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Abstract 

Background This study investigates undergraduate STEM students’ interpretation of quantities and quantitative 
relationships on graphical representations in biology (population growth) and chemistry (titration) contexts. Inter-
views (n = 15) were conducted to explore the interplay between students’ covariational reasoning skills and their use 
of disciplinary knowledge to form mental images during graphical interpretation.

Results Our findings suggest that disciplinary knowledge plays an important role in students’ ability to interpret sci-
entific graphs. Interviews revealed that using disciplinary knowledge to form mental images of represented quantities 
may enhance students’ covariational reasoning abilities, while lacking it may hinder more sophisticated covariational 
reasoning. Detailed descriptions of four students representing contrasting cases are analyzed, showing how mental 
imagery supports richer graphic sense-making.

Conclusions In the cases examined here, students who have a deep understanding of the disciplinary concepts 
behind the graphs are better able to make accurate interpretations and predictions. These findings have implications 
for science education, as they suggest instructors should focus on helping students to develop a deep understanding 
of disciplinary knowledge in order to improve their ability to interpret scientific graphs.

Introduction
Graphical interpretation skills are foundational for com-
municating ideas, analyzing information, and mak-
ing well-founded scientific judgments (Glazer, 2011). 
Across the disciplines in STEM (Science, Technology, 
Engineering, and Mathematics), students struggle when 
interpreting graphs of continuous, covarying quanti-
ties (Altindis, 2021; Carlson et  al., 2002; Moore, 2014; 
Moore & Thompson, 2015; Weber, 2012). Interpretation 

in these cases relies on covariational reasoning: the abil-
ity to understand and analyze the relationship between 
two variables that change simultaneously (Carlson et al., 
2002). Covariational reasoning is cognitively demand-
ing, requiring students to imagine measurable attrib-
utes, conceive of problems or contexts related to those 
quantities (i.e., quantitative reasoning; Thompson, 1993), 
and comprehend the emerging dynamic quantitative 
relationship(s) depicted by the graph, such as whether 
the coordinated changes among variables exhibit curva-
ture or follow straight lines (Altindis, 2021; Carlson et al., 
2002; Oehrtman et al., 2008).

In scientific fields, graphed variables are related to each 
other by fundamental principles grounded in disciplinary 
knowledge. This suggests that one’s ability to understand 
how the principles connect to the variables might aid 
in interpreting the correlated values and changes in the 
variables. In other words, science disciplinary knowledge 
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may support covariational reasoning. Science discipli-
nary knowledge may help students form mental images 
of the variables, which Thompson (1993) argues is criti-
cal to covariational reasoning. This study explores the 
covariational reasoning ability of college students and 
the extent to which their science disciplinary knowledge 
(SDK) in biology and chemistry may support mental 
imagery. By exploring this process, we hope to provide 
deeper insights into how to support students in develop-
ing robust covariational reasoning abilities as they engage 
in scientific graphical interpretation.

Literature review
Graphical representations (hereafter ‘graphs’) are essen-
tial for summarizing scientific data and presenting rela-
tionships between variables (Latour, 1987; Lemke, 1998; 
Roth et al., 1997). Therefore, a critical learning objective 
for STEM students is to develop graphical interpreta-
tion skills (e.g., Qiao et  al., 2024). We define “graphical 
interpretation” as the cognitive processes and intentional 
actions undertaken by students to discern information 
and construct understanding from a graph. Graphi-
cal interpretation relies on a hierarchical set of steps, 
from elementary to advanced comprehension levels: (1) 
identify important visual features (e.g., axis titles, data 
points); (2) understand the trend or relationship repre-
sented by the data; and (3) make disciplinary inferences 
or predictions based on the data (Curcio, 1987; Glazer, 
2011). Supporting this perspective, eye-tracking studies 
have found that novices spend more time on informa-
tional components of graphs (title, axes) and describing 
general trends, whereas individuals with greater exper-
tise spend more time analyzing and interpreting data in 
describing specific trends (Atkins & McNeal, 2018; Harsh 
et al., 2019; Ruf et al., 2023).

Several categories of graphical misinterpretations of 
covarying quantities have been identified (Carlson, 1998; 
Carlson et  al., 2002; Monk, 1992). One common misin-
terpretation is confusing graph height with line slope 
(Leinhardt et  al., 1990), observed in physics (Ivanjek 
et  al., 2016; McDermott, 1987) and chemistry (Heck-
ler, 2011). Another difficulty is the relationship between 
slope of the line and rate of change (e.g., Bowen et  al., 
1999). When graphs represent non-linear (curved) rela-
tionships, it can be particularly challenging for students 
to interpret changes in slope and, therefore, to make 
correct inferences about changes in the rate of change 
(McDermott et  al., 1987; Planinic et  al., 2013). Further-
more, when interpreting graphs of dynamic phenomena, 
students commonly read the x-axis incorrectly as time 
(e.g., Atkinson et al., 2021; Jones, 2019; Popova & Bretz, 
2018), which would affect predictions or inferences.

Another challenge in graphical interpretation rests in 
how students perceive or encode the shape of the graph 
in ways that divert attention away from the variables 
and their quantitative relationship (Moore & Thomp-
son, 2015; Saldanha & Thompson, 1998). Some students 
may view the graph as an iconic image, or literal physical 
representation of the phenomenon being depicted (Carl-
son, 1998; Leinhardt et al., 1990; Monk, 1992). This com-
monly occurs with graphs depicting distance or position 
with respect to time, where students interpret the lines as 
the actual paths of people or objects (e.g., Lai et al., 2016; 
McDermott, 1987). Students may also employ static 
shape thinking, where they view the graph as a shape or 
a malleable “piece of wire” (Moore & Thompson, 2015). 
A series of articles in chemistry (Parobek et  al., 2021; 
Rodriguez & Towns, 2019; Rodriguez et al., 2018, 2019) 
and mathematics (Rodriguez & Jones, 2024) proposed 
the idea of making sense using ‘graphical forms’—intui-
tive ideas based on perceived graphical features—such as 
‘steepness as rate’ and ‘straight means constant’. Although 
use of graph shape as a heuristic can be productive in 
interpreting some aspects of scientific graphs or repre-
sentations (Talanquer, 2022), it can limit students’ under-
standing of the represented phenomenon as a dynamic 
process (Rodriguez et al., 2019).

Covariational reasoning
Covariational reasoning is the complex cognitive pro-
cess of coordinating two changing quantities—how each 
quantity changes in tandem with each other (Carlson 
et al., 2002). The construct developed out of Thompson’s 
(1993) theory of quantitative reasoning, where quantities 
are defined as measurable attributes of an object. Thomp-
son situated his theory on Piaget’s (2001) work on the 
mental images students create. Mental imagery involves 
a re-presentation of an experience by recalling and 
reconstructing previous encounters (Thompson et  al., 
2024; Von Glasersfeld, 1991). These mental images are 
not limited to visual images, but encompass all types of 
mental representations that represent past experiences, 
thoughts, emotions, and sensations related to the quanti-
ties (Thompson et  al., 2024). Creating mental images is 
cognitively demanding, requiring the conceptualization 
of quantities (quantity in mind, not the real world), quan-
tification (an act of conceiving an object and assigning a 
unit of measure to one of its attributes), and relationships 
among quantities (Thompson, 2011). When reasoning 
about covarying quantities, Thompson (1994) asserted 
that students needed to form a series of mental images: 
an image of the change in one quantity, then an image 
of the coordinated change between two quantities, and 
finally an image of the two changing quantities covarying 
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simultaneously. Creating this series of mental images is 
essential for engaging in covariational reasoning.

Mental images serve as the basis for the mental actions 
that underlie Carlson et al. (2002) covariational reasoning 
framework. At the lowest level of mental action (MA1), 
students broadly coordinate change in one variable with 
change in the other variable, verbalizing for instance that 
the dependent variable changes as the independent vari-
able changes. Moving up the levels, students verbalize 
the direction of change (MA2), how much the dependent 
variable changes with consistent increases in the inde-
pendent variable (MA3), and the average rate of change 
for consistent increases in the independent variable 
(MA4). At the highest level (MA5), students understand 
how the instantaneous rate of change changes for the 
function with respect to a consistent change in the inde-
pendent variable.

Disciplinary knowledge in graphical interpretation
Prior knowledge related to graph content can affect 
graphical interpretation, hindering or helping (Atit 
et  al., 2020; Glazer, 2011; Kozma & Russell, 1997; Roth 
& Bowen, 1999, 2001; Roth & McGinn, 1998; Schön-
born & Anderson, 2009; Shah & Hoeffner, 2002). Prior 
knowledge has been shown to sway viewers toward mak-
ing incorrect inferences from graphs rather than using 
the evidence depicted in the graph. For example, college 
students used their knowledge of drunk driving and car 
accidents to infer a causal relationship on a graph that 
depicted no such relationship (Shah & Hoeffner, 2002). 
Alternatively, prior knowledge can also support the inter-
pretation of familiar data, allowing viewers to make more 
inferences and provide deeper explanations (Glazer, 
2011; Shah & Freedman, 2011). For example, students 
across different educational levels, from high school to 
graduate school, demonstrated better performance in 
graphical interpretation when they had more extensive 
prior knowledge of the context and weaker performance 
where they lacked that familiarity (Aoyama, 2007). More 
recently, Edelsbrunner et al. (2023) found a positive rela-
tionship between representational competence and con-
ceptual knowledge in undergraduate physics students.

Relevant prior knowledge includes disciplinary con-
cepts: core principles, explanations, and theoretical con-
structs (NGSS Lead States, 2013), as well as knowledge 
of relevant contexts, exemplars, and priorities for a given 
discipline—all of which serve as resources for sense-mak-
ing (e.g., Bowen et  al., 1999). This knowledge develops 
over time through experience in a discipline, meaning it 
is content-specific and advanced rather than intuitive or 
naive, so an individual would be unlikely to use it without 
formal disciplinary experience (diSessa, 1993, 2018; Rich-
ards et  al., 2020). An individual with more disciplinary 

expertise is expected to have a body of well-connected, 
detailed knowledge resources organized around core 
concepts that guides and supports their use (e.g., Chi 
et al., 1981; Larkin et al., 1980; NRC, 2000). For example, 
work in biology has demonstrated that scientific experts 
with relevant disciplinary knowledge are able to connect 
a graph to situations they have experienced or common 
practices in the field, which allows them to draw deeper 
inferences during graphical interpretation (Bowen et al., 
1999; Roth & Bowen, 2001, 2003). By comparison, uni-
versity students with limited or ambiguous disciplinary 
knowledge have more difficulty deriving meaning (Bowen 
et  al., 1999). Other studies have demonstrated that stu-
dents with greater knowledge of a disciplinary concept 
(e.g., cellular transport) are able to use that knowledge to 
make connections between molecular and macroscopic 
representations and do not focus on surface features that 
distract students with less knowledge (Cook et al., 2008). 
Disciplinary knowledge, therefore, serves as a reference 
that students can productively use when interpreting 
graphs (e.g., Berg & Moon, 2023).

Covariational reasoning in scientific graph interpretation
A few recent studies suggest that understanding the 
physical phenomenon, its quantities, and related disci-
plinary concepts, affects interpretation of graphs repre-
senting covariational relationships. The implication is 
that covariational reasoning is different in science and 
that covariational reasoning frameworks from math-
ematics education may fail to fully describe it (e.g., Olsho 
et  al., 2022; Zimmerman et  al., 2019, 2023). For exam-
ple, in physics, fourth-year students were better able to 
answer questions about slope situated in physics graphs 
than in finance graphs (Susac et al., 2018). This could be 
due to the integration of disciplinary knowledge during 
problem-solving, and work in physics suggests that richer 
responses are produced when students scaffold disci-
plinary reasoning with mathematical reasoning about 
quantity (Brahmia, 2019). Comparatively, work in biol-
ogy (Covitt et  al., 2021; Reichert et  al., 2015; Sterman 
& Sweeney, 2007) has indicated that when individuals 
interpret representations of phenomena involving mat-
ter flow and accumulation, they often depend on basic 
approaches like heuristic reasoning or pattern-matching 
and show limited application of disciplinary knowledge 
instead of more sophisticated covariational reasoning. 
Scott et  al., (2023), who examined student reasoning 
about mass balance in biological systems, reported that 
to engage in more sophisticated covariational reason-
ing, students had to establish a relationship between the 
rate of change, which describes the overall flow, and a 
single-unit variable, such as an amount of matter. That is, 
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engaging disciplinary knowledge of mass balance facili-
tated covariational reasoning.

Still, these analyses fail to fully acknowledge the impor-
tance of quantitative reasoning theory and the use of 
mental imagery, which are essential for covariational 
reasoning. This study intended to explore the interrela-
tionships among science disciplinary knowledge, mental 
imagery of variables, and covariational reasoning via the 
following research questions:

RQ1. To what extent do students engage scientific 
disciplinary knowledge when interpreting scientific 
graphs of covarying quantities?
RQ2. In what ways does mental imagery grounded 
in scientific disciplinary knowledge play a role in 
students’ covariational reasoning?

Methodology
Setting and population
This study was conducted at a research-intensive univer-
sity in the northeastern United States. The student pop-
ulation is primarily White (82%) and has more students 
identifying as female (56%) than male (44%). Participants 
were recruited from large enrollment (100 plus) intro-
ductory courses: two sections of biology, two sections of 
chemistry required of life science majors, and one sec-
tion of chemistry for engineering majors. The study was 
approved by the study institution’s IRB (IRB-FY2021-69). 
Students selected for interviews were identified accord-
ing to performance on a set of 20 survey questions 
(forced choice and open-ended) designed to assess 
skills in proportional and covariational reasoning and in 
graphical interpretation. Detailed analysis of the results 
of this assessment is not pertinent to the current study 
and therefore not discussed here. Students were strati-
fied by percent accuracy scores into low (score 0–33%), 
middle (34–66%), and high (67–100%) performance cat-
egories. Four students were recruited from each stratum 
(N = 16 total) for hour long semi-structured interviews 
(Goldin, 2000). Interviews were conducted within the 
first month of the semester and were repeated with the 
same students (less one, N = 15) in the last several weeks 
of the semester.

Interview protocol and tasks
A semi-structured interview protocol, developed by the 
math expert and then refined and revised by the science 
experts, was employed (protocol in Supplementary Infor-
mation). The math expert (NA) conducted and video-
recorded all interviews. Interview participants completed 
three graphical reasoning tasks that spanned chemistry, 
biology, and mathematics contexts. The data presented 
here relate to two tasks based on the same graph shape 

(S-shape) but in different disciplinary contexts: in biol-
ogy, as a population growth curve for brown tree snakes 
(from the post-interview); and in chemistry, as a strong 
acid–strong base titration (from the pre-interview). All 
students were given the titration task (N = 15), while only 
students enrolled in the introductory biology class were 
assigned the population growth task (N = 8). Students 
were given 5–10 min to work on each task and then they 
were encouraged to verbalize their thoughts and prob-
lem-solving processes. Interviews were transcribed ver-
batim from the original video using automated speech 
recognition software and then edited by one or more of 
the authors. Images of written artifacts and descriptions 
of student gestures were inserted, where appropriate, to 
generate enhanced transcriptions.

The multidisciplinary team composed of biology (BC 
and MLA), chemistry (KAB and CFB), and mathemat-
ics (NA) experts collaborated to analyze the data. We 
recognize that our experiences within these disciplines 
influenced our interpretations of student responses dur-
ing data analysis, especially when interpreting students’ 
SDK. To help with this, we entered these tasks with the 
understanding that students will utilize language that 
resonates with them and tried to maintain the students’ 
voices. During interviews, students could freely discuss 
what they felt was relevant to the questions. We also used 
student responses to guide our categorization of basic, 
mid, and high SDK in an attempt to diminish our expert 
bias towards particular connections or terms. However, it 
is important to recognize and define our role as outsiders 
in this research context (Narayan, 1993), given that we 
have a limited understanding of participants’ individual 
differences and identities when designing and conducting 
this study.

Biology task: population growth
In biology, population growth models, which are based 
on population birth and death rates, are used to make 
predictions about a population’s trajectory. When birth 
rates are higher than death rates, populations grow, 
whereas when death rates are higher than birth rates, 
populations decline. The logistic population growth 
model applies to a habitat where there is competition for 
resources (food, water, space) within a species. Popula-
tions initially increase exponentially, but as resources 
become more limited due to the increase in the number 
of individuals in the population, population growth slows 
down (birth rates decline and/or death rates increase). 
The point at which resources start to limit growth is the 
inflection point on the logistic graph. Eventually, the pop-
ulation reaches a maximum size that the environment 
can support, which is called the carrying capacity. At 
carrying capacity, limited resources constrain per capita 



Page 5 of 23Altindis et al. International Journal of STEM Education           (2024) 11:32  

birth and death rates to be equal, resulting in no change 
in population size over time.

The biology population growth task was created by 
the authors to showcase both an exponential growth 
and logistic growth model and included a link to a video 
showing how the population sizes change over time. After 
watching the video, participants were asked to describe 
the relationships depicted in each graph and prompted to 
compare the exponential and logistic graphs. Addition-
ally, participants were asked to sketch graphs showing 
how population growth rate changes over time for each 
model (Fig. 1).

Chemistry task: titration experiment
In chemistry, titrations are used to determine the con-
centration of one substance (the analyte) by slowly add-
ing to it another substance (the titrant) that it reacts 
with. Because each drop of added titrant reacts with 

and removes a fixed quantity of the analyte, the propor-
tional effect on analyte concentration is small at the start 
but increases continuously. When the analyte is nearly 
exhausted, the fractional change is orders of magnitude 
larger. The amount of titrant added to this point then 
indicates how much analyte was present at the start, a 
useful piece of chemical information. In this example, 
the analyte is an acid, and the titrant is a base. They react 
to form water, which itself contributes minimally to the 
measured acidity of the solution. The Y axis is typically 
graphed as the logarithm of the analyte concentration in 
units of pH (pH = − log[acid concentration]) versus num-
ber of drops or cumulative volume of added base. So, the 
point at which the acid analyte is exhausted appears as 
a steep change of pH and inflection in the graph. Before 
inflection, the base addition causes an increasing pH 
changing at an increasing rate; after the inflection, the pH 
increases at a decreasing rate as the base added with each 

Fig. 1 Population growth (biology task). Students were also provided with a simulation showing the production of the lines on the population 
graph over time (see Supplementary Information)
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drop causes a smaller and smaller effect, approaching the 
pH of the added base solution. Because of chemical equi-
librium principles, the pH of the solution after inflection 
is controlled by the amount of base present; more base 
forces a larger pH value. Unlike the biology graph, which 
emerges because of the comparative rates of births and 
deaths affecting the number of organisms at any time 
point, the chemistry graph emerges because of logarith-
mic transformation of the fractional changes in concen-
tration of one chemical entity as it disappears and a new 
chemical entity as it appears over time.

After reading the task prompt, each participant 
watched a video showing production of a titration curve 
during a titration experiment (see Supplementary Infor-
mation). Participants were then asked to explain the rela-
tionship between the pH of the solution and the amount 
of base added (Fig. 2). Probing questions were asked with 
the intent to explore whether participants could dif-
ferentiate between the nature of the curvature (concave 
up and concave down) around the inflection point and 

understand how such a graph represents the covarying 
quantitative relations between the volume of base added 
and measured pH.

Analysis
Deductive coding with covariational reasoning framework
To characterize students’ covariational reasoning, the 
five-level framework developed by Carlson et  al. (2002) 
was used. To establish an understanding of what covari-
ational reasoning looked like in each task context, the 
team articulated the mental actions from each discipli-
nary perspective. Similar methodological approaches 
relating Carlson and colleagues’ framework with disci-
plinary knowledge have been used by others to explore 
student reasoning (i.e., Scott et  al., 2023). Our process 
involved independent coding, discussion of discrepan-
cies, and re-defining codes until reaching a dependable 
consensus (Ary et  al., 2014; Cascio et  al., 2019; Lu & 
Shulman, 2008; Ryan, 1999). Table 1 shows how student 
descriptions of a pH titration graph would align with 

Fig. 2 Titration curve (chemistry task). The task included an image captured from the video showing the production of a titration curve for strong 
acid–strong base reaction (MrGrodski Chemistry, 2020)
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the five mental actions. For example, in Mental Action 
3 (MA3), students describe the relationship between the 
amount of base added and the corresponding pH level. 
That is, they recognize that with a successive increase 
in the amount of base, the pH level exhibits a gradual 
initial rise, followed by a faster increase, and eventually 
a decrease in the rate of increase. In Mental Action 5 
(MA5), students additionally imagine how the instanta-
neous rate of change for pH level changes with respect 
to consistent change in the amount of the base. This 
means they are aware of the direction of concavities and 
inflection points on a graph. Once the team established 
agreement, the math expert coded all interview excerpts 
for mental actions. To simplify discussion, the results 
were split into two categories: less sophisticated or “low” 
covariational reasoning (engaged in Mental Actions 1–3) 
and more sophisticated or “high” covariational reasoning 
(Mental Actions 4–5).

Coding for disciplinary knowledge
The disciplinary experts from chemistry (KAB or CFB) 
and biology (BC or MLA) open-coded the data related 
to their disciplinary task, focusing on (a) the most sali-
ent disciplinary knowledge activated by a student and 
(b) the way(s) in which it was integrated with the stu-
dent’s covariational reasoning during graph interpreta-
tion. The team then defined criteria for classifying SDK 
as basic, mid, or high (Table 2). Basic means linking sci-
entific terms or ideas with specific graphical regions or 
providing definitions with slight inaccuracies. Mid means 
using accurate basic-level descriptions, with qualita-
tive explanations of how the graph shape relates to the 
scientific phenomenon, but the underlying mechanism 
or relationship between the variables that produces the 
shape of the graph are not expressed or understood. High 
means a description that is qualitatively accurate about 

the phenomenon and the graph shape at a mechanistic 
level, with reference to entities or properties or quantities 
that are not explicitly or immediately represented on the 
graph (e.g., birth rate balanced with death rate). Students 
may propose a thought experiment or imaginary situa-
tion based on a scientific phenomenon.

The categorization scheme was tested for reliability by 
means of a blind analysis. One of the chemistry authors 
assembled a set of paragraph-long excerpts from three 
interviewees whom that author believed represented the 
conditions of basic, mid, and high-level SDK in chemis-
try. These were arranged without labels side-by-side in 
mixed order for the other four authors to classify into any 
of the three categories. There was near 100% agreement 
in SDK ranking, except for one author categorizing some-
one as high level when everyone else labeled them as 
mid-level. Similarly, one of the biology authors repeated 
the process with three excerpts from interviewees for 
the biology task. Again, there was near 100% agreement 
in the blind ranking, with only one author categorizing 
someone as mid-level when everyone else labeled them 
as high. Given that the chances for this amount of agree-
ment at random is less than 0.1%, this suggests that the 
interpretive scheme is trustworthy.

Integration of covariational reasoning and SDK
Having established a reliable means for categorizing lev-
els of covariation and levels of disciplinary knowledge 
application, attention was turned to evidence of potential 
mental imagery. Evidence sought included verbalizations 
that referenced quantities not immediately represented 
on the graph, transformations of the graph (i.e., con-
ceptual simulation; Trickett & Trafton, 2007), and ver-
balizations associated with iconic gestures (Trafton et al., 
2006). Conceptual simulation, also referred to as “what 
if ” reasoning, involves the spontaneous engagement of 

Table 1 Mental actions and associated verbal behaviors when interpreting a logistic function on a titration curve

Mental actions Description of mental actions (Carlson et al., 2002, p. 357) Verbal behaviors in the context of interpreting a titration 
curve

Mental Action 1 Coordinating the value of one variable with changes in the other Verbalizing an awareness that the pH level changes as base 
is added

Mental Action 2 Coordinating the direction of change of one variable 
with changes in the other variable

Verbalizing an awareness that the pH level increases 
with increasing amount of the base

Mental Action 3 Coordinating the amount of change of one variable 
with changes in the other variable

Verbalizing the amount of change in the pH for fixed increments 
of the amount of base added

Mental Action 4 Coordinating the average rate of change of the function with uni-
form increments of change in the input variable

Verbalizing the average rate of change of the pH with respect 
to successive uniform increments of the amount of the base 
added

Mental Action 5 Coordinating the instantaneous rate of change of the func-
tion with continuous changes in the independent variable 
for the entire domain of the function

Verbalizing an awareness that while base is continuously added, 
the pH level increases with an increasing (instantaneous) rate 
of change before pH level 7 and increases with a decreasing rate 
after pH level 7
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individuals in processes such as visualizing scenarios, 
mentally manipulating them, and observing the result-
ing outcomes (Trickett & Trafton, 2007). Individuals 
often articulate their mental operations, including spatial 
transformations layered onto existing representations, 
when dealing with technical material (Trafton et al., 2002, 
2005, 2006; Trickett & Trafton, 2007). These cognitive 
processes allow individuals to explore and comprehend 
scientific phenomena. This sense of visualization aligns 
with Thompson’s concept that cognitive effort is required 
for constructing mental images of quantities (Thompson, 
2011).

Gestures served as a “window” into or evidence of stu-
dents’ thinking (e.g., Goldin-Meadow et  al., 1992) par-
ticularly those that illustrate iconic or representational 
expressions (McNeill, 1992) because such gestures often 
accompany mental spatial transformations (Trafton et al., 
2006). We engaged in fine-grained discussions around 
the way individuals discussed the quantities depicted 
on the axes, how they coordinated changes between 
these covarying quantities, and what their language and 
gestures revealed about the mental imagery they con-
structed while engaging in reasoning about quantities 
and quantitative relationships.

This search for visualized thinking allowed judgment of 
the relative degree of integrative thinking about the graph 
using covariational reasoning and SDK. To establish the 
reliability of perceptions, another blind ranking test was 
done with four titration task excerpts and four biology 
task excerpts. One author identified four excerpts that, 
in our common interpretation, represented high, middle, 
or low covariational reasoning with science disciplinary 
knowledge. The set of excerpts were shuffled in sequence 
and presented to the other authors to rank. In each case, 
all authors agreed on the ranking, with one exception of 
an inversion of position for one interviewee. Again, the 
chances of this level of agreement of sequence by chance 
is well less than 0.1%, thus suggesting strong reliability in 
the interpretation regarding integration of covariational 
reasoning and interdisciplinary knowledge.

To support our interpretation and arguments, detailed 
case studies (Seawright, 2016; Seawright & Gerring, 
2008) of four students are presented with contrasting 

levels of covariational reasoning and SDK integration 
through mental imagery (Table 3).

Results
Students varied in their covariational reasoning abilities 
and in their SDK on the population growth and titration 
graphical interpretation tasks (Fig.  3). On most tasks, 
students exhibited basic or no SDK (five out of eight stu-
dents on the population growth task and ten out of fif-
teen students on the titration task), with most of these 
students also displaying lower levels of covariational rea-
soning on these tasks. However, a small number of these 
students (one in the population growth task and two in 
the titration task) were able to covariationally reason 
with little or no SDK rooted in the context of the graph. 
Of the students who demonstrated mid or high levels of 
SDK during a task, most were able to covariationally rea-
son at higher levels. There was only one student in the 
population growth task and one student in the titration 
task who exhibited high levels of SDK but were unable to 
reach high levels of covariational reasoning.

Individual case analyses
Below, we present case studies of four students to show-
case the different ways in which mental imagery and SDK 
interact (or fail to interact) as students covariationally 
reason. Longer student verbatim quotes are presented in 
figures, with perceived mental actions for covariational 
reasoning inserted in-line and bolded (e.g., MA2). Con-
current gestures are shown to the right, and written arti-
facts below. In each case study, we discuss the evidence 
supporting the indicated mental actions and the level of 
SDK achieved as well as evidence of mental imagery (or 
lack thereof ).

Ozge understands underlying biological principles, 
but demonstrates no mental imagery related to changing 
rates
Ozge represents a rare case, demonstrating high SDK 
in biology, but low covariational reasoning skills. In her 
discussion of growth rate for the logistic growth popu-
lation (Fig.  4; line B on the original task in Fig.  1), she 
drew on SDK when explaining the upper horizontal 

Table 3 Case participants’ majors, courses, tasks, and covariational reasoning (CVR) and scientific disciplinary knowledge (SDK) 
rankings

Participant Major Enrollment Task CVR (Mental Actions) SDK

Ingrid 1st-year environmental science Intro Bio Population High (4–5) Mid

Ozge 1st-year wildlife conservation Intro Bio Population Low (1–3) High

Natalie 1st-year biochemistry Intro Bio
Intro Chem

Titration High (4–5) High

Carson 2nd-year civil engineering Intro Chem for Engineers Titration High (4–5) Absent
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asymptotic region. She explained (Fig.  4) that while 
time continues to change, the brown tree snake popula-
tion has “reached the carrying capacity” so the growth 
rate “stays constant because that ecosystem can’t fit any 
more [snakes]”. She elaborated that this depends on the 
amount of resources, demonstrating basic knowledge of 
biology concepts by defining carrying capacity. She then 
elaborated on carrying capacity by explaining how the 
underlying birth and death rates contribute to a constant 
population size over time. Ozge’s accurate description 
of carrying capacity and its relationship to both lim-
ited resources and the resulting balance between births 
and deaths (inputs and outputs) demonstrated she has 
high scientific disciplinary knowledge about this graph 
feature.

Figure 5 captures Ozge’s initial construction of growth 
rate graphs for the exponential and logistic growth popu-
lations. Despite the high SDK displayed in her discussion 
of the region representing carrying capacity, here there 
is no evidence that Ozge applied biology SDK to any 
part of the exponential growth graph. When describing 

exponential growth, she fixated on a strictly numerical 
representation (“it”) rather than using mental images of 
organisms: “…when it’s growing exponentially,  it’s not 
growing at an exact rate,  like you’re multiplying it  over 
and over again. So like the 10 times 10 would equal 1000 
[sic]…” (Fig. 5). Her numerical explanation demonstrates 
an understanding of coordinated change of two vari-
ables—Mental Action 3: “each time it increases, it’s going 
to increase more than the previous time” (Fig. 5). How-
ever, there is no mental image of a biological explosion 
of the number of organisms in relationship to time, more 
so a memorized unidimensional sense of multiplicative 
change.

Similarly, there is no evidence that Ozge applied biol-
ogy SDK to any other part of the logistic growth graph. 
When interpreting the original logistic growth graph, 
Ozge did not differentiate between increasing and 
decreasing rates of change through the curve, and she 
made no mention of an inflection point. Birth rates and 
death rates are never mentioned in relation to these 
regions, and she referred only to the population as a 

Fig. 3 Participants’ representation of scientific disciplinary knowledge coincides with covariational reasoning. This figure illustrates the degree 
to which the utilization of scientific disciplinary knowledge (SDK) aligns with covariational thinking for 23 interview excerpts from 15 interview 
participants. The panels reflect which discipline the task was situated in (left: biology, right: chemistry). The y-axis represents four levels of SDK 
presence (basic mid, high) and absence. The x-axis categorizes students’ covariational thinking levels as low (MA1–3) or high (MA4–5). Highlighted 
names indicate those participants discussed as individual case studies
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whole and never individual organisms. When tasked 
with drawing the graph of population growth rate over 
time for the logistic graph (which would be a derivative 
peaked shape), it became clear she struggled to under-
stand the concept of rate; she drew the same exact graph 
shape depicted in the original population size versus 
time graph (Fig.  5). The interviewer prompted: “…I’m 
trying to understand the difference between these two 
graphs,  population size versus time,  population growth 
rate versus  time, for the same brown tree snakes,” and 
Ozge responded, “So I kinda just interpret it as the same.” 
Accordingly, her references to ‘population growth rate’ in 
Figs. 4 and 5 could be replaced with ‘population size’ and 
the meaning would remain practically unchanged.

Ozge’s case suggests that having high levels of discipli-
nary knowledge does not guarantee the ability to produce 
mental images that support high levels of covariational 
reasoning. During the interview, Ozge did not demon-
strate an ability to coordinate the average or instanta-
neous rates of change of the function with changes in 
the independent variable (i.e., Mental Actions 4 or 5). 
Although at one point Ozge describes how birth and 
death rates balance at carrying capacity, which sug-
gests she understands the average rate of change is zero 
(Fig. 4), she does not explain the average rate of change 
elsewhere on the graph. While lack of discussion from 
a biological perspective about other graph regions does 

not necessarily mean Ozge had no SDK to apply to these 
regions, there is a singular focus on carrying capacity and 
no evidence of mental imagery about the other regions of 
either graph.

Mental imagery helps Ingrid engage in more sophisticated 
covariational reasoning about changing rates
Ingrid demonstrates mid SDK and high covariational 
reasoning skills, using both biological and non-biological 
mental imagery. She first used biology mental imagery 
(Fig.  6) when coordinating the amount and direction of 
change in population size with time—Mental Action 3. 
She demonstrated an understanding of change in the tree 
snake population over the domain of a logistic function 
by verbalizing how the population increases initially then 
it “level[s] off” when it reaches the “carrying capacity” 
(Fig. 6). Coincident with describing this, Ingrid mimicked 
drawing a concave line on the graph (Fig. 6), stating that 
the  population hasn’t “dipped” or gone “extinct”. Hypo-
thetically transforming the graph to ‘dip’ and evaluat-
ing the result  (implications for the population) suggests 
Ingrid was engaging in a conceptual simulation, running 
a mental model involving the represented quantities and 
mentally transforming the graph.

Ingrid continued using biology mental imagery, 
explaining the concept of carrying capacity, how a 
species’ survival is tied to resource availability in the 

Fig. 4 Ozge’s explanation of birth/death balance in the upper region of the logistic population curve
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Fig. 5 Ozge’s description of population growth rate, including her sketches of logistic growth rate versus time
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environment to “only support so many individuals” 
(Fig.  6). She elaborated by using water as an example 
of a limiting resource with an imagined situation of “a 
hundred [individuals], and there’s only a small puddle,” 
explaining how that will result in the death of individu-
als and ultimately limit population growth. Ingrid’s use 
of an imaginary situation demonstrates that she can 
actively construct and connect this biological concept 
of capacity to how the population size and population 
growth rate are depicted in the graph.

Ingrid’s strong mental imagery became a critical 
aspect of her ability to construct graphs of population 
growth rate over time (Fig.  7). However, instead of dis-
cussing organisms in a population, she used mental 
imagery of pens to explain exponential growth and how 
logistic growth (including decay of rate) would be dif-
ferent (Fig. 7). Here, Ingrid has demonstrated an aware-
ness of the instantaneous rate of change for the brown 
tree snake’s growth. She verbalized that the population 
size increases with increasing rate, then increases with 

Fig. 6 Ingrid’s description of brown tree snake growth at carrying capacity and across the logistic function. Below the graph Ingrid wrote: 
“A = Exponential; As time increases, Burmese pythons population exponentially increases. B = Logistic; As time increases the Brown tree snake 
population logistically increases”
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Fig. 7 Ingrid describes population growth rate versus time, constructing initial (a) and corrected (b) brown tree snake graphs. Ingrid initially 
re-draws the population size versus time graphs for both types of snakes, then corrects them. Below her sketches she wrote: (a) “Time interval 
would decrease as growth rate increases” and (b) “Time interval would increase as growth rate decrease”. Below her corrected sketch for brown tree 
snakes (c), Ingrid wrote: “Time 1 = the maximum growth rate, Time 2 = half the maximum growth rate, and Time 3 = no growth.”
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decreasing rate—Mental Action 5 (Fig. 7). This illustrates 
Ingrid’s sophisticated understanding of the covarying 
relationship between growth rates, time intervals, and 
population size.

Midway, Ingrid realized she had drawn the graph for 
the logistic model incorrectly.  She indicated where the 
line plateaus on the provided graph and then looked at 
her own sketch (Fig. 7a) while verbalizing a spatial trans-
formation (“this would go down”) which she then carried 
out by extending her curve downward. Ingrid redrew the 
graph (Fig. 7b) after which she stated “…that makes a lot 
more sense.” Ingrid was aware that the inflection point 
represents “the fastest the population growth rate will 
be,” (Fig. 7) which she indicated corresponds to “Time 1” 
(Fig.  7b). When considering chunks of time, Ingrid was 
able to provide a detailed articulation of how the change 
in population size and rate is coordinated with the time 
it takes to change, which allowed her to construct a 
smooth curve for population growth rate. This indicates 
Ingrid can coordinate the instantaneous rate of change 
of population growth with the change in time across the 
entire function—Mental Action 5. While Ingrid’s exact 
cognitive processes are invisible, well-articulated images 
both from a biological context and from a non-biological 
context seemed to enhance her ability to interpret the 
population size graph and support her construction of a 
smooth population growth rate curve. We interpret this 
to suggest that Ingrid used mental imagery to engage in 
sophisticated covariational reasoning on the population 
growth task.

Mental images of the titration process help Natalie 
consistently tie graph shape and physical reality together
Natalie demonstrates high SDK and high covariational 
reasoning when interpreting the chemical titration graph.

Figure 8 provides Natalie’s initial response to the task: 
she described how “the base continues to get added 
gradually” (Fig. 8) and how it reacts with the acid already 
present, resulting in pH change: “…the OH’s in the base 
that’s added will react with the acid that’s already in there 
and slowly…turn it into… water.” Beyond the inflection 
point, Natalie described that most of the acid has been 
consumed and continuing to add base makes the solu-
tion more basic over time. Although her description of 
the chemical species present at and beyond the inflection 
point is partially inaccurate, Natalie was able to coordi-
nate the change in amount of base added with the change 
in the pH with explicit attention to the direction of the 
change—Mental Action 2.

Throughout her response, Natalie associated more 
than one level of chemical description with the line of 
the graph: namely, with changing concentrations of two 
chemical species at the particulate level (hydroxide ions 

 [OH−] and protons  [H+]), as well as with overall acidity 
or basicity levels as indicated by pH at the macroscopic 
level. This is evident, for example, in Natalie’s identifi-
cation of a point in the center of the graph (Fig. 8, point 
she marked as ‘x’ and labeled “Base = acid”) which she 
explains as representing when “the concentration of… 
hydroxide is equal to the… protons,” as well as represent-
ing “equilibrium” which she defines as “no more acid or 
more base” (Fig.  8) and a neutral pH of approximately 
seven. Her phrasing here and in Fig. 9 suggest such disci-
plinary knowledge supported clear mental images of the 
x-axis as it relates to amount of base added and the y-axis 
as pH.

Natalie demonstrates in Fig.  9 that she can coordi-
nate the average rate of change of the pH with respect 
to uniform incremental changes of base added—Mental 
Action 4. This is evidenced through Natalie’s articula-
tion of distinct differences in the rate of change of the pH 
before and after the inflection point as uniform incre-
ments (“drops”) of base are added to the solution. Natalie 
expressed the overall differences in rate of change of the 
pH by describing the horizontal asymptotic regions as 
“gradual” and the center region as a “spike” (Fig. 8). Elab-
orating, for example, on the rate of change leading into 
the right tail of the graph, Natalie explained how “drops 
of base… going in” to the solution produces “a constant 
increase of OH… so it [the pH] still goes up a little bit.”

In explaining what causes the line on the graph to go 
up “a little bit”, Natalie made several gestures and verbali-
zations suggestive of the use of mental imagery. Stating 
that the pH line “won’t go up like that,” Natalie traced a 
line with a slightly greater slope in air above the upper 
horizontal asymptotic region she is referencing. That is, 
Natalie appeared to engage in a conceptual simulation, 
wherein she refers to transforming the representation 
spatially in a hypothetical manner, using gestures to do 
so ‘on top of ’ the existing representation. She repeated 
a similar simulation at the end of the excerpt, referring 
to a hypothetical line with an even steeper slope, once 
again tracing it above the titration curve. These transfor-
mations are aligned via comparison to the existing line 
(“…it still goes up, but it’s not… really far up”; Fig. 9). In 
between these two hypothetical transformations, Natalie 
made an iconic gesture mimicking “drops of base… going 
in” to the titration solution, which suggests a mental 
image of the titration process. She associated these drops 
with a “constant increase of OH.”

Natalie could provide a detailed description and dem-
onstrate sophisticated covariational reasoning on the 
titration task, seemingly supported by disciplinary 
knowledge that provides clear mental images of the 
quantities represented on the axes and their real, physical 
relationship. Natalie actively recalled disciplinary ideas 
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Fig. 8 Natalie describes what different regions of the titration curve represent chemically. Below the graph in response to the prompts, Natalie 
wrote: I think… “the pH becomes more basic as the base is added” Because… “the OH- bonds with the H + , that makes the solution acidic 
to become H2O which is neutral and when the majority of H + is taken up there is excess OH- still being added making the solution basic.”
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pertaining to the titration experiment, such as neutraliza-
tion reactions and how addition of  OH− affects  H+ con-
centration and therefore pH. In the excerpts presented 
and throughout the task, her descriptions were explicitly 
and consistently grounded in the concrete context of the 
titration (e.g., referring to and gesturing “drops”, the inter-
actions and reaction between the chemical species). Even 
with some inaccuracies from a chemical standpoint (e.g., 
incorrect use of the word equilibrium; inconsistent dis-
cussion of when acid analyte is depleted), the use of dis-
ciplinary knowledge helped Natalie create mental images 
of how the x- (amount of base) and y- (pH level) variables 
covary throughout the graph. Although Natalie did not 
explicitly mention abstract mathematical concepts, it is 
evident that she implicitly utilizes some. For example, she 
did not explicitly say “point of inflection”, but her recog-
nition of that point and its influence on the rate of change 
indicates an understanding of inflection points and the 
curvature they produce on the graph.

Carson uses mathematical mental imagery to engage 
in sophisticated reasoning, but does not connect 
to the physical context
Carson stands out because he evinces no scientific dis-
ciplinary knowledge while demonstrating high-level 
covariational reasoning skills. He recognized points of 
inflection and conceived of the graph as a representation 
of simultaneously covarying quantitative relationships 
(MA5), but there was a disconnect when it came to relat-
ing this to the titration experiment and chemistry con-
cepts. In Fig.  10, Carson demonstrated a sophisticated 
understanding of instantaneous rates of change.

He noted that “every drop… changes the pH… sig-
nificantly”—Mental Action 4—and articulated that the 
rate of pH change before and after the inflection point 
are different, with “[the rate of change]… getting faster” 
before and “[pH] increas[ing] at a decreasing rate” 
after—Mental Action 5. Through this, Carson related 
the instantaneous rate of change for pH to incremen-
tal change in the amount of the base (“every drop”) 

and showed his awareness of the direction of concavi-
ties and inflection points on the graph, demonstrating 
sophisticated covariational reasoning skills.

Yet, at no point in the interview did he spontaneously 
invoke any chemical concepts (e.g., reaction, concentra-
tion, or acidity) or explain the titration process. When 
prompted by the interviewer to clarify the concept of the 
inflection point in the context of pH and the amount of 
base added, Carson explained how the pH, a quantity 
on the y-axis, and the amount of the base, on the x-axis, 
form a logistic graph where “…the pH changes more and 
more with every drop up until that [inflection] point and 
the pH changes less and less with every drop as it keeps 
going” (MA5). Although this is a sophisticated explana-
tion of how the graph illustrates the covarying quantita-
tive relationship between "every drop" and pH change, 
one could easily replace ‘pH’ with ‘y-variable’ and his 
meaning would not change. That is, the variables form-
ing the graph are treated as abstract entities rather than 
being conceptualized within a chemical process. Carson’s 
only direct reference to his chemistry knowledge is recol-
lection of performing titration experiments in chemistry 
classes, where he admits “…it’s hard to describe the math-
ematical relationship in words, like, between the specific, 
um, like a relationship of the base and the pH.”

Carson’s response illustrates that mental imagery can 
be formed within mathematical thinking. However, it 
also demonstrates that sophisticated covariational rea-
soning with a scientific graph is not a guarantee that 
scientific sense-making will also be engaged.

Discussion
This study explored the role of scientific disciplinary 
knowledge (biology and chemistry) in students’ covari-
ational reasoning during graph interpretation: the 
extent to which students engaged SDK (RQ1) while 
interpreting the graphs, and the ways in which mental 
imagery, primarily derived from SDK, contributed to 
their covariational reasoning (RQ2).

Fig. 9 Natalie describes how the rate of pH change changes with incremental additions of base
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With respect to the first research question, Fig.  3 
shows the extent to which scientific disciplinary knowl-
edge usage is coincident with covariational reasoning. 
By dichotomizing each axis into two levels (“High” for 
high and mid levels; and “Low” for basic or nil levels), 
one can see that, irrespective of discipline, 12 student 
excerpts were classified as low on both types of think-
ing and six were high on both. Only five interviews 

were mixed (high on one and low on the other), nearly 
evenly split between high/low and low/high. Though 
not with sufficient power for reliable statistical infer-
ence, the trend suggests that higher functionality with 
SDK goes along with higher demonstrated covari-
ational reasoning ability. This 2 × 2 simplification of 
Fig. 3 will be called the SDK/COV matrix for discussion 
purposes.

Fig. 10 Carson describes rate of change along the entirety of the titration curve
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In the lower left quadrant of this matrix, students who 
demonstrated low SDK also tended to demonstrate lower 
levels of covariational reasoning. These students did not 
express biological or chemical concepts to explain the 
underlying phenomena driving the shape of the graph, 
and they did not explain the rate of change depicted in 
the scientific graphs, either in terms of average rate of 
change (MA4) or instantaneous rate of change (MA5). 
Many of the interviewed students are in their first year 
and have not yet gained enough experience with discipli-
nary concepts, practices, or language, which is evidenced 
in the limited ability to describe and explain these graphs 
in scientific or mathematical terms.

In the upper left and lower right quadrants, students 
exhibited more facility in one characteristic but not the 
other. Three students in the lower right quadrant dem-
onstrated little to no SDK, while discussing rates of 
change satisfactorily as they reasoned through the graph 
shape. Conversely, two students in the upper left quad-
rant exhibited high SDK, but it was not accompanied 
by sophisticated explanation for rates of change in the 
graphs. It seems then that the development of scientific 
disciplinary knowledge and development of covaria-
tion reasoning skill do not necessarily go hand in hand, 
at least as evidenced by student ability to make sense of 
these graphical representations. Other work has found 
that covariational reasoning and knowledge of the rel-
evant context can develop individually (e.g., Scott et  al., 
2023; Sterman & Sweeney, 2007).

In the fourth quadrant, individual case descriptions 
provide deeper insight—where students exhibited higher 
levels of both SDK and covariational reasoning. If mental 
imagery is critical for sophisticated covariational reason-
ing, as claimed by Thompson (1994), then it is valuable 
to seek evidence for that with the student interviews in 
this quadrant. This is in fact what was found. Natalie 
and Ingrid both exhibit mental imagery related to their 
science disciplinary knowledge. Ingrid notably used the 
mental image of pens doubling over time more quickly or 
more slowly as an analogic substitute for animal popula-
tion changes. Natalie used quantitative comparisons at 
the macroscopic level (acidity and basicity) and particu-
late level (concentrations or numbers of hydrogen ions 
and hydroxide ions) to relate amount of base added to 
corresponding changes and rates of change of pH. The 
students here are using concrete quantitative represen-
tations grounded in the scientific discipline: quanti-
ties of physical entities and the rates of changes in these 
quantities.

As a contrasting case, Ozge demonstrates high SDK but 
not high covariational reasoning. She is able to correctly 
explain how, due to resource limitations, birth and death 
rates balance to explain carrying capacity in the logistic 

growth graph. However, she shows no evidence of using 
mental images to coordinate changes in population size 
over time on any other part of the logistic growth graph.

Carson provides an alternative contrasting case. He 
exhibits no SDK but is able to explain instantaneous 
rate of change, the highest level of covariational rea-
soning, between amount of base added and pH across 
the entirety of a logistic function representing a titra-
tion curve. While he used the language of the axes’ 
labels to describe incremental changes in the quantities, 
their direction of change, their rates of change, and the 
changes in those rates, he relied solely on mathematical 
thinking. He never connected to chemical concepts that 
are essential for making sense of the phenomenon rep-
resented by the graph or for making inferences about the 
chemistry there. Curcio (1987) would describe this as not 
being in a position to “read beyond the data”.

Taken together, these findings suggest the recall of 
prior disciplinary knowledge can form a foundation for 
developing mental images of quantities and quantitative 
relationships presented in a graph during the interpre-
tation process, enhancing individuals’ capacity to effec-
tively interpret graphs and engage in more sophisticated 
covariational reasoning. Greater familiarity with the 
content being presented graphically accompanies clearer 
description, more effective interpretation, and deeper 
evaluation of quantitative data (Shah, 2002; Shah & Hoef-
fner, 2002; Shah et al., 2004). Other research has shown 
disciplinary knowledge is valuable when engaging with 
external representations, including graphs, as it supports 
the development of a mental model of the data which can 
be mentally modified to test interpretations and infer-
ences (e.g., Chinn & Brewer, 2001; Trafton et  al., 2006). 
Experienced scientists employ many experience-based, 
domain-specific resources to help them construct mean-
ing from graphs (Bowen et al., 1999; Roth, 2012). These 
scientists have established a one-to-one correspondence 
that makes talk about the graph and the represented 
phenomenon indistinguishable (Roth, 2003). These pre-
vious studies have highlighted the connection between 
disciplinary knowledge and graphical interpretation, and 
this work builds on these studies by specifically explor-
ing the mental imagery derived from scientific discipli-
nary knowledge and covariational reasoning in graph 
interpretation.

Greater familiarity with relevant disciplinary knowl-
edge not only supports reading “beyond the data” (Cur-
cio, 1987) to make appropriate inferences, but it may 
also reduce the intrinsic cognitive load experienced by 
an individual when engaging in a complex task like graph 
interpretation (Sweller, 2011; Van Merrienboer & Sweller, 
2005). In interpreting representations, students must 
simultaneously engage disciplinary content knowledge 
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and features of the representation itself (e.g., its conven-
tions, labels) as they reason (Schönborn & Anderson, 
2009; Schönborn et al., 2002). Familiarity ostensibly frees 
up mental capacity for more sophisticated reasoning.

Limitations
One potential limitation is that a math education expert 
conducted all interviews. This was purposeful in order 
to ensure that the focus would be on revealing covari-
ational reasoning and for consistency. In contrast, sci-
ence experts were not included as interviewers because 
the goal was to allow scientific disciplinary knowledge to 
emerge as prior knowledge rather than to be exhaustively 
excavated. Further, having multiple interviewers could 
have been more intimidating for students and might 
have constricted their responses. Thus, it is possible that 
opportunities to unpack student scientific understand-
ing more fully were missed. To mitigate this limitation, 
the interview protocol was reviewed and modified by the 
biology and chemistry experts.

While the small number of participants and limited 
representation contexts (population biology and chemi-
cal titration) reported here do not allow for broad gen-
eralization or characterization of reasoning patterns, 
this study affords a deep examination of individuals’ 
mental imagery associated with covariational reason-
ing. This approach lets us focus explicitly on the mental 
images constructed by students as part of understanding 
depicted scientific quantities and coordinated changes 
among them, which underlies covariational reason-
ing (Thompson, 1993). Studies with additional partici-
pants and in additional contexts are necessary to further 
understand the interconnection of SDK and covariational 
reasoning.

Conclusion
The cases examined in this study provide empirical evi-
dence that when students construct mental images of 
the quantities depicted by graphs and form images of 
coordinated change among these quantities, they pro-
duce evidence of more comprehensive understanding 
that incorporates shape (function) and context (phe-
nomenon). Recall of relevant disciplinary knowledge to 
construct mental images of the quantifiable attributes of 
the represented entities or systems helps students move 
beyond fixating on the overall shape of the graph to grasp 
the nuanced relationships represented: simultaneous 
changes in variables, rate of change, and how these ele-
ments relate to the graphical forms depicted (e.g., line, 
concave up, or concave down). For example, in chemis-
try, students can benefit from recognizing that a titration 
curve represents a covariational relationship between 
titrant added (amount of acid or base) and pH (reflecting 

amount of hydronium ions) which evolves over the 
course of a titration. This can support interpreting the 
titration curve as a representation of a dynamic chemical 
process rather than a static entity. In biology, focusing on 
discerning and coordinating changes in population size 
over time can help students gain deeper insight into how 
the balance of birth and death rates gives rise to popu-
lation dynamics, and how the availability of resources 
influences population size, particularly in relation to car-
rying capacity. Encouraging students to grasp what quan-
tities are depicted on a graph, connecting to context and 
to concepts, is a crucial first step to support the construc-
tion of mental images that will help them move beyond 
surface-level interpretation toward more meaningful 
interpretation of depicted relationships.
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