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Abstract 

Educational robotics, as emerging technologies, have been widely applied in the field of STEM education to enhance 
the instructional and learning quality. Although previous research has highlighted potentials of applying educational 
robotics in STEM education, there is a lack of empirical evidence to investigate and understand the overall effects 
of using educational robotics in STEM education as well as the critical factors that influence the effects. To fill this gap, 
this research conducted a multilevel meta-analysis to examine the overall effect size of using educational robotics 
in STEM education under K-16 education based on 30 effect sizes from 21 studies published between 2010 and 2022. 
Furthermore, we examined the possible moderator variables of robot-assisted STEM education, including discipline, 
educational level, instructor support, instructional strategy, interactive type, intervention duration, robotic type, 
and control group condition. Results showed that educational robotics had the moderate-sized effects on students’ 
STEM learning compared to the non-robotics condition. Specifically, educational robotics had moderate-sized effects 
on students’ learning performances and learning attitudes, and insignificant effects on the improvement of compu-
tational thinking. Furthermore, we examined the influence of moderator variables in robot-assisted STEM education. 
Results indicated that the moderator variable of discipline was significantly associated with the effects of educational 
robotics on STEM learning. Based on the findings, educational and technological implications were provided to guide 
future research and practice in the application of educational robotics in STEM education.
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Introduction
With the rapid development of science and technol-
ogy, educational robotics, as emerging technologies that 
combine different digital techniques (e.g., mechanical 
manufacturing, electronic sensors, artificial intelligence), 
have been applied in multiple educational contexts to 
enhance the instructional and learning quality. Specifi-
cally, in the field of STEM education, which highlights 
the integration of science, technology, engineering, and 
mathematics, educational robotics are usually used 
to mediate and assist the instructional and learning 

process, which is named the robot-assisted STEM edu-
cation in prior research (Atman Uslu et  al., 2022; Aug-
ello et  al., 2020; Evripidou et  al., 2020). In recent years, 
the emergence of educational robotics has attracted wide 
attention and previous research has revealed the poten-
tials of applying educational robotics in STEM educa-
tion, such as promoting students’ learning performance 
(Okita, 2014), arousing their interest (Chin et al., 2014), 
and cultivating their computational thinking (Chalm-
ers, 2018). However, although multiple studies revealed 
the benefits of applying robotics in STEM education, 
some of them also reported the ineffectiveness or nega-
tive effects of using robotics in assisting STEM educa-
tion (e.g., Berland & Wilensky, 2015; Keren & Fridin, 
2014). Therefore, to guide the research and practice of 
robot-assisted STEM education, it is essential to further 
examine and verify the effects of educational robotics in 
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STEM education. More importantly, since the complex-
ity of robot-assisted STEM education (Xu & Ouyang, 
2022b), except the technological element of educational 
robotics, other elements might also influence the effects 
of using educational robotics in STEM education, such 
as human subject (e.g., instructors, students), informa-
tion (e.g., discipline knowledge), medium (e.g., interac-
tive types), and external environment (e.g., intervention 
durations). To achieve a high-quality STEM education, 
the application of educational robotics should also take 
careful consideration of these complex factors (Byrne 
& Callaghan, 2014; Ouyang & Jiao, 2021). Meta-anal-
ysis approaches have been conducted to examine the 
effects of educational robotics on STEM education (e.g., 
Batdi et al., 2019; Kazu & Kurtoglu, 2021; Mustafa et al., 
2016). For example, Sapounidis et  al. (2023) conducted 
a systematic review and meta-analysis to investigate the 
application effects of educational robotics in STEM edu-
cation in primary school. However, existing review and 
meta-analysis works about robot-assisted STEM educa-
tion (e.g., Atman Uslu et al., 2022; Sapounidis et al., 2023; 
Zhong & Xia, 2020) mainly focused on the application 
of educational robotics in one of the disciplines (e.g., 
mathematics, physics) or educational levels (e.g., pri-
mary school). Moreover, these studies did not holistically 
examine the moderator variables that might influence 
the effects of educational robotics on STEM education. 
To fill these gaps, the current research conducted a mul-
tilevel meta-analysis to holistically investigate the field of 
robot-assisted STEM education. Specifically, we aimed 
to evaluate the effects of educational robotic applications 
in STEM education, including how educational robot-
ics impact on students’ learning performances, learning 
attitudes, and computational thinking (CT). Further-
more, we holistically explored the moderator variables 
of robot-assisted STEM education (i.e., discipline, edu-
cational level, instructor support, instructional strategy, 
interactive type, intervention duration, robotic type, con-
trol group condition) and examined how these factors 
influenced the effects of using educational robotics in 
STEM education. Based on our findings, educational and 
technological implications were provided to improve the 
research and practice of robot-assisted STEM education.

Literature review
Educational robotics in STEM education
With the rapid development of computer science and 
technologies, robot, which combines the techniques of 
mechanical manufacturing, electronic sensors, and arti-
ficial intelligence, has been applied in different fields to 
help humans reach automatic, efficient, and adaptive life 
(Wang et al., 2018). Educational robotics, as the applica-
tion of robot technique in education, is recognized as an 

innovative learning tool to change learning environment, 
transform instructional and learning processes, and cre-
ate new educational ecology (Atman Uslu et  al., 2022; 
Evripidou et al., 2020; Yueh & Chiang, 2020). Compared 
to other learning tools and techniques (e.g., animated 
characters, virtual agents), educational robotic is usually 
designed as entity of animal, vehicle, human, or in dif-
ferent shapes and sizes, which can directly interact with 
students and enrich their learning experience (Atman 
Uslu et al., 2022; Mubin et al., 2013). In the last decade, 
educational robotics have been widely used in different 
learning contexts, such as language education (Van den 
Berghe et al., 2019), special education (Tlili et al., 2020) 
and STEM education (Sophokleous et  al., 2021), with a 
goal to enhance educational quality.

STEM education requires students to master multidis-
ciplinary knowledge (e.g., science, technology, engineer-
ing, mathematics) and solve open-ended, ill-structured 
problems in the real world. Traditional instructor-
directed strategies might fail to help students achieve 
a high quality of learning effects in STEM education 
because it mainly highlights the efficiency of knowledge 
conveying and memorizing rather than students’ under-
standings (Sapounidis & Alimisis, 2020; Xu & Ouyang, 
2022b). For example, under traditional lecturing modes, 
students might have difficulty in understanding the 
complex STEM concepts and have few opportunities to 
develop higher-order thinking (e.g., problem-solving abil-
ity, creativity, CT) (Bers, 2021). Hence, the robot-assisted 
STEM education, as an integrated field of educational 
robotics and STEM education, highlights the utilization 
of educational robotics to empower the instructional and 
learning process of STEM education. The emergence of 
educational robotics can offer opportunities for students 
to manipulate objects, understand relevant theories and 
concepts, and solve problems during the learning pro-
cesses (Atman Uslu et  al., 2022; Evripidou et  al., 2020). 
Therefore, educational robotics are usually used in STEM 
education to introduce students to complex knowledge 
and concepts (Okita, 2014), promote their motivation 
and engagement (Chin et al., 2014; Kim et al., 2015), and 
cultivate their cognitive thinking and abilities (Chalmers, 
2018).

The effects of educational robotics on STEM education
As an emerging technology, the positive effects of edu-
cational robotics have been verified in the field of STEM 
education (Anwar et al., 2019; Atman Uslu et al., 2022). 
First, increasing evidence showed that educational robot-
ics had positive effects on improving students’ learning 
performances in STEM education. Rather than gain-
ing knowledge from instructors passively, students can 
understand the complex concepts in STEM-related 
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disciplines through learning with educational robot-
ics (Ferrarelli & Iocchi, 2021; Mohamed et  al., 2021). 
For example, Ferrarelli and Iocchi (2021) found that the 
application of computer programming robotics signifi-
cantly improved high school students’ understandings 
of the physical principles. Mohamed et al. (2021) used a 
kind of educational robotics, namely Kodockly, to teach 
programming and found it had positive impact on the 
programming performances of young children aged from 
6 to 11. Second, previous research found that educational 
robotics had potential to promote students’ learning atti-
tudes of STEM education (Gomoll et al., 2016; Jaipal-Jam-
ani & Angeli, 2017). Learning attitude refers to students’ 
attitudes to learning as well as their perceptions, beliefs, 
and interests during STEM learning. As physical entity, 
educational robotics in STEM education can serve as a 
role of a learning companion, to motivate students’ learn-
ing interest (Anwar et al., 2019; Mitnik et al., 2009). For 
example, Leonard et al. (2016) found that fifth- through 
eighth-grade students’ self-efficacy and STEM attitudes 
enhanced when learning in the combined environment of 
educational robotics and gamification. Merino-Armero 
et al. (2018) found that third-grade students who learned 
with robotics showed higher level motivation than those 
who learned through pencil-and-paper. Third, previ-
ous studies have claimed that educational robotics con-
tributed to the development of students’ computational 
thinking in STEM education (Chen et  al., 2017; Eguchi, 
2014; Sarıtepeci & Durak, 2017). Computational thinking 
(CT) refers to the cognitive ability to solve problems in 
the most efficient and effective ways through organizing 
and analyzing data logically (Relkin et al., 2021; Xu et al., 
2022). Since robot-assisted activities in STEM education 
can provide suitable contexts for problem-solving for 
students, it can promote the development of students’ 
higher-order thinking, especially CT (Gomoll et  al., 
2017). For example, Ioannou and Makridou (2018) found 
that robot-based instruction facilitated eighth-grade stu-
dents’ development of algorithmic thinking as well as 
computational thinking.

Despite multiple studies revealing that the usage of 
educational robotics had positive effects on STEM edu-
cation, the applications of educational robotics in STEM 
education also existed some challenges. Educational 
robotics sometimes may distract students from STEM 
learning, increase their cognitive loads, and had nega-
tive learning effects (Berland & Wilensky, 2015; Keren & 
Fridin, 2014). For example, Berland and Wilensky (2015) 
found that eighth-grade students in course supported 
with physical robotics gained lower programming skills 
and CT scores rather than those students who worked in 
courses supported with virtual agents. Keren and Fridin 
(2014) also highlighted that it was difficult for robotics 

to play active roles in mathematics education without 
instructor’s assistance and guidance. Therefore, since the 
complicated effects of educational robotics, it is essential 
to further investigate the effects of applying educational 
robotics in STEM education, to better aid the educators, 
researchers and technical developers to integrate the 
robotics techniques and STEM education.

Moderator variables that influence the effects 
of educational robotics
Since the complexity of educational system, multiple 
moderator variables exist when applying educational 
robotics in STEM education context. Specifically, robot-
assisted STEM education can be viewed as a complex 
system that arises from the interactions between tech-
nologies (i.e., educational robotics), human subjects 
(e.g., instructors, students), information (e.g., discipline 
knowledge), mediums (e.g., interactive types), and exter-
nal environment (e.g., intervention durations) (Byrne 
& Callaghan, 2014; Xu & Ouyang, 2022a). Except the 
technology element of educational robotics, the multiple 
and complex factors in STEM education (e.g., instructor, 
student, medium, information, environment) also play 
integral roles in robot-assisted STEM education (Byrne 
& Callaghan, 2014; Xu & Ouyang, 2022b). Therefore, to 
deeply understand the effects of educational robotics on 
STEM education, the holistic principle needs to be taken 
into considerations to identify the potential modera-
tor variables, as well as their influences upon the robot-
assisted STEM education.

Recently, researchers have started to consider the 
potential factors and elements that might influence 
the effects of educational robotics on STEM education 
(e.g., Sapounidis & Alimisis, 2020; Woo et  al., 2021). 
For example, Sapounidis and Alimisis (2020) high-
lighted some important educational considerations that 
might influence the application effects, such as the role 
of age, student collaboration, and teacher instruction. 
Woo et  al. (2021) also proposed some technical and 
procedural problems that might affect the implementa-
tion of educational robotics in classroom, including the 
length of deployment, the autonomy of robotic action, 
and the interactive type. However, these existing works 
mainly discussed the potential factors that might influ-
ence robot-assisted STEM education from the theoreti-
cal level, without enough empirical evidence to reveal 
the specific effects of these moderator variables. Hence, 
how these complicated moderator variables influence the 
application of educational robotics in STEM education 
is still unknown. Therefore, it is important to holistically 
explore the possible moderator variables that influenced 
the effect of robot-assisted STEM education.
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Previous and current research
In recent years, various reviews and meta-analyses have 
been conducted to explore the application of robotics 
in the field of education. For example, Atman Uslu et al. 
(2019) conducted a systematic review to examine the 
application of educational robotics. The results clarified 
that educational robotics had potentials to promote stu-
dents’ higher-order thinking skills, social skills, learning 
performances, and affective characteristics. Wang et  al. 
(2023) conducted a meta-analysis and revealed a mod-
erate and positive effect (g = 0.57) of educational robot-
ics on students’ learning outcomes. Talan (2021) used 
a meta-analysis approach to investigate the effects of 
educational robotic applications on students’ academic 
achievement. However, the results showed that the effect 
size was at a low level (g = 0.385).

Furthermore, some reviews and meta-analyses started 
to focus on the applications of educational robotics 
in specific STEM education contexts. Specifically, we 
located three prior studies that focused on robot-assisted 
STEM education, including two systematic reviews 
(Karim et  al., 2015; Zhong & Xia, 2020) and one meta-
analysis (Sapounidis et  al., 2023). Karim et  al. (2015) 
reviewed the research of robot-based mathematics and 
physics learning and found that educational robotics con-
tributed to reshape K-12 STEM education. Zhong and 
Xia (2020) revealed that educational robotics generally 
played active roles in mathematics education in a system-
atic review. Additionally, Sapounidis et  al. (2023) used 
systematic review and meta-analysis methods to inves-
tigate the integration of educational robotics and STEM 
education in primary school. The findings showed that 
educational robotics have positive effects on students’ 
knowledge (g = 0.528), skills (g = 0.600), and attitudes 
(g = 0.287). However, this research had a limitation that it 
only examined the effect sizes of using educational robot-
ics on primary school students’ STEM learning and did 
not examine the influences of possible moderator vari-
ables in robot-assisted STEM education.

Overall, existing literature reviews and meta-analyses 
about educational robotics in STEM education mainly 
focused on one of the disciplines (e.g., mathematics, 
physics) or educational levels (e.g., primary school). In 
addition, although previous results preliminary revealed 
the positive effects of educational robotics, the effect 
sizes varied (e.g., minor effect size, moderate effect size). 
Moreover, previous meta-analyses did not holistically 
examine the moderator variables that might influence 
the effects of educational robotics on STEM education. 
Therefore, although prior research contributed to the 
understanding of educational robotics, there is still a lack 
of meta-analysis to examine the effects of educational 
robotics in STEM education context holistically.

To fill these gaps, the main purpose of this research 
is to examine the effects of educational robotics in the 
STEM education context, in order to guide educators, 
instructors, researchers, and technical developers for 
future practice and research in robot-assisted STEM 
education. Specifically, we conducted a multilevel meta-
analysis to gain a comprehensive understanding of the 
application effect of educational robotics in STEM edu-
cation as well as the moderator variables that might influ-
ence the application effects. Specifically, three research 
questions (RQs) were proposed:

RQ1: What is the overall effect size of using educa-
tional robotics in STEM education?
RQ2: What are the average effect sizes of educa-
tional robotics on students’ learning performance, 
learning attitudes and computational thinking (CT) 
in STEM education?
RQ3: What are the moderator variables of robot-
assisted STEM education and how these variables 
influence the effects of using robotics in STEM edu-
cation?

Methods
In order to explore the application effects of educational 
robotics in STEM education, we conducted a meta-anal-
ysis from 2010 to 2022, following the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) principles (Moher et al., 2009).

Study searching and screening
Searching strategy
To locate the empirical studies of robot-assisted STEM 
education, several major publisher databases were 
selected: Web of Science, Taylor & Francis, Scopus, 
IEEE, Wiley, and ACM (Guan et  al., 2020). Filters were 
used to the empirical research and peer-reviewed articles 
in the field of education and educational research from 
January 2010 to December 2022. Additionally, snowball-
ing approach, was also utilized (Wohlin, 2014) to find 
the articles that were not extracted in database search 
through citation checking. At the stage of snowballing, 
Google Scholar was used to manually searching specific 
articles based on their titles.

Identification of search keywords
The searching strategies were prosed according to the 
specific requirements of bibliographic databases. To 
locate the research that applied educational robotics in 
STEM education, three types of keywords were used as 
the search terms of article titles in each database, includ-
ing keywords related to robotics, STEM disciplines, 
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and educational context. Specifically, the following 
search keywords were used: (“robot*”) AND (“STEM” 
OR “technology” OR “math*” OR “science” OR “phys-
ics” OR “engineering” OR “chemistry” OR “biology” OR 
“programming” OR “geography”) AND (“learning” OR 
“education” OR “teaching” OR “class” OR “course” OR 
“school” OR “student” OR “grade”).

Eligibility criteria
The eligibility criteria were proposed to screen the 
empirical studies that focused on the applications of 
educational robotics in STEM education. Based on the 
research objectives and questions of the current meta-
analysis, the following inclusion criteria were adopted: 
(1) the research should be in the field of STEM education 
with the support of educational robotics; (2) the research 
should be an experimental or quasi-experimental design 
with experimental and control groups; (3) the research 
should report outcomes related to STEM learning (i.e., 
learning performance, learning attitude, CT); (4) the 

research should report sufficient data for effect-size cal-
culations (e.g., sample sizes, means, standard deviations, 
or t, F values); (5) the research should ensure homoge-
neity between experimental and control groups through 
either the pretests or the randomized controlled trials; 
(6) the research should be published in English; (7) the 
research should be full-text available.

Searching and screening procedure
The screening process involved the following procedures: 
(1) removing the duplicates; (2) screening the articles 
through titles and abstracts based on the eligibility crite-
ria; (3) reading the full texts to further screen the articles 
based on the eligibility criteria; (4) utilizing the snow-
balling to further locate the articles; and (5) including 
the final filtered articles in meta-analysis. In addition, all 
articles were stored and screened through the Mendeley 
software (see Fig. 1).

Specifically, a total of 758 studies were located as the 
result of the first round of database searching (n = 741) 

Fig. 1 The selection flowchart used based on PRISMA (Moher et al., 2009)
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and subsequent snowballing through Google Scholar 
(n = 17). There was a total of 563 studies after the dupli-
cates were removed. Then, through reviewing the 
research titles and abstracts, 483 studies were removed 
based on the eligibility criteria. The selected studies were 
examined by the first author to determine whether they 
were suitable for the purpose of this systematic review. 
Another researcher was invited to independently review 
approximately 30% of the articles to confirm the reliabil-
ity and an inter-rater agreement of 93% was achieved. 
After that, the full text of articles was reviewed by the 
first author to verify if the studies met all the criteria for 
inclusion in this meta-analysis. Finally, a total of 21 stud-
ies were included for the meta-analysis (see Fig. 1).

Data extraction and coding
To address the research questions, a coding scheme was 
proposed to search for and identify comparable features 
and moderator variables of robot-assisted STEM educa-
tion among the included studies. First, we coded the basic 
information of each study, including the article’s title, 
the author names, and the publication year. Second, we 
coded the main content of each study, including the sam-
ple sizes, outcome variables (i.e., learning performance, 
learning attitude and CT) and moderator variables that 
might influence the effects of robot-assisted STEM edu-
cation. Specifically, the outcome variable of learning per-
formance included students’ academic achievements, 
learning task performance, conceptual knowledge gains 
in STEM learning. The outcome variable of learning atti-
tude included students’ learning motivation, interest, and 
perception in STEM learning.

Eight types of moderator variables were coded accord-
ing to previous research (Byrne & Callaghan, 2014; Lee 
& Lee, 2022; Zhang et  al., 2021): (1) discipline (i.e., sci-
ence, technology, engineering, mathematics, cross-
disciplinary); (2) educational level (i.e., kindergarten, 
primary school, middle school, high school, higher 
education); (3) instructor support (i.e., support, no sup-
port); (4) instructional strategy (i.e., problem-based 
learning, project-based learning, game-based learn-
ing, lecturing); (5) interactive type (i.e., one-to-one, in 
groups); (6) intervention duration (i.e., ≤ 1  day, > 1  day 
and ≤ 1  month, > 1  month); (7) robotic type (i.e., pro-
gramming robot, social robot); and (8) control group 
condition (i.e., traditional instruction, other technology).

Two raters completed the coding procedure of the 21 
included articles. First, 50% of articles were coded by two 
coders independently to calculate coding reliability. The 
Krippendorff’s (2004) alpha reliability of all the coding 
results was 0.84 among two raters at this phase. Second, 
after the reliability was ensured, the other articles were 

coded independently by two raters. Two raters discussed 
together to reach a consensus when there were conflict-
ing coding results.

Statistical analysis approaches
Effect size calculation
In meta-analysis, Cohen’s d is usually used to calculate 
the effect sizes (Cohen, 1988). However, Cohen’s d may 
result in bias and overestimates the effect sizes in small-
scale studies (Hedges, 1981). To compensate for the vul-
nerability of Cohen’s d, Hedges’ g (also known as Cohen’s 
unbiased d) is used to calculate effect sizes in meta-anal-
ysis with respect to small sample sizes, such as sample 
sizes that are smaller than 50 (Hedges & Olkin, 1985). 
Therefore, Hedges’  g was selected to measure the mean 
weighted effect sizes in this study (see Eq. 1). The quan-
tifiable results of all the effect sizes were calculated and 
converted into the scale-free effect sizes. The 95% con-
fidence interval (CI) for Hedges’ g was used to examine 
the significant differences. According to Cohen’s criterion 
of Hedges’ g, 0.2 indicates a minor effect, 0.5 indicates a 
moderate effect, and 0.8 indicates a large effect (Cohen, 
1988). The Comprehensive Meta-Analysis (CMA) soft-
ware (Borenstein et  al., 2013) was used to calculate the 
individual effect sizes of the included studies.

where J = 1 − 3 / (4 df − 1), df = nExp + nControl− 2.

Multilevel meta‑analysis
After calculating the individual effect size, this study 
examined the average effect sizes of educational robotics 
on students’ learning performance, learning attitude and 
CT in STEM education. Moreover, the overall effect size 
of all the outcome variables was also calculated. Seven 
studies in our dataset reported more than one outcome 
variable or one sample size (i.e., Berland & Wilensky, 
2015; Brown & Howard, 2014; Kurniawan et  al., 2018; 
Mohamed et  al., 2021; Nugent et  al., 2014; Rodríguez 
Corral et al., 2016; Sáez-López et al., 2019). We decided 
to calculate them as different effect sizes separately. 
Therefore, we detected 30 effect sizes from 21 studies.

Due to the nested structure of the data in the meta-
analysis, we applied a multilevel meta-analysis approach 
to deal with the dependency of effect sizes (Houben et al., 
2015; Spruit et  al., 2020). Compared to the traditional 
meta-analysis model, the multilevel meta-analysis model 
is developed to handle the hierarchical structure of data 
and avoid “double-counting” studies in the meta-analy-
sis (Van den Noortgate et  al., 2013). This approach can 
adjust the variance within each study according to the 

(1)Hedges′s g = J ∗ MExp−MControl/SDPooled ,
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number of reported effect sizes, while maintaining the 
separation between moderators.

Specifically, a three-level meta-analysis model was used 
to calculate the average effects sizes of educational robot-
ics on students’ STEM learning (Cheung, 2014). In the 
three-level meta-analysis model, the sampling variance 
for the observed effect sizes was set as Level 1, the vari-
ance between effect sizes within the same study was set 
as Level 2, and the variance between the studies was set 
as Level 3. The method of restricted maximum likelihood 
(REML) was used to estimate the variances in the model 
(Hox, 2010). Moreover, a log-likelihood-ratio test was 
conducted to compare the deviance of the full model to 
the deviance of the models excluding one of the variance 
parameters, which helped us determine whether signifi-
cant variance exists at Level 2 and 3 (Assink & Wibbe-
link, 2016). R package metafor was used to conduct the 
multilevel meta-analysis (Viechtbauer & Viechtbauer, 
2015).

To further detect associations between different mod-
erator variables and effect sizes, the moderator analysis 
was further performed (Bloch, 2014). All the moderator 
variables were categorical moderators in this meta-anal-
ysis. Multivariate models were used to conduct the mod-
erator analysis, where all the subgroups of moderator 
variables were inputted to examine the moderate effects 
on robot-assisted STEM education (Spruit et  al., 2016). 
Moderator analysis was only performed in case each cat-
egory of the potential moderator variables was filled with 
at least three effect sizes (Spruit et al., 2016, 2020). There-
fore, the moderator variable categories without enough 
effect sizes were not included in the moderator analysis 
(i.e., engineering in discipline, kindergarten in educa-
tional level). Furthermore, omnibus tests were used to 
test the statistical significance of moderator effects. Fur-
thermore, separate effect sizes were conducted for each 
subgroup as ad hoc analyses for understanding the influ-
ence of each moderator variable.

Publication bias
Since studies with positive findings were more likely to be 
published, we checked if there was any publication bias 
in this meta-analysis (Franco et  al., 2014; Thornton & 
Lee, 2000). Funnel plot, Egger’s test (Bowden et al., 2015) 
and Rosenthal’s Fail-safe N test (Orwin, 1983) were used 
together to detect publication bias. First, the funnel plot 
is a qualitative and visual method to evaluate the possi-
ble publication bias. If the amount of effect of each study 
does not distribute in the funnel plot symmetrically, it 
indicates the publication bias might exist (Moher et  al., 
2009). Second, the Egger’s test is a statistical method used 
to plot the effect size estimates against their standard 
errors (Bowden et al., 2015). Third, Fail-safe N estimates 

the number of unpublished studies as 5  k + 10 (k is the 
number of effect sizes retrieved) and the greater the Fail-
safe N value is, the smaller the publication bias is (Rosen-
berg, 2007).

Results
The overall effect size of using educational robotics 
on STEM learning
The meta-analysis consisted of 21 robot-assisted STEM 
education studies with 30 effect sizes, which included a 
total of 2433 participants. The Hedges’  g of each effect 
size was calculated (see Table  1). Furthermore, a three-
level meta-analysis model was used to calculate the over-
all effect size of educational robotics on STEM learning 
(see Table  2). The results of multilevel meta-analysis 
showed a mean effect size of 0.488 (SE = 0.19; p < 0.05; 
95% CI was 0.094–0.882). The results showed that edu-
cational robotics had significantly positive and moderate 
effects on STEM education, compared to the instructions 
without the application of educational robotics.

In the three-level meta-analysis model, the result of 
the Cochran’s Q value was 92.839 (p < 0.001) and the  I2 
value was 71.13%. The results indicated that there was a 
high heterogeneity among the included studies (Higgins 
et al., 2003; Sedgwick, 2015). Specifically, the  I2 of Level 2 
was 37.52%, the  I2 of Level 3 was 33.61%, which revealed 
that there was a significant variation of effect sizes within 
unique studies (Level 2) and between unique studies 
(Level 3). Therefore, the use of multilevel meta-analysis 
was necessary in this research. In addition, the likelihood 
ratio test comparing models with and without between-
study variance showed that the significant variance was 
presented at the between-study level (σ2 Level 3 = 0.31, 
SE = 0.55, p < 0.001). The variance between the effect 
sizes within studies was also significant (σ2 Level 2 = 0.34, 
SE = 0.58, p < 0.001).

The average effect sizes of using robotics on students’ 
learning performances, learning attitudes and CT
To further explore the effects of educational robotics on 
varied learning aspects, this research examined the aver-
age effect sizes of specific outcome variables, including 
students’ learning performances, learning attitudes (i.e., 
learning perception and learning interest), and CT skills. 
First, 14 effect sizes from 12 included studies (N = 1082) 
reported students’ learning performances in the robot-
assisted STEM education. The multilevel modeling analy-
sis found a mean effect size of 0.665 (SE = 0.18; p < 0.01; 
95% CI was 0.275–1.054), which indicated that educa-
tional robotics had a moderate-to-large effect on improv-
ing students’ learning performances in STEM education 
(see Table  2). Second, 12 effect sizes from 10 included 
studies (N = 900) reported students’ learning attitudes in 
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Table 1 The outcome variables, measurements, sample sizes, and effect sizes of the included studies

EG: experimental group, CG: control group; *p < 0.05, **p < 0.01

Study Outcome variable Measurement Sample size Hedges’ g

EG CG

Berland and Wilensky (2015) [1] CT Computational thinking test score 34 44 − 3.463**

Berland and Wilensky (2015) [2] Learning performance Conceptual knowledge test score 34 44 − 0.422

Brown and Howard (2014) [1] Learning performance Learning test completion time 12 12 1.050*

Brown and Howard (2014) [2] Learning performance Learning test completion time 10 10 0.365

Brown and Howard (2014) [3] Learning attitude Learning attitude questionnaire 12 12 − 0.534

Brown and Howard (2014) [4] Learning attitude Learning attitude questionnaire 10 10 1.082*

Constantinou and Ioannou (2018) CT Computational thinking test score 16 16 1.214**

Ferrarelli and Iocchi (2021) Learning performance Conceptual knowledge test score 29 32 1.193**

Ioannou and Angeli (2016) CT Computational thinking test score 127 113 0.401**

Julià and Antolí, (2016) Learning performance Learning task test score 9 12 0.110

Kim and Lee, (2016) Learning attitude Learning attitude questionnaire 26 14 0.984**

Kurniawan et al., (2018) [1] Learning performance Conceptual knowledge test score 25 23 0.344

Kurniawan et al., (2018) [2] Learning attitude Learning interest questionnaire 25 23 1.766**

La Paglia et al., (2017) Learning attitude Learning attitude questionnaire 30 30 0.276

Leonard et al., (2016) Learning attitude Learning attitude questionnaire 20 29 0.657*

Merino-Armero et al., (2018) Learning attitude Learning motivation questionnaire 27 26 0.505

Mohamed et al., (2021) [1] Learning performance Learning gain test score 12 10 1.480**

Mohamed et al., (2021) [2] Learning performance Learning gain test score 8 8 1.200*

Nugent et al., (2014) [1] Learning attitude Learning attitude questionnaire 147 141 0.221

Nugent et al., (2014) [2] Learning performance Conceptual knowledge test score 147 141 0.434**

Ortiz et al., (2017) Learning performance Conceptual knowledge test score 33 27 1.627**

Ponce et al., (2022) Learning performance Learning task test score 12 42 0.598

Rodríguez Corral et al., (2016) [1] Learning attitude Learning perception questionnaire 15 15 1.693**

Rodríguez Corral et al., (2016) [2] Learning performance Conceptual knowledge test score 15 15 1.269**

Sáez-López et al., (2019) [1] Learning performance Conceptual knowledge test score 93 36 0.845**

Sáez-López et al., (2019) [2] Learning performance Conceptual knowledge test score 93 36 0.063

Shih et al., (2013) Learning performance Conceptual knowledge test score 53 49 0.275

Verner et al., (2016) Learning attitude Learning attitude questionnaire 71 118 − 1.085**

Welch and Huffman (2011) Learning attitude Learning attitude questionnaire 58 41 0.605**

Yang et al., (2022) CT Computational thinking questionnaire 54 47 0.103

1257 1176

Total: 30 effect sizes (k = 30) N = 2433

Table 2 Mean effect sizes of educational robotics on STEM learning

n: number of studies, k: number of effect sizes, N: number of participants; Level 3: between studies, Level 2: within studies

Effect size n k N g SE 95% CI Variance components

σ2 Level 3 σ2 Level 2

Overall effects combined 21 30 2433 0.488 0.19 [0.094–0.882] 0.31
(0.55)

0.34
(0.58)

Learning performance 12 14 1082 0.665 0.18 [0.275–1.054] 0.05
(0.23)

0.07
(0.26)

Learning attitude 10 12 900 0.497 0.24 [0.023–1.017] 0.00
(0.00)

0.40
(0.63)

CT 4 4 451 0.079 0.10 [− 0.119–0.277] – –
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the robot-assisted STEM education. The multilevel mod-
eling analysis found a mean effect size of 0.497 (SE = 0.24; 
p < 0.05; 95% CI was 0.023–1.017), which indicated that 
educational robotics had a moderate effect on influ-
encing students’ learning attitudes in STEM education 
(see Table 2). Third, 4 effect sizes from 4 included stud-
ies (N = 451) reported students’ CT skills in the robot-
assisted STEM education. Since no hierarchical structure 
of data existed, the random effect model was used to 
calculate the mean effect size. The random effect model 
analysis found a mean effect size of 0.079 (SE = 0.101; 
p = 0.434; 95% CI was −  0.119–0.277), which indicated 
that educational robotics had a minor and insignificant 
effect on students’ CT in STEM education (see Table 2).

Moderator analysis
The moderator variables of 30 effect sizes were coded 
from the 21 included studies (see Table 3). Furthermore, 
the multilevel analyses were conducted to examine the 
moderator effects of educational robotics on students’ 
STEM learning (see Table 4). Specifically, among all the 
moderator variables, discipline was significantly associ-
ated with variability in robot-assisted STEM learning 
effects (F(3, 25) = 3.9205, p < 0.05). However, educational 
level, instructor support, instructional strategy, interac-
tive type, intervention duration, robotic type and control 
group condition were insignificantly associated to the 
students’ learning effects (p > 0.05).

Discipline
Regarding the discipline, most of the studies were con-
ducted in the discipline of technology (k = 10), followed 
by cross-disciplines (i.e., more than one discipline) 
(k = 8), mathematics (k = 6), science (k = 5), and engineer-
ing (k = 1). The category of engineering was not included 
in the moderator analysis, because it included less than 3 
effect sizes. Significant difference was detected between 
the weighted effect sizes of different disciplines (F(3, 
25) = 3.9205, p < 0.05), which indicated that discipline 
significantly moderated the effects of educational robot-
ics on STEM learning. Specifically, technology discipline 
had a large effect on robot-assisted STEM education 
(g = 0.947, p < 0.01), while the cross-disciplinary courses 
had a nearly moderate effect on robot-assisted STEM 
education (g = 0.414, p < 0.05). In addition, small effect 
sizes were found in the mathematics discipline and the 
effect size was not statistically significant (mathemat-
ics: g = 0.376, p = 0.204). In addition, science discipline 
had a negative and insignificant effect size (g = −  0.613, 
p = 0.488). Therefore, the applications of educational 
robotics had larger effect sizes in technology discipline 

and cross-disciplinary, and smaller effect sizes in science 
and mathematics disciplines.

Educational level
Regarding the educational level, most of the studies were 
conducted in primary school (k = 9), followed by middle 
school (k = 8), higher education (k = 8), high school (k = 4) 
and kindergarten (k = 1). The category of kindergarten 
was not included in the moderator analysis, because it 
included less than 3 effect sizes. No significant differ-
ence was detected between the weighted effect sizes of 
different educational levels (F(3, 25) = 2.5690, p > 0.05), 
indicating that the effects of educational robotics on 
STEM education had no difference across educational 
levels. Specifically, the effect size of educational robot-
ics on STEM education was at the large level for stu-
dents in higher education (g = 1.052, p < 0.01) and at the 
moderate level for students in primary school (g = 0.518, 
p < 0.05). In addition, the effect size of high school was at 
the large level without statistical significance (g = 0.824, 
p = 0.061). However, educational robotics had a negative 
and insignificant effect size for students in middle school 
(g = -0.189, p = 0.729).

Instructor support
Regarding the instructor support, among the included 
studies, instructors supported students in robot-assisted 
STEM education in most of the cases (k = 19), and 
they sometimes did not provide support to students 
(k = 11). No significant difference was detected between 
the weighted effect sizes of instructor supports (F(1, 
28) = 0.1951, p > 0.05), which indicated that the effects of 
educational robotics on STEM education had no differ-
ence across instructor supports. Specifically, the effect 
size of educational robotics on STEM education was 
significantly larger in the instructor-supported cases 
(g = 0.546, p < 0.05) than the cases where the instruc-
tors did not provide supports to students (g = 0.312, 
p = 0.351).

Instructional strategy
Regarding the instructional strategy, most of the stud-
ies were conducted through the problem-based learning 
mode (k = 13), followed by the project-based learning 
mode (k = 8), lecturing (k = 6), and game-based learning 
(k = 3). No significant difference was detected between 
the weighted effect sizes of different instructional strat-
egies (F(3, 26) = 0.5636, p > 0.05). This result indicated 
that the effects of educational robotics on STEM edu-
cation had no difference across instructional strategies. 
Specifically, the game-based learning had a significantly 
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Table 3 The moderator variables of the included studies

Discipline: S: science, T: technology, E: engineering, M: mathematics, CD: cross-disciplinary; educational level: K: kindergarten, PS: primary school, MS: middle school, 
HS: high school; HE: higher education; instructor support: S: support, NS: no support; instructional strategy: PbBL: problem-based learning, PjBL: project-based 
learning, GBL: game-based learning, L: lecturing; robotic type: PR: programming robot, SR: social robot; control group condition: TI: traditional instruction, OT: other 
technology; NA: not reported in the study

Study Moderator variables

Discipline Educational 
level

Instructor 
support

Instructional 
strategy

Interactive type Intervention 
duration

Robotic type CG condition

Berland and Wilensky 
(2015) [1]

S MS S PbBL One-to-one > 1 day 
and ≤ 1 month

PR OT

Berland and Wilensky 
(2015) [2]

S MS S PbBL One-to-one > 1 day 
and ≤ 1 month

PR OT

Brown and Howard, 
(2014) [1]

M HE NS L One-to-one ≤ 1 day SR TI

Brown and Howard 
(2014) [2]

M HS NS L One-to-one ≤ 1 day SR TI

Brown and Howard 
(2014) [3]

M HE NS L One-to-one ≤ 1 day SR TI

Brown and Howard 
(2014) [4]

M HS NS L One-to-one ≤ 1 day SR TI

Constantinou 
and Ioannou (2018)

T MS S PbBL In groups > 1 month PR TI

Ferrarelli and Iocchi 
(2021)

S HS S PjBL In groups > 1 month PR TI

Ioannou and Angeli 
(2016)

T MS S PbBL In groups > 1 month PR OT

Julià and Antolí (2016) M PS S PjBL In groups > 1 month PR TI

Kim and Lee (2016) T HE S PbBL In groups > 1 month PR TI

Kurniawan et al., 
(2018) [1]

T HE S PbBL One-to-one > 1 day 
and ≤ 1 month

PR OT

Kurniawan et al., 
(2018) [2]

T HE S PbBL One-to-one > 1 day 
and ≤ 1 month

PR OT

La Paglia et al., (2017) M PS NS PjBL In groups > 1 month PR TI

Leonard et al., (2016) DC MS S GBL One-to-one > 1 month PR OT

Merino-Armero et al., 
(2018)

DC PS S PbBL In groups > 1 day 
and ≤ 1 month

PR TI

Mohamed et al., 
(2021) [1]

T PS NS GBL One-to-one ≤ 1 day PR TI

Mohamed et al., 
(2021) [2]

T PS NS GBL One-to-one ≤ 1 day PR TI

Nugent et al., (2014) 
[1]

DC MS NS PjBL In groups > 1 day 
and ≤ 1 month

PR TI

Nugent et al., (2014) 
[2]

DC MS NS PjBL In groups > 1 day 
and ≤ 1 month

PR TI

Ortiz et al., (2017) E HE S PjBL In groups > 1 month PR TI

Ponce et al., (2022) CD PS S L In groups NA SR TI

Rodríguez Corral et al., 
(2016) [1]

T HE S PbBL One-to-one > 1 month PR TI

Rodríguez Corral et al., 
(2016) [2]

T HE S PbBL One-to-one > 1 month PR TI

Sáez-López et al., 
(2019) [1]

CD PS S PbBL NA > 1 month PR TI

Sáez-López et al., 
(2019) [2]

CD PS S PbBL NA > 1 month PR TI

Shih et al., (2013) CD PS S PjBL In groups > 1 month PR TI

Verner et al., (2016) S MS NS L In groups ≤ 1 day SR TI

Welch and Huffman 
(2011)

S HS NS PjBL In groups > 1 month PR TI

Yang et al., (2022) T K S PbBL In groups > 1 month PR OT
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large-level effect size (g = 1.029, p < 0.001) on robot-
assisted STEM learning. The project-based learning 
had a significantly moderate-level effect size (g = 0.555, 
p < 0.05). However, both the problem-based learning 
and lecturing had insignificant effect sizes (problem-
based learning: g = 0.440, p = 0.277; lecturing: g = 0.025, 
p = 0.964).

Interactive type
Regarding the interactive type, most of the included 
studies reported student’s interactive types with robot-
ics (k = 28). Among the 28 effect sizes, the interactive 
type between students and robotics was one-to-one 
in 13 effect sizes and the interactive type was within 

groups in other 15 effect sizes. No significant differ-
ence was detected between the weighted effect sizes of 
different interactive types (F(1, 26) = 0.0027, p > 0.05), 
which indicated that the effects of educational robotics 
on STEM education had no difference across interac-
tive types. The effect size of robotics on STEM edu-
cation was at the moderate level for students who 
interacted with robotics in groups (g = 0.455, p < 0.05). 
No significant effect size was identified in the one-to-
one interactive type (g = 0.523, p = 0.336).

Intervention duration
Regarding the intervention duration, included stud-
ies were mostly conducted in the duration length of 

Table 4 The overall results of moderator analysis

n: number of studies, k: number of effect sizes, N: number of participants; Level 3: between studies, Level 2: within studies; *p < 0.05, **p < 0.01, ***p < 0.001

Moderator variables n k N g 95% CI p SE F(df1, df2) σ2 Level 3 σ2 Level 2

a. Discipline F(3, 25) = 3.9205* 0.000 0.429

 a1. Science 4 5 427 − 0.613 [− 2.845, 1.618] 0.488 0.804

 a2. Technology 7 10 617 0.947** [0.463, 1.431] 0.002 0.214

 a3. Mathematics 3 6 237 0.376 [− 0.285, 1.038] 0.204 0.257

 a4. Cross-disciplinary 6 8 1092 0.414* [0.032, 0.780] 0.032 0.155

b. Educational level F(3, 25) = 2.5690 0.144 0.378

 b1. Primary school 7 9 586 0.518* [0.108, 0.928] 0.020 0.178

 b2. Middle school 6 8 1164 − 0.189 [− 1.425, 1.048] 0.729 0.523

 b3. High school 3 4 200 0.824 [− 0.070, 1.718] 0.061 0.281

 b4. Higher education 5 8 304 1.052** [0.394, 1.711] 0.007 0.279

c. Instructor support F(1, 28) = 0.1951 0.345 0.336

 c1. Support 15 19 1383 0.546* [0.002, 1.095] 0.049 0.261

 c2. No support 6 11 1050 0.312 [-0.398, 1.022] 0.351 0.319

d. Instructional strategy F(3, 26) = 0.5636 0.000 0.398

 d1. Problem-based learning 9 13 1036 0.440 [− 0.401, 1.280] 0.277 0.386

 d2. Project-based learning 7 8 979 0.555* [0.135, 0.975] 0.017 0.178

 d3. Game-based learning 2 3 87 1.029*** [0.475, 1.583] 0.000 0.080

 d4. Lecturing 3 6 331 0.025 [− 1.344, 1.395] 0.964 0.533

e. Interactive type F(1, 26) = 0.0027 0.376 0.382

 e1. One-to-one 6 13 487 0.523 [− 0.614, 1.661] 0.336 0.522

 e2. In groups 14 15 1688 0.455* [0.071, 0.840] 0.024 0.179

f. Intervention duration F(2, 26) = 1.2442 0.365 0.305

 f1. ≤ 1 day 3 7 314 0.263 [− 1.475, 2.001] 0.724 0.710

 f2. > 1 day and ≤ 1 month 4 7 881 − 0.040 [− 1.733, 1.653] 0.955 0.692

 f3. > 1 month 13 15 205 0.672*** [0.376, 0.967] 0.000 0.138

g. Robotic type F(1, 28) = 0.9438 0.337 0.311

 g1. Programming robot 18 24 2102 0.569* [0.135, 1.004] 0.013 0.210

 g2. Social robot 3 6 331 0.025 [− 1.344, 1.395] 0.964 0.533

h. Control group condition F(1, 28) = 2.2099 0.240 0.373

 h1. Traditional instruction 16 23 1466 0.614** [0.252, 0.976] 0.002 0.175

 h2. Other technology 5 7 642 − 0.026 [− 1.588, 1.537] 0.970 0.639
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“> 1  month” (k = 15), followed by “≤ 1  day” (k = 7), and 
“> 1 day and ≤ 1 month” (k = 7). No significant difference 
was detected between the weighted effect sizes of differ-
ent intervention durations (F(2, 26) = 1.2442, p > 0.05), 
which indicated that the effects of educational robot-
ics on STEM education had no difference across inter-
vention durations. Specifically, the duration length of 
“> 1  month” (g = 0.672, p < 0.001) had the largest effect 
size on robot-assisted STEM learning. No significant 
effect sizes were identified in the duration length of 
“≤ 1 day” (g = 0.263, p = 724), and “> 1 day and ≤ 1 month” 
(g = − 0.040, p = 0.955).

Robotic type
Regarding the robotic type, programming robots (i.e., 
robotics that specifically designed as learning tools for 
students to design and operate them with program-
ming languages) were mostly used in the include studies 
(k = 24), while social robots were rarely used (k = 6). No 
significant difference was detected between the weighted 
effect sizes of different robotic types (F(1, 28) = 0.9438, 
p > 0.05), which indicated that the effects of educational 
robotics on STEM education had no difference across 
robotic types. Specifically, the effect size of programming 
robot on STEM education was identified at the moder-
ate level (g = 0.569, p < 0.05), while the effect size of social 
robot was small and insignificant (g = 0.025, p = 0.964).

Control group condition
Regarding the control group condition, the control group 
condition was reported as the traditional instruction 
without educational robotics in 23 effect sizes. The other 
7 effect sizes reported that they used other technologies 
(e.g., virtual agent) in control groups. No significant dif-
ference was detected between the weighted effect sizes 
of different control group conditions (F(1, 28) = 2.2099, 
p > 0.05). This result indicated that the effects of educa-
tional robotics on STEM education had no difference 
across control group conditions. Specifically, the effect 
size of educational robotics on STEM education was 
at the moderate level when the control group condi-
tion was the traditional instruction (g = 0.614, p < 0.01). 
The effect size was negative and insignificant when the 
control group condition was set as other technologies 
(g = − 0.026, p = 0.970).

Publication bias
To check for the publication bias, a funnel plot was firstly 
used to visually present the distribution of effect sizes in 
this meta-analysis. In the funnel plot, the distribution 
of the effect sizes was not in a perfectly symmetric pat-
tern around the summary effect, which indicated that the 

publication bias may exist. Therefore, the quantitative 
statistical approaches (i.e., Egger’s test, fail-safe N) were 
further used to test the possible publication bias. First, a 
non-significant p-value (p = 0.0964) was examined in the 
Egger’s test for a regression intercept, which indicated 
there was no evidence of publication bias in this meta-
analysis. Second, the fail-safe N = 530 (k = 30), suggested 
that 530 studies should be added to the meta-analysis 
before the cumulative size effect would become statisti-
cally insignificant. Overall, the results implied that pub-
lication bias to some extent existed in our data, but there 
was no indication of a strong bias.

Discussion and implications
Addressing the research questions
Although educational robotics have attracted wide atten-
tion recently, there is a lack of literature review work to 
holistically examine the effects of robot-assisted STEM 
education. To gain a comprehensive understanding of the 
integration of educational robotics and STEM education, 
this research conducted a multilevel meta-analysis to 
examine the application effects of educational robotics in 
STEM education as well as the influence of relevant mod-
erator variables. Specifically, to address the first research 
question, we included 21 robot-assisted STEM educa-
tion studies with 30 effect sizes to examine the overall 
effect size of educational robotics on STEM education 
through a multilevel approach. A moderate-level and 
positive effect (g = 0.488) of educational robotics on stu-
dents’ STEM learning was shown in the current research. 
Furthermore, to address the second research question, 
we also examined the effects of educational robotics on 
students’ learning performance, learning attitude and 
computational thinking in STEM education. Specifically, 
educational robotics both had moderate impacts on stu-
dents’ learning performances (g = 0.665) and learning 
attitudes (g = 0.497) in STEM education. In addition, this 
meta-analysis found that the robot-assisted STEM edu-
cation could not significantly improve students’ CT.

To address the third research question, we fur-
ther used multilevel analyses to explore the potential 
moderator variables (i.e., discipline, educational level, 
instructor support, instructional strategy, interac-
tive type, intervention duration, robotic type, control 
group condition) in the robot-assisted STEM educa-
tion as well as their moderator effects. Among all the 
moderator variables, only discipline was found to be 
significantly associated with robot-assisted STEM 
learning effects. Specifically, the applications of edu-
cational robotics were more effective in technology 
discipline and cross-disciplinary, and less effective in 
science and mathematics disciplines. Furthermore, 
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first, we found that the educational level of higher 
education was more suitable to apply educational 
robotic techniques than other educational levels. Sec-
ond, robot-assisted STEM education had more posi-
tive effects when instructors provided supports to 
students, compared to the absence of instructors. 
Third, educational robotics had relatively greater 
effects on STEM learning when combining with game-
based learning and project-based learning than other 
instructional strategies. Fourth, students’ group-level 
interaction resulted in better learning outcomes than 
one-to-one interaction when applying educational 
robotics in STEM education. Fifth, among all the inter-
vention durations (i.e., from ≤ 1 day to ≥ 1 month), the 
best intervention duration for robot-assisted STEM 
education was more than one month. Sixth, the results 
found that the use of programming robotics had more 
positive effects than social robotics in STEM educa-
tion. Finally, compared to using other technologies, 
the effect size of using educational robotics in STEM 
learning was larger when the control group condition 
was set as the traditional instruction without techno-
logical supports.

Consistent with the findings of previous meta-anal-
yses (e.g., Sapounidis et  al., 2023; Wang et  al., 2023), 
the current research also revealed the positive applica-
tion effects of educational robotics. However, the over-
all effect size of educational robotics in this research is 
at a moderate level (g = 0.488), which is different when 
comparing to prior studies. The different scopes of 
previous meta-analyses might cause this discrepancy. 
For example, Wang et  al. (2023) mainly focused on 
the effects of educational robotics in the whole edu-
cational context rather than specific STEM education 
context (g = 0.57), while Sapounidis et al. (2023) merely 
focused on the effects of educational robotics on pri-
mary school students’ STEM learning (g = 0.428). 
In addition, from an analytical perspective, the cur-
rent study used a multilevel meta-analysis approach 
to calculate the combined effect sizes and conduct 
the moderator analysis. Hence, compared to previous 
meta-analyses that mainly used traditional approaches 
(e.g., fixed effect model, random effect model), the 
analytical procedure in this study might better deal 
with the hierarchical structure of data and avoid 
“double-counting” studies (Van Den Noortgate et  al., 
2013). To sum up, the current research used a multi-
level meta-analysis approach to expand the findings of 
previous meta-analyses in the field of robot-assisted 
STEM education (e.g., Sapounidis et  al., 2023; Talan, 
2021; Wang et  al., 2023), which guided the following 
educational and technological implications.

Educational implications
From an educational perspective, the emergence of edu-
cational robotics might influence other educational ele-
ments (e.g., instructor, student) in STEM education, to 
finally affect the instructional and learning process and 
performance. First, regarding the effects of educational 
robotics, our findings showed that students benefited 
from robot-assisted STEM education, which mainly pro-
moted their learning performances and attitudes. Con-
firming previous studies’ findings (e.g., Atman Uslu et al., 
2022; Karim et al., 2015; Zhong & Xia, 2020), we yielded 
reliable and accurate inferences to indicate that educa-
tional robotics had great potential to reshape STEM edu-
cation. However, inconsistent with previous research that 
highlighted the role of educational robotic in promot-
ing students’ CT (Sapounidis et  al., 2023; Zhang et  al., 
2021), we found the insignificant effects of educational 
robotics on students’ CT. Since there are few empirical 
studies investigating the effects of educational robot-
ics on students’ CT during STEM learning, the current 
meta-analysis only included 4 related research to calcu-
late the average effect size. Therefore, future research is 
supposed to further examine how educational robotics 
influence students’ CT in STEM education. In addition, 
CT is a higher-order thinking associated with problem-
solving ability, logical skill and creativity (Li et al., 2020; 
Wing, 2006), which may cannot be enhanced merely 
through using educational robotics. Hence, the robot-
assisted STEM education is supposed to be combined 
with ill-structured problems and tasks, to allow students 
to solve problems and develop CT during the learning 
processes (Wang et  al., 2022; Xu et  al., 2022). Support-
ing this viewpoint, we found that project-based learning 
and game-based learning had more positive effects on 
robot-assisted STEM education than traditional lecturing 
mode. Therefore, when educational robotics are applied 
in STEM education, the instructional process should also 
shift from the instructor-directed to student-centered 
learning (Xu & Ouyang, 2022b). Instead of directly con-
veying knowledge, instructors should utilize educational 
robotics to facilitate students’ learning experience and 
work as facilitators to provide guidance and support stu-
dents. Furthermore, although previous research claimed 
that robotics could free human beings from redundant 
work or even replace them in the field of education 
(DeCanio, 2016), our findings indicated that instructor’s 
involvement was important and irreplaceable in robot-
assisted STEM education. In addition, the findings of 
our moderator analysis showed a more positive result 
for technology discipline than other disciplines. Hence, 
when applying educational robotics in STEM education 
contexts, educators and instructors should pay attention 
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to the connection between robotic curriculum and spe-
cific STEM disciplines, such as science, mathematics, and 
engineering (Zhang et  al., 2021). For example, in a sci-
ence course, learning activities may focus on using robot-
ics to explore scientific concepts, such as the principles 
of motion and energy. In a mathematics course, program-
ming robotics can be operated to solve mathematical 
problems, such as measuring angles or calculating dis-
tances. Overall, although educational robotics can bring 
opportunities to promote the quality of STEM education 
(Chalmers, 2018; Chin et al., 2014; Okita, 2014), we can-
not overstate the role of technology and overlook the role 
of pedagogy (Selwyn, 2016). Pedagogy should remain the 
foundation of STEM education, while the emerging tech-
nologies, such as educational robotics, are supposed to 
act as supplements to enhance students’ learning expe-
rience (Friedman & Deek, 2003). Therefore, to reach the 
goal of high-quality STEM learning, future robot-assisted 
STEM education should also focus on instructor involve-
ment and pedagogical design to create student-centered 
learning experience.

Technological implications
From a technological perspective, since educational 
robotic is an emerging technique in STEM education, 
future development requires a better fit between robotic 
technologies and STEM education contexts. First, com-
pared to computer programming robot, social robot was 
less applied in STEM education context, and had lower-
level impact on students’ STEM learning. To explain this 
finding, programming robots mainly focus on the pro-
gramming training and operation (Calinon, 2009), while 
social robots are usually designed to convey knowledge 
or answer students’ questions, and more likely to be used 
in language education and special education (Belpaeme 
et  al., 2018). However, instead of programming robots, 
previous studies have revealed that social robots had the 
potential to enhance students’ learning interest and expe-
rience in STEM education though human–robot com-
munication and interaction (e.g., Shiomi et al., 2015; Yang 
et  al., 2018). Therefore, future design and development 
of social robots can focus on STEM-related disciplines 
and learning contexts. Moreover, advanced artificial 
intelligence (AI) techniques can be also added into the 
robotic designs, enabling robotics to adapt to the needs 
and abilities of students and provide adaptive feedbacks 
and supports (Chu et al., 2022; Ouyang et al., 2023). Sec-
ond, in this research, we found that educational robotics 
were more effective in high school and higher educa-
tion than other education levels (e.g., primary school, 
middle school). Due to the complex functions of educa-
tional robotics, most of the educational robotics might be 
more suitable for older students (e.g., students in higher 

education) than younger students (e.g., students in pri-
mary school). Therefore, more advanced techniques, 
such as 3D printing and virtual reality, can be inte-
grated with the design of educational robotics, to help 
younger students easily understand knowledge during 
STEM learning (Belpaeme et al., 2018; Zapata-Cáceres & 
Martin-Barroso, 2021; Zhang et  al., 2021). Considering 
younger students’ cognitive load during robot-assisted 
STEM learning, the ease of use is also one of the essential 
points during the design process of educational robotics 
(Law, 2019; Xu & Ouyang, 2022b). Third, regarding the 
interactive types with educational robotics, we found 
that group-level interaction performed better than one-
to-one interaction. Based on the social, cultural, and 
situated perspectives of learning (Vygotsky, 1978), stu-
dents’ collaboration during robot-assisted learning might 
help them emerge collective intelligence and generate 
high-quality learning outcomes (Ouyang et  al., 2023). 
However, in this research, we found that most of the edu-
cational robotics were individual-oriented, that did not 
support multiple students to work, operate or interact 
at the same time (e.g., Ferrarelli & Iocchi, 2021; Ioannou 
& Angeli, 2016). Hence, collaboration-oriented educa-
tional robotics are suggested to be developed as a future 
direction of robot-assisted STEM education, in order to 
empower students’ collaboration during interacting with 
robotics. For example, future educational robotics can 
consist of collaboration-oriented features such as shared 
control of robotics, collaborative data analysis, and group 
decision-making algorithms.

Conclusions, limitations, and future directions
The application of educational robotics in STEM edu-
cation, as an emerging trend, has attracted wide atten-
tion in the field of education. Previous review works 
contributed to the understanding of educational robot-
ics, but few of them focused on the STEM education 
contexts. In addition, although multiple research has 
revealed the benefits of educational robotics in STEM 
education, the ineffectiveness or negative effects in 
robot-assisted STEM education were also reported 
in some cases. Therefore, to gain a comprehensive 
understanding of the application effect of educa-
tional robotics in STEM education, we conducted a 
meta-analysis to holistically examine the effects of 
robot-assisted STEM education as well as the mod-
erator variables that might influence the application 
effects. Specifically, we used a multilevel meta-analysis 
approach to examine (a) the overall effect sizes of edu-
cational robotics on students’ STEM learning; (b) the 
average effect sizes of using educational robotics on 
students’ learning performance, learning attitude, and 
computational thinking in STEM education; and (c) 
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the possible moderator variables as well as their influ-
ence on robot-assisted STEM education. Based on our 
findings, we proposed educational and technological 
implications for future practice and development of 
robot-assisted STEM education.

Three limitations existed in the current research, 
which led to future research directions. First, we 
located articles from the best-known scholar databases 
with the keywords relevant to robot-assisted STEM 
education. However, since it is an interdisciplinary and 
technology-dependent field, some articles that only 
highlighted the technology rather than the STEM edu-
cation context might be missed during the searching 
process. In addition, the unpublished articles might be 
ignored in the current research, which might inflate 
the total effect size (but under control in the publica-
tion bias). Therefore, future review works can further 
adjust the searching criteria to avoid this problem. Sec-
ond, due to the criteria of meta-analysis, this research 
excluded the quantitative studies that involved non-
experimental/quasi-experimental designs as well as 
qualitative studies. However, these studies may also 
consist of valuable information for us to understand 
the effects of robot-assisted STEM education. Hence, 
although meta-analysis can provide powerful evidence 
for summarizing and synthesizing the effects of edu-
cational robotics on STEM education, future review 
works can use it in conjunction with other methods 
(e.g., systematic review). Third, we mainly focused 
on students’ learning performance, learning attitude, 
and computational thinking during the robot-assisted 
STEM education; the effects of educational robotics 
on other cognitive abilities and higher-order thinking 
(e.g., spatial ability, reasoning ability, creativity) can be 
investigated in future meta-analysis. To sum up, the 
potentials and challenges of educational robotics for 
enhancing STEM education were revealed in this meta-
analysis, to guide instructors, educational practitioners, 
policymakers, and technical developers in promoting 
the development of future STEM education.
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