucasian. At the beginning of this course, the PTs were
presented with an approved consent form and encour-
aged to participate in this study by providing permission
for the instructor to use their coursework. It was also
made clear that PTs’ choices of participation would make
no impact on their course grades. Supportively, all the
PTs provided permission.

Course design and procedures

The course design contained at least three features. First,
the instructor spaced the relevant learning over time
(Pashler et al. 2007). As the mathematics methods course
involves many topics, it is infeasible to spend too much
time on the teaching of AP. However, since the targeted
SCK is challenging to develop, it is also inappropriate to
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spend too little time on it. As such, the instructor spaced
the learning across three existing curriculum opportun-
ities. This included an initial math method lesson focused
on the intended approach and two follow-up lessons ar-
ranged during the discussion of other topics. The second
feature was to build the methods course instruction on
the PTs’ own learning. To understand PTs’ learning pro-
cesses, three diagnostics tests along with two prompts
were administered, which informed the corresponding
course instruction. In addition, the instructor conducted
self-reflections on classroom instruction after each lesson.
Finally, this methods course incorporated elementary text-
book tasks into classroom discussions. This is because the
method textbook (Reys et al. 2009) only briefly presented
the definition, arithmetic examples, and the algebraic for-
mula for the AP of multiplication, which targeted only the
CCK but not SCK. To address this limitation, the in-
structor supplemented class discussion with the afore-
mentioned mango problem (see Fig. 1). This mango task
was selected from the third grade mathematics textbook
of Houghton Mifflin (Greenes et al. 2005), a textbook
series used by the participating PTs in their teaching prac-
ticum. Incorporating elementary textbook tasks into the
methods course was recommended as an effective way to
support PTs’ learning and growth (Lloyd and Behm 2005).
Indeed, incorporating elementary textbook tasks also
made the methods course instruction more relevant to
PTs’ teaching practices. Figure 3 shows the procedures
of data collection over the semester, which included
three diagnostic tests, two prompts, and three methods
course lessons.

As indicated by Fig. 3, a pretest using the mango prob-
lem (February 21) was conducted before lesson 1 (February
23). After lesson 1, PTs’ SCK was reassessed through the
mid-term exam (posttest 1, March 7). PTs’ performance on
both tests was suggested for comparison in prompt 1
(March 18), which informed lesson 2 (April 6) and lesson 3
(April 27). A second posttest was conducted through the
final exam (posttest II, May 2), which contained prompt 2

(February 21)

Posttest I

(February 23)

(March18)

(March 7) ‘

(May 7)

Posttest 11

,

(April 27)

(April 6)

Fig. 3 Procedures of data collection over the semester
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requesting the PTs to reflect upon their overall learning
progress.

Data collection and data analysis

The data presented in Fig. 3 were collected and analyzed
to answer the two research questions. For question 1,
the three diagnostic tests along with the two prompts
were analyzed to identify PTs’ knowledge changes. For
the second research question, the three lessons were
analyzed and compared with PTs’ performance in the
diagnostic tests and prompts so as to identify the role
that the methods course instruction played in PTs’
learning. Elaboration follows.

Three diagnostic tests

In all the diagnostic tests, the PTs were asked “How will
you use the following word problem to teach the Asso-
ciative Property of multiplication?” The word problems
used in the tests were the mango, string, and cup tasks,
respectively (see Table 1).

All these tasks demand PTs’ SCK in that the PTs were
expected to analyze the actual problem structures and
solve them in ways that could help children make sense
of the AP. These word problems shared the same prob-
lem structures (e.g., 3 tables of 2 plates of 5 mangos, 3
boxes of 2 sets of 4 strings, and 4 boxes of 3 cups of $5,
see Table 1). The mango and string problems also shared
surface similarities, because the literal order of numbers
in the problem situation (e.g., 4 strings-2 sets-3 boxes)
was exactly opposite to the order in the problem struc-
ture (e.g., 3 boxes of 2 sets of 4 strings). The cup prob-
lem did not share the same problem structure, and its
context also contained “money,” which was a continuous
quantity. The intention of using this cup problem was to
measure students’ transferability with a new context
with a slightly different problem structure. Regardless of
the differences in the surface features, all of these word
problems should be unpacked in the same way as with
the previously discussed mango problem (see Fig. 2).

It should be noted that the actual textbook presenta-
tion of the mango problem has shortcomings related to
explanations and representations, respectively (see Fig. 1).

Table 1 The tasks used in three diagnostic tests
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In terms of explanations, the textbook directly presented
a two-step numerical solution, 5 x 2 x 3, which could not
be explained based on the problem structure, 3 tables of
2 plates of 5 mangos. For instance, the meaning of each
step could not be explained by referring to the word prob-
lem situation (e.g., for “5 x 2,” one could not find 5 groups
of 2 but 2 groups of 5). Moreover, the textbook only
explained the literal meaning of each number (5 mangos,
2 plates, 3 tables). The second shortcoming is related to
representations. The textbook directly introduced the AP
and then applied it for computation whereas the mango
problem was not used for sensemaking. This sequence in-
dicated a symbol but not verbal precedence view (Nathan
et al. 2002). Despite the shortcomings, this study deemed
the mango problem a great learning opportunity to de-
velop PTs’ critical thinking skills and SCK for teaching
fundamental mathematical ideas.

To analyze PT’s knowledge change, PTs’ responses to
the mango, string, and cup problems were coded. We
first coded whether a PT knew what the AP is (CCK).
For example, if a PT provided a pair of solutions that
switched numbers around [e.g., (3 x2) x5 and (5 x 3) x 2],
we considered it as an indicator of lacking understanding
of the AP of multiplication. We then coded the PTs’ repre-
sentations and explanations (SCK), which were detailed
into the following aspects: (a) Does the PT draw a correct
diagram to represent the problem structure? (b) Are the
number sentences mathematically correct? (c) Are the ex-
planations of each step meaningful? and (d) Does the solu-
tion sequence show a verbal precedence view? For each
aspect, PTs’ responses were coded using either “1” or “0”
to indicate the presence of the knowledge component. All
data were re-coded by the author 4 months later to check
the reliability (96 %). A second coder was also trained to
re-code 20 % of PTs’ responses with a coding reliability of
98 %. The mean score of each aspect in each exam was
computed. Given the small sample size and categorical
nature of this data, nonparametric tests were used for
analysis. This included the use of the Friedman test to
identify any differences between groups and the Wilcoxon
test to identify changes over time (Leech et al. 2008;
Nussbaum 2014). These tests indicated PTs” deficiency

Exam Name  Problem situation Problem Two solutions Source
structure

Pretest Mango Mr. Levin's students are tasting foods grown in rainforests. He 3 tables of (3x2)x5= Houghton Mifflin—

put 5 pieces of mango on each plate and put 2 plates on each 2 plates of 3x(2x5) 3rd grade

table. There are 3 tables. How many pieces of mango are there? 5 mangos
Posttest | String  Upright bass strings come in sets of 4. Suppose one box holds 3 boxes of (3x2)x4= Houghton Mifflin—
(mid-term exam) 2 sets of strings. If a musician orders 3 boxes, how many strings 2 sets of 3IX(2x4) 4th grade

will there be? 4 strings
Posttest Il Cup Each cup costs $5. Mom wants to purchase 4 boxes of cups 3 cups of (4x3)x5= Chinese 3rd grade
(final exam) with each box holds 3 cups. How much does mom need to pay? 4 boxes of $5 4x(3x5) textbook (adapted)
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in explanations and representational sequences. As such,
PTs" responses to each of these aspects were further
inspected and classified to identify the types of difficulties
that the PTs had.

Two prompts

Along with the diagnostic tests, the PTs were asked to
self-reflect on their performances. As previously men-
tioned, prompt 1 was conducted after the mid-term
exam. The PTs were asked to compare their responses
to the posttest 1 (string problem) and the pretest
(mango problem), reporting the progress they made and
the confusion that remained. Prompt 2 was part of the
final exam. the PTs were asked to reflect, based on the
cup problem, what they had learned about teaching fun-
damental mathematical ideas through word problems.
Responses were coded to capture (a) PTs’ insights on
representations and explanations when unpacking a
word problem to teach fundamental ideas and (b) PTs’
remaining difficulties or their attitude changes.

Three lessons
To support PTs learning to teach the AP, three lessons
were spaced over the semester. By the time of lesson 1,
the instructor had read PTs’ responses to the pretest and
was aware of the PTs difficulties in representations and
explanations. Lesson 1 (75 min) then formally discussed
the mango problem using PTs’ self-generated work. The
purpose of using PTs own work was to build on class-
room instruction based on PTs’ existing conceptions and
engage them in course discussion. Lesson 2 reviewed AP
in a chapter titled “Algebraic Thinking” (Reys et al.
2009) where the modeling perspective was involved. As
one of the early algebra topics, it is appropriate to use
AP, along with CP and DP, as an example to show how
these fundamental ideas can be illustrated. As part of
this lesson, the PTs were asked to create a word problem
for a given instance of AP, (4 x 3) x2 =4 x (3 x2). These
students then modeled and solved the problems. The
relevant discussion on AP in lesson 2 took about
30 min. Lesson 3 was a final review of the course and
thus was mostly open-ended. To revisit the course goals
of teaching fundamental mathematical ideas, AP of
multiplication was reviewed. PTs in small groups were
asked to create a word problem that can be used to
illustrate AP. The created problems were then exchanged
among groups for peer solutions. This activity took ap-
proximately 20 min. In all three lessons, PTs’ representa-
tions and explanations were the targets of class discussion.
To identify how the methods course may have played
a role in PTs learning, all relevant instruction in three
lessons were audio-recorded, transcribed, and analyzed
in a qualitative manner. Each lesson was first segmented
into small chunks, which was analyzed from the aspects
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of representations and explanations. After this, relevant
excerpts were compared in terms of PTs’ representation
uses and explanations, respectively. Meanwhile, these ex-
cerpts were linked back to three diagnostic tests and two
prompts so as to confirm PTs’ SCK changes and explain
how classroom instruction may have supported or failed
to support PTs’ knowledge growth. For instance, if there
was a shift of PTs’ explanations or representations be-
tween two diagnostic tests, the author went back to the
lesson that occurred between the two tests (see Fig. 3) to
identify the typical instructional moves that might have
made an impact on PTs’ learning. If there was no change
in PTs” SCK between the diagnostic tests, the author also
examined the corresponding lesson to understand why it
failed to promote SCK changes. The next section reports
findings for each research question.

Results

How do PTs develop SCK for teaching AP through word
problem contexts?

Overall performance

Findings about PTs" knowledge for teaching AP across
the three exams are presented in Table 2.

Table 2 demonstrates PTs” knowledge growth over the
semester. Given the pretest was conducted after the class
had discussed what AP was, most PTs demonstrated
sound CCK. In addition, most PTs in the pretest per-
formed well on drawing a diagram to represent the
problem. Indeed, the PTs performed well on these two
skills across three tests (Mcck = 0.84, 0.92, and 1 across
three tests; Mgiagram = 0.92, 0.92, and 1 across three
tests). The Friedman test indicated no changes over the
course of the semester for both CCK and drawing a dia-
gram to represent the word problem.

However, the PTs in the pretest had difficulties generat-
ing correct number sentences and providing meaningful
explanations (see Table 2). Results from the Friedman test
for these two aspects indicated progress was made over
the course of the semester, X ntence (2, 1 =25) = 25.2,
p <0.001; xZExplanaﬁon (2, n=25)=19.18, p<0.001. In
addition, the Wilcoxon test was used to compare two

Table 2 PTs’ overall performance across three diagnostic tests

Pretest Posttest | Posttest Il
(mid-term exam)  (final exam)
M sb M SD M SD
CCK  What is AP 084 037 092 0.28 1 0
SCK  Drawing a diagram 092 028 092 0.28 1 0
Correct number 024 044 048 0.51 09 02
sentences
Meaningful 004 02 0716 037 06 05

explanations

Verbal precedence 004 02 0.16 037 028 046

view
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orthogonal contrasts for each aspect (Leech et al. 2008).
The posttest II (final) and posttest I (mid-term) contrast
was found to be significant for both aspects: rentence =
0.69; T'explanations = 0.61; however, the posttest I (mid-term)
and pretest contrast was not significant for either aspect.
This suggests that the PTs’ difficulties found in the pre-
tests remained in the mid-term exam but changed signifi-
cantly from the mid-term to the final exam.

With regard to the representational sequence, PTs
were expected to possess a verbal precedence view that
started with reasoning upon the diagrams. Only one PT
demonstrated this view in the pretest. Over time, there
was an increased number of PTs who obtained this view
(n=1, 4, and 7 across three tests; M empa =0.04, 0.16,
and 0.28, respectively). Yet, the Friedman test showed
that this change was not significant.

Issues with explanations

Table 3 presents the results of PTs” explanations for the
number sentences they generated in three diagnostic
tests. In the pretest, the major difficulties were that PTs
(72 %) generated number sentences based on the literal
order of the numbers in the problem statement (e.g., 5,
2, and 3, see Table 4a, b for examples), and when
explaining their number sentences, 76 % of the PTs ex-
plained only individual numbers (e.g., 5 mangos, 2
plates, and 3 tables) without considering the meaning of
each step (see Table 4a). This confirms the findings of
Ding et al. (2013). With instruction, the number sen-
tence mistake decreased in posttest I (32 %) and disap-
peared completely in posttest II. Yet, the explanation
mistake remained robust in posttest I (72 %) and then
decreased in posttest II (24 %). In addition, there were
minor issues that seemed to indicate a middle status of
PTs’ understanding. For instance, some PTs (4 % in pre-
test, 20 % in posttest I) provided a correct first step but
incorrect second step for the number sentence (see
Table 4c). With regard to explanations, some PTs pro-
vided partial- or pseudo-explanations (20, 12, and 16 %,
respectively). These PTs appeared to acknowledge the
importance of giving meaning to each step; however, be-
cause of the mismatch between their number sentences

Table 3 Issues about the number sentences and explanations
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and the explanations, their explanations were inaccurate
(see Table 4b, c).

Issues with representational sequence

Examination of PTs representational sequence reveals
PTs’ lack of verbal precedence view. First, many PTs dir-
ectly provided their numerical solution even before
drawing a diagram (see Tables 4b and 5a, b), which indi-
cates a symbol precedence view. Second, there seemed
to be a “blending” view that mixed verbal and symbol
precedence views. That is, some PTs first drew a dia-
gram to represent the word problem. After that, they
wrote a numerical solution, followed by explanations of
the diagram (see Tables 4a and 5c¢, d). Given the diagram
in this situation was not utilized to generate a number
sentence, this blending view was in nature symbol prece-
dence, which was termed as “semi-symbol precedence
view” in this study. Across the three tests, only a few PTs
demonstrated a verbal precedence view (see Tables 4c and
5e, f). Fig. 4 summarizes the number of PTs who heldeach
view across the three tests. While the symbol precedence
view decreased (1 =10, 4, and 2, respectively) and verbal
precedence view increased (n=1, 4, and 7, respectively),
the semi-symbol precedence view was consistently the most
prevalent (n =14, 17, and 16, respectively), which may par-
tially explain why many PTs drew sound diagrams yet did
not provide solutions that bear contextual inferences.

PTs’ voice in prompts

Consistent with the results in the diagnostic tests, PTs’
voice in two prompts indicated their learning and
changes. In prompt 1, PTs self-compared their perform-
ance on the string and mango problems and reflected
upon their progresses in representations and explana-
tions, which suggested different levels of understanding
after the first formal instruction (see Table 6).

As indicated by Table 6, among the 24 PTs (one re-
sponse missing), 11 of them (45.7 %) stated that they did
not have any confusion, which was consistent with the
results of the posttest I (mid-term). Four of them
(16.7 %) suggested the need for further practice. Six PTs
(25 %) admitted that they were uncertain about how to

lllustrating AP Pretest Posttest | (mid-term exam) Posttest Il (final exam)
Freq % Freq % Freq %
Generating number sentences Attending to the literal order 18 72 8 32 0 0
Having no meaning in the 2nd step 4 5 20 1 4
Correct number sentences 24 12 48 24 96
Providing explanations Explaining numbers only 19 76 18 72 6 24
Partial- or pseudo-explanations 20 3 12 4 16
Complete explanations 4 4 16 15 60
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Table 4 Issues of PTs' number sentences and explanations in the pretest
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generate a number sentence that may refer back to the
story situation, and three PTs (12.5 %) expressed frustra-
tion about the intended approach and refused to change
their existing conceptions. For example, one PT stated, “I
don’t understand why you have to know exactly what ob-
ject it refers to. I just think it would confuse kids if it con-
fuses me and I would never teach this way” (see Table 6).
After continuous instruction, PTs" responses in prompt 2
uniformly suggested their improved understanding and
more positive views. In particular, those PTs who initially
had refused to change clearly acknowledged the role of
word problem contexts, especially the role of diagrams in
developing children’s understanding of fundamental math-
ematical ideas. For instance, one PT stated, “If you draw
the word problem out it is much easier for students to
understand the concept. The associative property is much
easier to understand where you first draw out the picture.”
Another PT wrote, “I've learned to first draw a picture to
help them see the groups because some word problems
can be tricky.... I think a picture also let them see how the
two problems are equivalent and see the associative prop-
erty of multiplication as more concrete.” In summary, PTs’
responses to the three diagnostic tests, along with their
voice in the two prompts revealed progress with their
remaining difficulties. The next section reports how the
methods course instruction played a role in PTs’ learning.

How does the methods course instruction play a role in
developing PTs’ SCK?

To support PTs’ learning, the instructor provided inter-
ventions that aimed to enhance PTs’ representation uses
and explanations. As mentioned in the “Methods” section,

this process included an initial formal discussion (lesson
1) incorporating the mango problem to address issues
with explanations and representations. After this, two
follow-up lessons were provided to continuously address
these issues (see Fig. 3). In lesson 2, PTs were asked to cre-
ate a word problem to illustrate a given arithmetic ex-
ample of the AP.” In lesson 3, PTs were asked to create a
word problem for the AP and then exchange it with peers
for solutions. Across these lessons, PTs demonstrated pro-
gress in some aspects but still had difficulties with others.

Addressing explanation issues

During lesson 1, the instructor handed back the pretest
(mango problem) without grading marks and suggested
PTs share their work within small groups. Each group
then came up with a representative solution for class
discussion (see Fig. 5). Among five groups, only one
contained correct number sentences, three were incor-
rect, and one was incomplete. This overall result was
consistent with the pretest (see Table 2). Using the work
of group 1 that contained a mistake, the instructor led a
whole-class discussion of the step-by-step meanings.

Focusing on step-by-step meaning
One PT in group 1 explained their solution (5x 3) x 2 =
5% (3x2), “You can put 5, or 2, or 3 in any order and
you can always get the answer.”

Instructor (I): Assuming that I am a third grader and
don’t understand why you did 5 x 3, as a teacher, can
you help me understand what it means by 5 x 3 using
your picture?
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Table 5 Examples of symbol, semi-symbol, and verbal precedence views
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Posttest | (mid-term) (the string problem)

Posttest Il (final) (the cup problem)
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PT2: (from group 1): There are 5 pieces of mango,
time 3 tables, equals 15. And we take that to time 2
plates on each table.

PT2’s explanation indicates that she attended to the
meaning of each number (5 and 3) but not the inter-
action between them (5 x 3). This is similar to the
major issue observed in the pretest. The instructor
asked if the other groups were convinced. One PT
commented that there were no 5 groups of 3 in the
picture, indicating the consideration of the meaning
for each step. The instructor then asked whether 5 x
3 had a referent in this problem situation. This led to
group 1’s self-correction, “So, we actually should do
5x2 ... 5 groups of 2, oh, 2 groups of 5 so 2x5 ...”
With the back-and-forth discussion of the meaning of

the first step, the class reached an agreement that the
first step should be 2 x 5, which represents 10 mangos
on one table.

Surprisingly, PTs’ understanding of the first step did
not spontaneously transfer to the second step. A few
PTs quickly suggested that the next step was to “find 3
tables,” “time 3,” or “10 x 3.” These responses, accepted
by the class, did not reflect the problem situation, 3
tables of 10 mangos. This observation confirmed the
findings in the diagnostic tests that the PTs could not
consistently apply the meaning of multiplication to the
second step. To facilitate discussion, the instructor drew
PTs’ attention back to the diagram:

I: So, here is one table, how many mangoes on each
table?
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PT's Representational Sequence

W symbol precedence view @ semi-symbol precedence view Overbal precedence view

Pretest

Posttest | (Mid-term)

Posttest Il (Final)

Fig. 4 Number of PTs who demonstrated different views across
three diagnostic tests

PTs: 10

I: (labeled a “10” for each table in their picture, see
the first picture in Fig. 5) Now, you have how many
groups of what?

PTs: 3 groups of 10
I: So, what would be your number sentence?
PT: 3 x 10 ....It represents 30 mangos in total.

In the above discussion, PTs’ attention was consistently
oriented to the definition or the basic meaning of multipli-
cation—how many groups of what. Note that even though
these class discussions involved PTs who provided correct
responses, these discussions seemed not to produce a suc-
cess in PTs’ understanding. One evidence was that at the
end of lesson 1, the instructor handed out the actual text-
book page of the mango problem (see Fig. 1) and asked
the PTs to discuss it. Surprisingly, except for two PTs who
commented on the textbook issue with explanations, no
one showed any interest for further discussion. Further
evidence revealed that only 48 % of the PTs could generate
a meaningful number sentence in the mid-term exam (see
Table 2). The instructor pondered whether the emphasis
on step-by-step meaning in lesson 1 had overwhelmed
PTs so that they saw only pieces of information but not
the general problem structure.

Focusing on global meaning

The instructor made an effort to stress the issue with ex-
planations by discussing the global meaning of the two-
step problem (“groups of groups of something”) so as to
back up PTs’ understanding with a schema. This took
place in lesson 2 after the mid-term exam (April 6),
through a chapter titled “Algebraic Thinking” (Reys et al.
2009). Using (4 x 3) x 2 =4 x (3 x 2), the instructor asked
the PTs to create word problems to illustrate the AP.
One group created a story problem showing “2 groups

Page 12 of 19

of (4x3),” which has no meaning in the second step.
This scenario once again signified a need to build PTs’
structural understanding. As such, the instructor pro-
vided a whole-group discussion:

I: If we discard the context and only look at this
number sentence, what does it mean by 4 x 3 x 2?

PT: You have 4 groups of 3 groups of 2.

L: In this equation that shows AP, we have (4 x 3) x 2
and 4 x (3 x 2). The first expression indicates 12 groups
of 2, right? (Uniformly agree). For the second expression
4 x (3 x 2), you have how many groups of what?

PT: 4 groups of 6

I: We can sketch a picture to illustrate this
problem structure, 4 groups of 3 groups of 2. You
can imagine the picture from outside to the inside,
that is, you first see 4 groups, then 3 subgroups

in each, and eventually, 2 objects inside each
subgroup (The instructor sketched a picture on the
board). This picture indicates the structure of the
word problem that you will create.

I: Later, when you try to solve your story problem, you
may reason upon this picture in two ways, resulting in
(4 x 3) x 2 and 4 x (3 x 2) that correspond to “12
groups of 2” and “4 groups of 6” respectively. Do you
see 12 groups of 2?

PT: Yes! (Confidently)
I: Do you see 4 groups of 6?
PT: Yes!!! (Confidently)

In the above episode, the instructor consistently empha-
sized the definition or basic meaning of multiplication
(how many groups of what) but at a global level that tar-
gets the hierarchical structure of multiplication. The in-
struction also contained “shortcuts,” viewing a picture
from outside to inside and viewing a picture two ways.
These discussions seemed to generate a positive outcome
by offering the PTs a schema that enabled all groups to
create appropriate word problems (e.g., about 4 tables of 2
plates of 3 cookies, 4 flowerpots of 3 tulip of 2 ladybugs,
and 4 boxes of 3 vases of 2 flowers). Each group explained
their story problems and solutions that together illustrated
AP, (4x3)x2=4x(3x2). The class ended with wide-
spread excitement, indicating the PTs enhanced motiv-
ation in learning. This success continued in lesson 3 when
PTs created and solved each other’s word problems in
order to illustrate the AP.
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Table 6 PTs’ self-reflection on learning to teach AP in prompt 1
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Levels of understanding Frequency (%)
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Interestingly, in lesson 3 while PTs were creating story
problems, one PT shouted out her surprising findings about
the previously discussed mango problem, “So even on this
(pointing to the actual textbook page handed out during
Lesson 1), it is not right? ... Oh!!! ...Yes, I agree now! We
created a problem similar to this. But now I think the text-
book, it is wrong!” This response was in sharp contrast to
PTs’ responses at the end of lesson 1 where most PTs could
not recognize the textbook issue with explanations.

Indeed, PTs" improved understanding was confirmed
by their performance on the final exam (see Table 2)
where 96 % of the PTs generated correct number sen-
tences (as opposed to 48 % on the mid-term exam) and
60 % provided meaningful explanations (as opposed to
16 % on the mid-term exam). It appears that the instruc-
tion of global meaning has provided strong support for
PTs to generate meaningful number sentences and expli-
citly explain them.
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No solution (group 4)

Correct solution (group 5)

Fig. 5 PTs' group work during the first formal instruction
.

Addressing representation issues

In terms of representations, we expect PTs to start with
concrete contexts to conduct verbal reasoning (e.g.,
drawing diagrams and reason upon the problem situ-
ation). From there, they should fade concreteness into
abstract representations (generate number sentences to
reveal AP). This representational sequence, however, did
not occur smoothly, likely due to the PTs” symbol prece-
dence review that was hard to overcome.

Challenging PTs’ symbol precedence view partially

In lesson 1, after the discussion of the first solution
based on verbal reasoning, the class was asked to figure
out the second solution. A PT quickly suggested the
second solution based on her knowledge of the AP
formula, (ab)c =a(bc): “Just like to show AP, like we
have parentheses, like we can do in different order...”
S4’s suggestion indicated a symbol precedence view
because she came up with the second solution based
on her prior abstract knowledge rather than reasoning
upon the mango problem. To challenge this unex-
pected view, the instructor commented:

T: But children don’t know AP of multiplication
yet, right? That's why you need to teach them and
reveal this property through this word problem
context.

S4: Ok, so in parenthesis, we have 3 x 2, five in the
end. 3 tables and 2 plates on each table.

T: If we teach elementary children, we need to slow
down and they need to see what it means by 3 x 2. So,
do we see 3 groups of 2?

S. Yes... it represents the number of plates.

In this episode, the instructor’s first suggestion, “reveal
this property through this word problem context,”
demanded verbal reasoning. However, this was not
understood by the PT as a challenge to her thinking. Ra-
ther, she continued with symbolic reasoning, which,
however, was not criticized by the instructor who asked
only for an explanation of those symbols. As such, the
challenge to PT’s symbol precedence view did not reach
its potential. It should be noted that the instructor did
purposely record the class conversation on the board in
the sequence of represent-solve-compare-reveal (see Fig. 2)
and guided the class to look back at this general teaching
approach, which implicitly lined up with a verbal prece-
dence view.

Reinforcing PTs’ symbol precedence view unintentionally
Even though verbal precedence view was an expectation
from the PTs, course instruction unintentionally reinforced
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the symbol precedence view. In the second lesson, the PTs
were asked to create a story problem to illustrate (4 x 3) x
2=4x (3 x2). Once an appropriate word problem is cre-
ated, they should reason upon the word problem induct-
ively to illustrate the AP. However, during the class
discussion of the global meaning of 4x3x2, the in-
structor introduced a shortcut of visualizing 4 groups of 3
groups of 2 from outside to inside, which was quickly
taken by the PTs as a crutch for problem solving. This ob-
servation was most apparent in lesson 3 where the PTs
were asked to solve peers’ word problems to illustrate AP.
Instead of reasoning upon the word problems, some PTs
immediately generated a number sentence like 2 x 6 x 3
by viewing the picture in a particular order (from outside
to inside). From there, they added parentheses based on
their knowledge of AP and explained the meaning of each
step of these solutions. The above sequence reflected the
semi-symbol precedence view, which was further seen on
the final exam. For instance, a few PTs wrote, “from out-
side to inside” on the final exam and PT5’s explanation
was procedural, “First we have 4 boxes so boxes is our lar-
gest so it comes first; Second, we have 3 cups in each box,
so that comes next; Finally, each cup cost $5 that is our
smallest amount.” Such explanations did not make mean-
ingful reasoning based on the word problem situations,
which may have explained why only 60 % of the PTs in
the final exam could provide complete explanations (see
Table 3) and why the verbal precedence view did not in-
crease as expected on the final exam (see Table 2).

Discussion

Developing PTs’ SCK is an important and much needed
area of research, which has been regarded as challenging
(Morris et al. 2009; Suzuka et al. 2010). How to support
PTs” growth in such knowledge has been rarely studied.
In particular with developing PTs” SCK for teaching fun-
damental mathematical ideas, there are very few studies
that have reported such effort in mathematics courses.
The present study, by carefully documenting the suc-
cesses and challenges in developing PTs” SCK, contrib-
utes to the existing literature. For instance, while Ding et
al. (2013) reported that PTs lack CCK and SCK when
they first enter education program, our findings indicate
that it is relatively easy to develop PTs’ CCK but challen-
ging to develop their SCK. This might be due to the fact
that SCK is a new form of knowledge that requires a
new mode of thinking. In particular, this study has fo-
cused on two SCK components, explanations and repre-
sentations (Ball et al. 2008). We have obtained greater
success in supporting PTs’ meaningful explanations but
less success in representational sequence, likely due to
PTs" robust symbol precedence view. Even though we
only have studied two SCK components, our findings
shed light on the mathematics education field because
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the work of building a knowledge base calls for small
tests for small changes (Morris and Hiebert 2009).

Developing PTs’ explanation skills: the importance of
stressing basic meanings

In this study, one SCK-related difficulty seen in the PTs
involved explaining the meaning of number sentences
when referring back to the concrete story situations. Some
PTs tended to focus on the individual quantities rather
than the interactions between them. Others cannot con-
sistently apply the definition or the basic meaning of
multiplication across two steps for quantitative reasoning.
Such levels of understanding may lead to missing oppor-
tunities for deep initial learning with their future students
(Chi and VanLehn 2012; Richland et al. 2012). In this
sense, the current study adds to Ding et al. (2013) by
highlighting the directions that teacher education courses
may take when developing PT’s SCK.

When the methods course is designed to deliberately
address PTs’ difficulties in explanations, PTs can grow
their SCK as indicated by the diagnostic tests. We ac-
knowledge the possibility that the consecutive testing on
similar tasks might have contributed to PTs’ perform-
ance; however, it should also be noted that the assess-
ment task in the posttest II (final exam) was indeed
more complex than the previous tasks. The success in
developing PTs” explanations may be partially attributed
to the instructor’s consistent emphasis on the definition
or the basic meaning of multiplication. For instance, the
instructor kept asking for the meaning of each step,
“how many groups of what?” and stressed the mapping
process between number sentences and diagrams. This
finding echoes Beckmann et al. (2015) where preservice
middle school teachers succeed in proportional reason-
ing lessons due to the instructors’ consistent emphasis of
the definition of multiplication. As these researchers
suggested, consistent and explicit use of the definition of
multiplication can support the development of teachers’
proficiency with quantitative reasoning, which may fur-
ther provide a basis for PTs to unpack mathematical
tasks in ways that prompt students’ mathematical rea-
soning and explanations. This adds to the literature of
SCK as it illuminates a detailed path to support PTs” ex-
planations of mathematical ideas (Ball et al. 2008).

It should be noted that PTs’ development of explan-
ation skills was gradual. In this study, the development
process involved different formats of instructional sup-
port ranging from stressing the step-by-step meaning to
the global meaning. To stress the step-by-step meaning,
the instructor asked PTs to reason upon the concrete
story situation to write each step based on the basic
meaning of multiplication (“a groups of b” is represented
as a x b). The two solutions were then compared to gen-
erate an instance of AP. This bottom-up approach



Ding International Journal of STEM Education (2016) 3:9

indicates deductive reasoning. In contrast, to stress the
global meaning, the instructor first helped students
understand the meaning of a two-step multiplication
a x b x ¢, which represents a groups of b groups of c.
This was further mapped to two solutions (a x b) groups
of ¢, and a groups of (b x ¢), and each step of the two so-
lutions was further referred back to the story situation.
This top-down approach indicates deductive reasoning.
With this instructional effort, the major issues (attending
to the literal order, explaining numbers only) decreased
and the expected explanations increased. However, there
still exists a middle status (e.g., having no meaning in
the second step, pseudo- or partial explanations). This in-
dicates that PTs" SCK development is not an all-or-
nothing phenomenon. Given that PTs generally possessed
weak knowledge when they enter education program
(Borko et al. 1992; Simon and Blume 1994; Morris and
Hiebert 2009), it takes time to shift their attention from
surface to deep explanations. Future studies may explore
this interesting middle status phenomenon and seek better
ways to promote greater success.

Developing PTs’ representation skills: tension between
PTs’ and children’s learning

To support elementary students’ learning, within class-
rooms, PTs should be able to move flexibly between
concrete and abstract representations in responsive ways
(National Mathematics Advisory Panel 2008; Pashler et
al. 2007). In this study, given that the initial learning of a
fundamental mathematical idea is situated in a word
problem context, we expect PTs to develop a particular
type of SCK skill, reasoning from concrete to abstract,
which is well supported by the literature (Goldstone and
Son 2005; McNeil and Fyfe 2012; Pashler et al. 2007).
However, the PTs demonstrated difficulties in using this
intended representational sequence. This may reflect
PTs’ challenge in linking representations to the under-
lying ideas or making connections between different rep-
resentations. As indicated by Table 2, even though the
classroom instruction has helped the PTs understand
such connections, PTs who were good at drawing a dia-
gram from the beginning did not see the connections
among diagram, number sentences, and the correspond-
ing explanations. Another interpretation of the represen-
tational difficulties may be attributed to PTs  robust
symbol precedence view, which may have hindered PTs’
representational uses. As observed from this study, some
PTs tended to operate directly on the given numbers of
a word problem without reasoning upon the word prob-
lem situation or without drawing a diagram. This finding
echoes prior studies where US secondary school teachers
were found to possess a symbol precedence view be-
cause they believed that symbol manipulation is easier
than word problems and thus should come before verbal

Page 16 of 19

reasoning (Nathan et al. 2002; Nathan and Koedinger
2000). Our finding suggests that elementary preservice
teachers hold the same view, which is likely related to
PTs’ existing compressed knowledge. This interpretation
is supported by prior studies suggesting that PTs are often
familiar with computation procedures but lack the ability
to illustrate, explain, or unpack them (Borko et al. 1992;
Morris et al. 2009; Simon and Blume 1994). More interest-
ingly, our emerged findings on PTs’ semi-symbolic review
contribute to new insights in the literature. As reported,
some PTs did draw diagrams to represent the word prob-
lem situation; yet, they did not actually use the diagrams
to generate number sentences. Still, some PTs used the
diagram to generate number sentences but in procedural
ways, such as looking at a picture from outside to inside
to determine the number orders. In both occasions, dia-
grams of the given word problem were not utilized to sup-
port mathematical reasoning and explanations, which
distinguishes the semi-symbol precedence view from the
verbal precedence view. The detour from verbal to symbol
reasoning further indicates the robustness of PTs” symbol
precedence view that may even occur in a single word
problem context involving diagrams. Given that prior
studies only reported the symbol precedence view with a
full lesson or a textbook series (Nathan et al. 2002;
Koedinger and Nathan 2004) but not a concrete context
that has apparent verbal advantages, our study calls for
greater attention to PTs" use of concrete representations.
Instead of “whether” concrete representations (e.g., draw-
ing diagrams) are involved in teaching, we should focus
on “how” the concrete aids are actually used in ways to
support symbolic reasoning.

PTs" robust symbol precedence view presents great
challenges for methods courses that aim to develop
SCK. University instruction usually starts with PTs’
existing concepts that are stored in compressed formats,
making the instructional sequence deductive (from ab-
stract to concrete). This sequence is opposite to elemen-
tary students’ learning process (inductive, from concrete
to abstract). The tension between PTs’ and children’s
learning demands a paradigm shift of PTs’ existing
views, which may cause frustration with some PTs who
may question this approach (Suzuka et al. 2010) or give
up easily (Borko et al. 1992). Other PTs may revert to
their old habits. For instance, when the course instructor
provided a shortcut to help PTs visualize the problem
structure so as to create a story problem, PTs quickly
took it as a crutch for solving the problem based on their
compressed knowledge of AP. This, however, conflicts
children’s learning because children often do not have
any prior knowledge of the AP. These findings join the lit-
erature on expert blindspots (Nathan and Koedinger
2000), suggesting PTs may simply assume children see
what they see. These findings also suggest the complexity
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in developing PTs’ SCK due to the tension between PTSs’
compressed knowledge and children’s learning process.

In retrospect, the above tension between PTs and
children’s learning may be reduced by improving the
methods course instruction. First, the instructor could
have acknowledged the tension between PTs” and elemen-
tary children’s learning, but still explicitly emphasized the
importance of reasoning upon a word problem situation
from the perspective of children. Helping PTs explicitly
see the value of the intended instructional approach may
motivate them to struggle for success (Eccles et al. 1983).
Second, the instructor could have helped PTs develop a
stronger understanding of the definition or the basic
meaning of multiplication before offering the shortcuts.
With a stronger understanding, PTs may find it easier to
conduct mathematical reasoning (Beckmann et al. 2015).
In fact, the shortcut may not even be needed during the
process of problem solving. This may minimize the risk of
reinforcing PTs” procedural foci and symbol precedence
view that contradict children’s learning.

The role of elementary textbooks in developing PTs’ SCK
Findings from this study suggest that incorporating dis-
cussions of elementary textbook tasks may serve as an
effective path to developing PTs’ SCK. This is aligned
with research assertions that textbooks should serve as
educative materials (Ball 1996; Davis and Krajcik 2005).
In this study, the textbook presentation of the mango
problem contained similar mistakes as those of the PTs.
It is predicted that if PTs have never been exposed to
critical discussions like the one in this study, they may
teach future students in the same way as the textbook
does. As Nathan et al. (2002) pointed out, questionable
textbook presentations “can go unchecked and can be
implemented throughout the educational system, to the
potential detriment of students and teachers” (p. 18). As
seen from this study, the in-depth discussion of the mango
task as a source problem has served as a worked example
of a general teaching approach, which has enabled PTs’
various degrees of transfer of the learned SCK.

How and to what extent elementary textbooks support
PTs’ learning, however, is not straightforward. It seems
that there is an interaction between textbook presenta-
tion and PTs’ own knowledge. When PTs do not possess
sophisticated understanding of the intended approach,
the issues of textbook presentation are unlikely identified
and thus not critically analyzed. This was evident by the
PTs’ silence at the end of the first lesson when they were
invited to comment publically on the textbook presenta-
tion. Possibly, when PTs themselves were striving for un-
derstanding of the new approach, asking them to analyze a
problematic textbook page would increase their work-load.
This may explain why many PTs did not acknowledge the
textbook issues in a cognitively comfortable manner. In

Page 17 of 19

contrast, when equipped with the necessary knowledge,
some PTs could spontaneously capture the textbook issue
and learn from it. This was evident in lesson 3.

Conclusions

There are a few limitations of this study. First of all, it
involves a small group of PTs (N = 25). As such, findings
should not be over-generalized. In addition, this study
only explores PTs’ course work without investigating the
field experiences; therefore, it is not clear how PTs may
actually transform learned knowledge into classroom
settings. Furthermore, this study has a narrowed focus
because it mainly involves representations and explana-
tions, whereas the SCK skills may demand other skills
such as having ready strategies to respond to common
mistakes (Ball et al. 2008). Indeed, the teaching of funda-
mental mathematical ideas does not necessarily involve
word problems (e.g., a volume model is an alternative
candidate for teaching AP, National Research Council
2001). Nevertheless, our findings have several implica-
tions for teacher education.

First, PTs’ SCK acquisition appears to be gradual and
takes time, which aligns with the literature assertion of
spaced learning (Pashler et al. 2007). This brings a chal-
lenge to teacher education. While the current study tar-
gets only one fundamental idea, a methods course
usually covers many more mathematical topics and thus
has limited opportunities to revisit them. A possible so-
lution to this challenge is to set up course goals center-
ing on the teaching of fundamental mathematical ideas
that transcend across various contexts. Second, because
PTs lacked the ability and habit to explain quantitative re-
lationships based on concrete contexts, this study has
identified PTs’ robust symbol precedence view. Teacher
education programs need to be aware that activities in-
volving word problems and diagrams do not guarantee
PTs" sound use of those verbal and visual contexts.
Teacher education programs should explicitly challenge
PTs’ symbol precedence view and stress the importance of
quantitative reasoning, which may enable PTs to under-
stand why they should construct a verbal precedence view;
however, simply conveying general instructional princi-
ples, such as grounding abstract ideas in concrete con-
texts, may still be ineffective. Methods course instructors
should encourage PTs to experience “productive struggles”
(Richland et al. 2012, p. 196) without giving out shortcuts
too quickly. Finally, this study incorporated elementary
textbook pages that contained mistakes as methods course
materials. It is clear that these mistakes may not be recog-
nized by PTs without discussion. As such, it is critical for
textbook authors to enhance their textbook presentations
to better support teacher learning. On the other hand,
methods courses could use flawed textbook tasks as
counter-examples for course discussion. Future studies
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may explore when, how, and under what circumstances
the different types of elementary textbook examples (cor-
rect and flawed) may be utilized to support PTs’ learning.
With continuous research on the ways to overcome PTs’
misconceptions and prior views, future elementary teachers
can be better equipped with the necessary SCK to teach
fundamental mathematical ideas, which in turn may en-
hance children’s learning.

Endnotes

"There is no agreement on the meaning of multiplica-
tion. Some define 3 x 2 as 3 groups of 2 (2 + 2 + 2) while
the others define it as 2 groups of 3 (3 + 3). This debate
goes beyond the scope of this study. Regardless of the
differences, we and other researchers (e.g., Beckmann
and colleagues) argue that in order to facilitate students’
mathematical reasoning, the definition of multiplication
should be applied consistently. The textbooks involved
in this study initially defines 3 x 2 as 3 groups of 2.

2The PTs in lesson 2 were asked to illustrate the AP,
CP, and DP by creating story problems or drawing pic-
tures or using manipulatives. It was found that they had
an easy time illustrating both CP of addition a +b=b+a
and the AP of addition (@ +b)+c=a+ (b +c). For the
properties that involve multiplication, the PTs were able
to illustrate the CP of multiplication (@ x b = b x a) when
they were reminded about the basic meaning of multipli-
cation and the array model. For the DP (a + b) x c = ac +
bc, when PTs were reminded about the basic meaning of
multiplication, they were also able to create story prob-
lems along with pictures to illustrate this property. How-
ever, the AP of multiplication (@ xb)xc=ax (bxc)
appeared to be most challenging for PTs, likely due to the
fact that this property involves two steps of multiplication.
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