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Abstract 

Background Data visualizations transform data into visual representations such as graphs, diagrams, charts 
and so forth, and enable inquiries and decision‑making in many professional fields, as well as in public and eco‑
nomic areas. How students’ data visualization literacy (DVL), including constructing, comprehending, and utilizing 
adequate data visualizations, can be developed is gaining increasing attention in STEM education. As fundamental 
steps, the purpose of this study was to understand common student difficulties and useful strategies during the pro‑
cess of constructing data visualization so that suggestions and principles can be made for the design of curricula 
and interventions to develop students’ DVL.

Methods This study engaged 57 college and high school students in constructing data visualizations relat‑
ing to the topic of air quality for a decision‑making task. The students’ difficulties and strategies demonstrated 
during the process of data visualization were analyzed using multiple collected data sources including the stu‑
dents’ think‑aloud transcripts, retrospective interview transcripts, and process videos that captured their actions 
with the data visualization tool. Qualitative coding was conducted to identify the students’ difficulties and strategies. 
Epistemic network analysis (ENA) was employed to generate network models revealing how the difficulties and strat‑
egies co‑occurred, and how the college and high school students differed.

Results Six types of student difficulties and seven types of strategies were identified. The strategies were further 
categorized into non‑, basic‑ and high‑level metavisual strategies. About three‑quarters of the participants employed 
basic or high‑level metavisual strategies to overcome the technological and content difficulties. The high school 
students demonstrated a greater need to develop content knowledge and representation skills, whereas the college 
students needed more support to know how to simplify data to construct the best data visualizations.

Conclusions and implications The study specified metacognition needed for data visualization, which builds 
on and extends the cognitive model of drawing construction (CMDC) and theoretical perspectives of metavisualiza‑
tion. The results have implications for developing students’ data visualization literacy in STEM education by consider‑
ing the difficulties and trajectories of metacognitive strategy development, and by addressing the different patterns 
and needs demonstrated by the college and high school students.

Keywords Data visualization, Construction, Metacognitive strategy, Difficulty, Epistemic network analysis

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

International Journal of
STEM Education

*Correspondence:
Hsin‑Yi Chang
hychang@ntnu.edu.tw
Meng‑Jung Tsai
mjtsai99@ntnu.edu.tw
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9659-1022
http://orcid.org/0000-0002-8994-861X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-024-00463-w&domain=pdf


Page 2 of 22Chang et al. International Journal of STEM Education           (2024) 11:11 

Introduction
Data science is an emerging interdisciplinary field requir‑
ing the application of knowledge and skills in com‑
puter science, mathematics and statistics within specific 
domains such as science, economics or public health 
and policy (Ow‑Yeong et  al., 2023). Data visualization 
is a branch of data science that focuses on using visual 
representations such as graphs, charts or diagrams to 
represent data. The topic of data visualization is increas‑
ingly gaining attention in science, math and STEM edu‑
cation (Bybee, 2010; Donnelly‑Hermosillo et  al., 2020; 
Ow‑Yeong et al., 2023).

In this digital age in which big data are available for 
scientific inquiry and analysis and decision‑making, and 
with the rapid development of computer technology, 
data visualizations can be easily generated via computer 
visualization tools (Li, 2020; Unwin, 2020). Researchers 
suggest that it is important to develop all students’ abil‑
ity to construct, comprehend, and utilize adequate data 
visualizations, which comprises an important type of 
literacy called data visualization literacy [DVL] (Börner 
et al., 2016, 2019; Donohoe & Costello, 2020; Lee et al., 
2017; Unwin, 2020). Development of learners’ DVL facili‑
tates a more data literate society (Bae et  al., 2023). The 
current study addresses this call for all citizens to be data 
or information literate by focusing on how novices con‑
structed data visualizations using a computer‑based data 
visualization tool. The ability to construct data visualiza‑
tions relates to a core practice of scientists and engineers 
working on “the construction of explanations or designs 
using reasoning, creative thinking, and models” (National 
Research Council [NRC], 2012, p. 44). Also, the use of 
modern technology is integral to the work. It is therefore 
important to provide novice students with opportunities 
to engage in such practice to develop their critical com‑
petencies to face challenges and issues in modern society 
(NRC, 2012).

Current research on DVL has mainly focused on devel‑
oping and assessing students’ ability to read, analyze and 
interpret data visualizations (Binali et  al., 2022; Börner 
et al., 2019; Lee et al., 2017). However, an equally impor‑
tant issue with regard to how to develop students’ abil‑
ity to construct and utilize data visualizations has rarely 
been addressed. Indeed, a holistic data visualization liter‑
acy framework suggests not only interpretation, but also 
construction of data visualization as an important aspect 
of DVL (Börner et al., 2019).

As initial steps to develop students’ ability to construct 
adequate data visualization, this current study engaged 
college and high school students in constructing data 
visualizations during individual interviews, and investi‑
gated their process of constructing data visualizations to 
identify the difficulties and strategies they demonstrated 

during the process. Perspectives based on the construc‑
tivist theory indicate that students’ ideas and their learn‑
ing difficulties and strategies are building blocks for their 
learning. The development of instruction or interven‑
tions should take into account students’ ideas and perfor‑
mances to address their needs (Linn et al., 2004).

Especially, learning strategies have been considered as a 
key aspect of academic performance in STEM education 
(Griese et al., 2015). Among all kinds of learning strate‑
gies such as cognitive and management strategies, meta‑
cognitive strategies play an important role in successful 
learning and problem solving. They involve higher‑order 
skills including employment of metacognition such as 
planning, monitoring and reflecting (de Boer et al., 2018). 
Research has evidenced that students’ use of metacogni‑
tive strategies can enhance their critical thinking (Ku & 
Ho, 2010), and problem solving (Blackford et  al., 2023). 
However, research in data science education has yet to 
identify metacognitive strategies specific to the prac‑
tice of data science and visualization. Such investigation 
would reveal important learning strategies that are keys 
to successful data visualization when students are learn‑
ing data science.

This study applied the cognitive model of drawing con‑
struction (CMDC) (Van Meter & Firetto, 2013) and theo‑
retical perspectives of metavisualization (Gilbert, 2005, 
2008, 2010; Justi et  al., 2009) and metarepresentational 
competence (diSessa, 2004) to investigate students’ data 
visualization processes focusing on the demonstrated 
difficulties and strategies. Specifically, the construct of 
metavisual strategy has been proposed to refer to a type 
of metacognitive strategy for facilitating the process of 
visualization (Locatelli & Arroio, 2014, 2016; Locatelli & 
Davidowitz, 2021). Students’ use of metacognitive strat‑
egies in the context of visualization, that is, their use of 
metavisual strategies, was specifically examined and 
reported. The following research questions (RQ) were 
addressed in this study:

RQ1: What are students’ common difficulties during 
the process of constructing data visualizations?
RQ2: Whether and how do students generate and 
use metavisual strategies, as well as other strategies, 
to overcome the difficulties encountered during data 
visualization?
RQ3: Whether and how do students at two different 
educational levels, namely, college and high school, 
demonstrate different patterns of difficulties encoun-
tered and strategies used during data visualization?

Research has identified individual differences in stu‑
dents’ employment of metacognitive strategies (Karlen 
et  al., 2014). Another study found that college and high 
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school students performed significantly differently on 
items that measured their DVL in the aspects of com‑
prehending and interpreting data visualizations (Binali 
et  al., 2022). Therefore, this study explored how college 
and high school students differed in terms of the difficul‑
ties and strategies demonstrated when constructing data 
visualizations, to provide insights for the development 
of data science curricula that address the needs of learn‑
ers at different educational levels. Moreover, this study 
employed epistemic network analysis (ENA) (Marquart 
et al., 2018; Shaffer et al., 2016; Wooldridge et al., 2018) 
which allows examination of the co‑occurrence of the dif‑
ficulties with the strategies, to better understand patterns 
of learners’ construction of data visualization with regard 
to what difficulties can be overcome by what strategies.

Regarding advancement in theory, the results of this 
study provide empirical evidence for extension, elabora‑
tion and revision of the CMDC and metavisualization 
perspectives in the case of data visualization, which is 
a type of drawing or visualization with the aid of com‑
puter technology. As for implications for practice, the 
metavisual strategies identified in this study can serve as 
examples for curriculum designers to develop interven‑
tions that support novice learners to facilitate successful 
construction of data visualization and develop DVL, to 
address the call for more data science and data visualiza‑
tion curricula (Ow‑Yeong et al., 2023).

Background
Research on data visualization in STEM education
The Pre‑K‑12 Guidelines for Assessment and Instruc‑
tion in Statistics Education II (GAISE II), a Framework 
for Statistics and Data Science Education (Bargagliotti 
et al., 2020), delineate the goal of data science education 
as developing students’ ability to formulate statistical 
investigative questions, collect and consider data, analyze 
data, and interpret results, enabling them to use data as 
problem solvers. Recent research has begun to propose 
methods for teaching data visualization in formal educa‑
tion (e.g., Byrd & Dwenger, 2021; Camm et al., 2023). For 
instance, a three‑phase teaching process has been pro‑
posed, which includes creating the initial version of the 
visualization, sanitizing the data visualization, and refin‑
ing data visualizations (Camm et al., 2023). Another study 
suggested the data visualization activity (DVA) work‑
sheet method, which includes seven data visualization 
stages: acquire, parse, mine, filter and represent, critique, 
refine, and interact (Byrd & Dwenger, 2021). Research on 
teaching data visualization recognizes the higher‑order 
thinking involved in teaching and learning data visualiza‑
tion (Byrd & Dwenger, 2021; Camm et  al., 2023). How‑
ever, these studies are perspective‑based and did not 
investigate the effectiveness of the implementation or 

identify students’ difficulties associated with the higher‑
order thinking required when learning data visualization. 
Despite the importance of data visualization in profes‑
sional fields and educational practices in the Big Data era, 
little research has investigated the process of students’ 
data visualization to identify common difficulties and 
beneficial strategies so that remedies or interventions can 
be designed accordingly to promote students’ DVL.

Data visualization may refer to both the process and 
the product. The process of data visualization involves 
cognitive activities such as inspecting datasets and 
transforming them into visualizations such as tables, 
graphs, diagrams or charts. The products of this pro‑
cess are data visualizations which represent data for 
data exploration, pattern identification, communica‑
tion, and decision‑making (Lee et al., 2017, 2019; Man‑
soor & Harrison, 2018). Börner et al. (2019) suggested 
a holistic data visualization literacy framework (DVL‑
FW) that incorporates different aspects related to 
DVL from multiple studies. The framework was estab‑
lished to facilitate the process of not only reading, but 
also constructing data visualizations. They suggested 
seven aspects that data visualization construction and 
interpretation need to consider, namely: (1) insight 
needs, also called basic task types (e.g., trends, correla‑
tions, comparisons); (2) types of data to be visualized 
(e.g., nominal, ordinal, ratio); (3) data analyses (e.g., 
statistical, temporal, topical); (4) visualizations (e.g., 
map, graph, chart); (5) graphic symbols (e.g., geomet‑
ric, linguistic, or pictorial symbols); (6) graphic vari‑
ables (e.g., position, color, motion); and (7) interactions 
(e.g., zoom, search and locate, filter). Moreover, they 
proposed a process of data visualization construction 
and interpretation, including five major steps, namely, 
acquiring relevant datasets and resources, analyzing 
data before they can be visualized, visualizing data by 
selecting and mapping between data and visualization 
types and symbols, deploying data visualizations for 
interactions, and interpreting the data visualization for 
real‑world application (Börner et al., 2019).

The data visualization framework and process reveal 
the complexity that an individual needs to consider when 
constructing a data visualization. One most common dif‑
ficulty of constructing a data visualization is inappropri‑
ate or poor choice of visualization type for a particular 
dataset, leading to the problem of the constructed visu‑
alization failing to convey clear meaning or not being 
aligned with the purpose (Chrysantina & Sæbø, 2019). 
More studies are needed to systematically investigate 
students’ difficulties in creating data visualizations; the 
findings can then serve as building blocks for research‑
ers to investigate ways to help students overcome the 
difficulties.
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The majority of the research on data visualization in 
education has focused on how learners comprehend 
and interpret data visualizations (e.g., Binali et al., 2022; 
Börner et al., 2016; Lee et al., 2017). For example, research 
(e.g., Bertin, 2011; Lee et  al., 2017; Wainer, 1992) has 
analyzed the knowledge and skills needed to adequately 
comprehend and interpret data visualizations, including 
knowledge of graph conventions, and the ability to depict 
and explain trends and relationships in graphs. It has also 
been noticed that learners’ interpretation of data visuali‑
zations may be biased due to individual differences stem‑
ming from past experiences (Mansoor & Harrison, 2018).

Relatively few studies have focused on learners’ con‑
struction of data visualizations. Among these studies, 
Grammel et  al. (2010) investigated how novices con‑
structed visualizations, and found a common difficulty 
whereby they often relied heavily on their prior experi‑
ences with data visualization types, and showed incon‑
sistent use of data visualizations. Moreover, three types 
of challenges were identified, namely decomposing ques‑
tions and goals into data attributes, designing visual map‑
pings, and interpreting visualizations (Grammel et  al., 
2010). Drawing on previous research, this study further 
investigated what strategies were used by students to 
overcome the difficulties they confronted during the pro‑
cess of creating data visualizations.

Another study engaged children of age 6 to 11 years 
old in informal learning that allowed them to use a vari‑
ety of materials including everyday objects such as paper, 
cardboard, mirrors, and a web‑based application to make 
their own data visualizations; the aim was to develop the 
children’s DVL through construction of data visualiza‑
tions (Bae et al., 2023). By qualitative analysis and evalua‑
tion, Bae et al. (2023) indicated that most of the children 
were able to create, analyze and draw meaning from their 
visualizations. The study by Angra and Gardner (2017) 
compared undergraduate students, graduate students 
and professors in light of their processes and perfor‑
mances when they constructed graphs on paper. Expert–
novice differences were identified, such as more extensive 
planning, data transformation, and graph choice based 
on questions or hypotheses by experts, compared to 
minimal to no planning, raw data use, and intuitive rea‑
soning by novices who were undergraduate students 
with little research experience (Angra & Gardner, 2017). 
However, both studies focused on constructing graphs or 
visualizations on paper or using physical materials. New 
challenges may arise when using computer‑based data 
visualization tools. Moreover, these studies on visualiza‑
tion construction placed little emphasis on explicit strat‑
egies for construction of data visualizations. For example, 
Angra and Gardner’s (2017) study did not include strat‑
egy use, but suggested incorporating strategic scaffolding 

into future studies for the data visualization learning pro‑
cess. This current study addressed this issue by systemati‑
cally identifying strategies for data visualization.

Theoretical perspectives for investigating data 
visualization
The cognitive model of drawing construction (CMDC) 
specifies the cognitive process when learners are asked to 
make drawings or visual representations for the purpose 
of learning, which may be applied to the case of data vis‑
ualization. The CMDC suggests the importance of prior 
knowledge and cognitive processes including selecting, 
organizing and integrating during the construction of 
drawings or visualizations (Van Meter & Firetto, 2013). 
A three‑phase self‑regulation cycle has also been pro‑
posed to denote the role of metacognition during the 
construction process. For example, the task of drawing 
may trigger students’ awareness that content is not well 
understood or visualization is not good enough; there‑
fore, metacognitive self‑regulation is needed to address 
the identified weakness in the process of drawing (Van 
Meter & Firetto, 2013).

Despite the process of data visualization mainly refer‑
ring to the cognitive activities involved in the action of 
visualization, the perspectives of metavisualization (Gil‑
bert, 2005, 2008, 2010; Justi et al., 2009) and metarepre‑
sentational competence (diSessa, 2004) underscore the 
importance of metacognition as a key to successful visu‑
alization. It is suggested that “‘metacognition in respect 
of visualization’ be referred to as ‘metavisualization’” 
(Gilbert, 2005, p. 15) and “a fluent performance in visu‑
alization” requires “metavisualization” (Gilbert, 2008, p. 
5). To achieve metavisualization, students need to attain 
the stage of monitoring and controlling the cognition 
and learning associated with the visualization process 
(Gilbert, 2005). For example, learners need to become 
aware of monitoring their learning from visualizations, 
and execute control during the process of visualization 
such as retrieving, retaining and revising related images 
(Gilbert, 2005). When it comes to constructing data visu‑
alizations, metacognition involves regulating the process, 
such as planning the action, monitoring the progress, and 
evaluating the product of data visualization. Based on the 
theoretical perspective, this is crucial for facilitating a 
successful construction of data visualizations.

Similarly, the perspectives of metarepresentational 
competence emphasize metacognition and reflection 
so that the problematic aspects of representation, such 
as creating and choosing representations, and judging 
the value and adequacy of certain representations, can 
be dealt with (diSessa, 2004). An instance of metarepre‑
sentational competence in data visualization is an indi‑
vidual’s capability to reflect on what constitutes a good 
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data visualization and to apply this insight in identify‑
ing flaws and limitations in the data visualization, aim‑
ing for improvement. In summary, these theoretical 
perspectives all indicate the importance of metacogni‑
tion during the process of visualization. However, little 
empirical research has investigated how and what kinds 
of metacognition may be associated with data visualiza‑
tion. Investigating this issue would lead to extension and 
elaboration of the cognitive model with clearer delinea‑
tion of the metacognitive types and processes, and of the 
metavisualization perspectives in the case of data visuali‑
zation, which reveals critical mechanisms for successful 
data visualization, and provides insights for STEM edu‑
cation in terms of how to facilitate students’ data visuali‑
zation literacy.

Metacognitive and metavisual strategies
Metacognitive strategies can be defined as methods 
that one uses to facilitate and regulate one’s own cogni‑
tion to achieve certain goals such as task completion, 
which involves monitoring and controlling one’s own 
learning (de Boer et  al., 2018). Various types of meta‑
cognitive strategies have been identified by research in 
different subject areas of education. A review study iden‑
tified three main kinds of metacognitive strategies in 
educational research, namely, strategies for planning and 
prediction, for monitoring and control, and for evalua‑
tion and reflection (de Boer et al., 2018). The three types 
correspond to the three main metacognitive regulation 
categories commonly indicated in the metacognition lit‑
erature (Schraw & Moshman, 1995).

Ku and Ho (2010) examined 10 undergraduate stu‑
dents’ uses of metacognitive strategies in tasks of 
hypothesis testing, verbal reasoning, argument analysis, 
understanding likelihood, and decision‑making. They 
identified three types of metacognitive strategies, namely 
planning, monitoring and evaluating strategies, which are 
similar to the types identified in the review study of de 
Boer et  al. (2018), and correspond to the metacognitive 
regulation categories as well. Ku and Ho also identified 
several sub‑categories for each of the main categories, 
such as “inquiring task nature” and “inquiring task proce‑
dure” under the planning strategy.

Another study interviewed 26 undergraduate and 12 
graduate students, engaging them in problem‑solving 
tasks in organic chemistry to investigate their uses of 
metacognitive strategies during the interview (Blackford 
et  al., 2023). The study identified 20 strategies, such as 
“set goals”, “sort relevant info”, “jot down ideas”, and so 
forth, and categorized them into three main types, that is, 
planning, monitoring and evaluation strategies.

The research is clear about the three main types of 
metacognitive strategies that seem to be able to be 

applied to all areas of learning and teaching. However, 
for effective use and concrete examples, identification of 
more metacognitive strategies at finer‑grained levels for 
learning in various subject areas would help. For exam‑
ple, it is necessary to further reveal what metacognitive 
strategies there are at finer‑grained levels, and how they 
are used when students are planning, monitoring and 
evaluating. This argument is consistent with the compe‑
tence‑based knowledge space theory which underscores 
the importance of considering a set of fine‑grained skills 
specific to solving problems in a domain so that adaptive 
scaffolding in the learning environment can be developed 
at a later date (Heller et al., 2006; Steiner & Albert, 2011). 
It is also practically important for data science teachers 
to know and use specific and useful metacognitive strate‑
gies for data visualization construction in their teaching.

Specific to the learning of visualization, the use of 
metacognitive strategies has been referred to as the use 
of metavisual strategies (Locatelli & Arroio, 2014, 2016; 
Locatelli & Davidowitz, 2021), which involves a system‑
atic series of planned or monitored actions for achiev‑
ing a particular goal of visualization (Chang, 2022; Hung 
et al., 2021). Research has started to recognize the impor‑
tance of teaching students to use metavisual strategies 
(Locatelli & Arroio, 2014, 2016; Locatelli & Davidowitz, 
2021), and to identify several metavisual strategies that 
may lead to better visualization products in the case of 
visualizing science concepts and models (Chang, 2022; 
Hung et al., 2021; Locatelli & Arroio, 2014, 2016; Loca‑
telli & Davidowitz, 2021).

This current study applied the coding framework of 
metavisual strategies by Chang (2022) and Hung et  al. 
(2021) to examine how well the participants of this study 
demonstrated metavisual strategies during the data visu‑
alization task. Moreover, this study further identified and 
systematically analyzed non‑metavisual strategies such as 
the personal preference strategy and student difficulties 
specific to the context of data visualization. ENA (Mar‑
quart et al., 2018; Shaffer et al., 2016; Wooldridge et al., 
2018) was employed to generate students’ network mod‑
els showing the co‑occurrences of which difficulties were 
accompanied by which strategies, to better understand 
patterns demonstrated during the process of students’ 
data visualization construction.

Methods
The methodology that guides the methods and analyses of 
this study is quantitative ethnography (Kaliisa et al., 2021; 
Ruis & Lee, 2021; Shaffer, 2017). Ethnography focuses on 
investigating “process” to explain why and how individu‑
als do “things that make up the range of human experi‑
ence” (Shaffer, 2017, p. 31). Quantitative ethnography 
combines qualitative and quantitative methods in that 
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it suggests statistical techniques to analyze qualitative 
codes from big data as well as small data (Kaliisa et  al., 
2021; Ruis & Lee, 2021). Specifically, epistemic network 
analysis (ENA) was employed in this study, as detailed in 
the “Data coding and analysis” section.

Participants
Thirty first‑year college students (26 females) and 27 
10th‑grade students (23 females) volunteered to par‑
ticipate in this study. They were recruited from a public 
university and a high school in Taiwan. Each of the par‑
ticipants received remuneration of NTD$100 (about 
USD$3.33) after participation. The participant selection 
criterion was indicated in the recruitment statement; that 
is, we only recruited first‑year college and 10th‑grade 
students, given that first‑year college students have com‑
pleted the 12‑year basic education required in Taiwan, 
and 10th‑grade students have completed their education 
at the junior high school level (Grades 7–9). The study 
and its procedure were approved by the Research Eth‑
ics Committee at National Taiwan Normal University 
(approval no. 201905HM040).

Eleven of the college students majored in science or had 
taken advanced science courses at the high school level. 
The 27 10th‑grade students had not yet chosen a science 
or non‑science major, but five of them had just started to 
take some advanced science courses at the senior high 
school level. Nevertheless, all of them had completed 
fundamental science courses at the junior high school 
level as is required by our national curriculum stand‑
ards. The participants used computers frequently, mostly 
desktop and laptop computers, mobile devices and smart 
cellphones for 2–4  h daily. However, none of them had 
used any data visualization tools before (including the 
one used in this study, Tableau Public) or had taken any 
courses on data visualization.

Procedure
Each of the participants was individually engaged in the 
instruction, practice task, main task and retrospective 
interview. Detailed instruction and interview proto‑
cols were developed. In summary, the participants were 
instructed and guided to learn to use the computer‑based 
visualization tool during the instruction, and practiced 
creating data visualizations and conducting think‑aloud 
during the practice task. They were not disturbed or 
guided in the main task so as to maintain the authentic‑
ity and validity of their think‑aloud processes. They were 
interviewed after the main task by the interviewer follow‑
ing the protocols.

A data visualization tool on desktop computers, Tab‑
leau Public, was used to present the dataset for the par‑
ticipants to construct their data visualizations. Tableau 

Public provides general functions of computer‑based 
data visualization tools such as visual template selection, 
variable selection for designated axes or dimensions, and 
visualization formatting functions. Internet access was 
also provided in case the participants needed to search 
for information. Thinking aloud was required during 
the data visualization process. Instruction on how to 
use Tableau Public and perform think‑aloud was given 
by the interviewer before the main task. The participant 
was given time to learn and practice creating data visu‑
alizations using the visualization tool with another data‑
set (data about student enrollment) and thinking aloud 
before the main task.

During the main data visualization task, a dataset con‑
sisting of air quality variables and values collected at six 
monitoring stations (sites) in Taiwan across three years 
was provided to each of the participants in individual 
interview sessions. The choice of air quality is because 
it is a topic that is highly relevant to many people’s daily 
life in Taiwan. The air quality data used in this study were 
downloaded from the “Government Open Data” web‑
site (https:// data. gov. tw/), a platform offering govern‑
ment‑released data for public scrutiny and exchanges 
on various topics. We did not alter the data to maintain 
authenticity.

Nevertheless, among the available datasets on the 
"Government Open Data" website in the topic of air 
quality, the selection of the dataset used in this study 
was decided in a panel meeting with a high school sci‑
ence teacher, a college instructor specializing in data 
visualization, and a science education researcher. The 
panel assessed the dataset in light of the complexity level 
and agreed that the dataset was neither overly simple 
nor overly challenging for both high school and college 
students. The dataset comprises a total of 61 variables. 
These variables include sites, dates, longitude, latitude, 
PM2.5, and other chemical or ionized elements related 
to air quality. The dataset consists of 915 rows, indicat‑
ing the values of air quality variables for sites on different 
dates over a span of 3 years.

The participants’ task was to transform the dataset to 
data visualizations so that the participant would use the 
data visualization to suggest funding allocation for air 
quality improvement in Taiwan, hypothetically to the 
Environmental Protection Administration. The task and 
the whole procedure remained the same for both col‑
lege and high school students, facilitating valid perfor‑
mance comparisons based on identical assignments and 
procedures.

After the main visualization task, a retrospective inter‑
view was conducted to ask the participant to reflect on 
the difficulties and strategies, with interview questions 
such as “What was hard for you when performing the 

https://data.gov.tw/


Page 7 of 22Chang et al. International Journal of STEM Education           (2024) 11:11  

task?” “What knowledge, skills, or strategies did you use 
to help you complete the task?” The interview was audio 
recorded. All sessions were carried out without a time 
limit. The time for learning and practicing using the tool 
lasted about one hour, depending on the needs of the 
participants. Then it took about one hour on average for 
the participants to complete the main task and retrospec‑
tive interview, resulting in about two to three hours for 
the whole process including instruction and practice. 
All stages of the process were video‑ and audio‑taped, 
screen‑captured and transcribed.

Data coding and analysis
Coding scheme for strategy
To identify the strategies the participants used during 
their data visualization process during the main task, a 
coding framework was generated based on Chang (2022) 
and Hung et al. (2021) as well as on the data in this study. 
The coding scheme was discussed, and agreement was 
reached by two science education researchers and one 
data visualization researcher in multiple meetings to 
establish its content and expert validity. In summary, 
seven types of strategies that the participants used dur‑
ing their data visualization process were identified and 
defined (listed in Table 1; example excerpts for the strate‑
gies are provided in Additional file 1), five of which were 
categorized as metavisual strategies since metacognition 
is performed with participants’ attention to the purpose 
of the data visualization task and the difficulties encoun‑
tered. The other two were primary but non‑metavisual 
strategies since little metacognition was observed while 
the participant was employing these two strategies. All 
the transcripts and screen‑captured videos or audio 

recordings from the two sources of data, the think‑aloud 
visualization task, and retrospective interview, were 
inspected to make sure that the strategy coding scheme 
included all strategies demonstrated or indicated by the 
participants.

Coding scheme for difficulty
A coding scheme for difficulty demonstrated during the 
main task (Table  2; example excerpts for the difficulties 
are provided in Additional file  1) was generated based 
on the data of this study. The procedure to establish the 
content and expert validity of the coding scheme for dif‑
ficulty was the same as the procedure for the coding of 
the strategy. As with the checking and triangulation for 
coding strategies, all the transcripts and screen‑captured 
videos or audio recordings from the two sources of data, 
the think‑aloud visualization task, and the retrospective 
interview, were inspected to make sure that the cod‑
ing scheme for difficulty included all difficulties dem‑
onstrated or indicated by the participants. A total of six 
types of difficulties were identified and defined (listed in 
Table 2).

Unit of coding and inter‑coder reliability
The unit of the qualitative coding for strategy and dif‑
ficulty is by each participant’s episode. An episode has 
a beginning and an end, and consists of a series of sen‑
tences or actions that occur based on an identical reason 
or purpose and can be unified within one episode and 
distinguished from other episodes (van Dijk, 1981). Since 
the study focuses on students’ strategies and difficulties 
that usually require a series of sentences or actions, it is 
therefore suitable to code the data based on the analysis 

Table 1 Coding framework for strategy use during construction of data visualizations (adapted from Chang, 2022)

Strategy Definition

Metavisual strategy Systematic series of planned or monitored actions for achieving a particular goal of visualization
Focusing strategy Performance indicated that the participant monitored progress by continuously matching among her/his current ideas, 

the expressed data visualization, and the goal of the task

Inducting strategy Performance indicated that the participant used reflection and self‑questioning to generate criteria that guided identifica‑
tion of important variable(s) needed in the data visualization task

Perfecting strategy Performance indicated that the participant identified flaws or limitations in the initial data visualization and continuously 
thought about how to improve the quality of the data visualization to fulfill the task request and achieve the task goal

Resourcing strategy Performance indicated that the participant retrieved existing conceptions or searched for online information to identify 
and obtain resources needed based on the purpose of the task

Deducing strategy Performance indicated that the participant applied her/his own ideas or knowledge to guide the action for the data 
visualization task

Non‑metavisual strategy Series of actions with little or no evidence of metacognition
Personal preference Performance indicated that the participant constructed a certain data visualization because she/he was familiar 

with that type of data visualization

Trial and error Performance indicated that the participant tried several types of data visualizations and decided on a data visualization 
without being able to give a reason or consider the purpose
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unit at the episode level. For example, there are usually 
multiple episodes for a participant to complete the data 
visualization task, such as searching for the needed infor‑
mation on the Internet before starting to construct a data 
visualization (one episode), reading and comprehending 
the data table provided to determine the critical variables 
(another episode), and starting and completing the data 
visualization (the other episode).

The software, NVivo, was used to aid the coding and 
analysis processes. The episodes showing the occur‑
rence of any of the strategies and difficulties in the cod‑
ing schemes (Tables 1, 2) were highlighted and assigned 
the correspondent codes in NVivo. Note that the coding 
of the strategies and difficulties included multiple data 
sources, not only the think‑aloud data but also the ret‑
rospective interview data and the process video of the 
participants’ processes and products of constructing data 
visualizations. Two coders coded all 57 participants’ data. 
The inter‑coder reliability of the coding was 0.84 (Cohen’s 
kappa). Inconsistent codes between the coders were dis‑
cussed and resolved. Assertions were made by inspecting 
the coded data and results, and searching for confirming 
and disconfirming evidence.

Employment of ENA
ENA uses statistical and data visualization techniques 
to generate network models of nodes and connections 
that reveal how often the nodes occur, how the nodes are 
connected (i.e., co‑occur), and how the occurrence and 
connection of the nodes might differ between groups of 
individuals (Shaffer, 2017). The nodes in this study con‑
sisted of the seven strategies and six difficulties listed in 
Tables 1 and 2, respectively. Our inspection of the coded 
data indicated that the participants often used more than 
one strategy accompanied with their difficulty during 
the process of data visualization. It is therefore suitable 

and beneficial to employ ENA so that how the strategies 
and difficulties co‑occurred could be investigated and 
revealed.

The ENA1.7.0 Web Tool was used to quantitatively 
process the codes in Excel format (Marquart et al., 2018). 
A codebook in Excel consisting of a list of the codes for 
all the participants was generated, with the occurrence 
of each strategy or difficulty coded as 1, and absence as 
0. The data format for ENA is stanza‑based. A stanza is 
defined as the recent temporal context associated with 
each line of data (Shaffer, 2014). For a specific line in the 
data, the stanza comprises other lines in the data that 
form part of the recent temporal context for that line 
(Shaffer, 2018). The ENA software implements “stanzas” 
by utilizing a moving window of a fixed size “w”; essen‑
tially, each line of data is connected with the “w‑1” lines 
of data in the conversation preceding the particular line, 
creating a total window size of “w’ lines (Shaffer, 2018, p. 
523). In this study, since there was no interaction among 
the participants, the stanza size w for the analysis was set 
to 1 (Shaffer, 2014; Zörgő et al., 2021).

ENA constructs one model for each participant. For 
example, Fig.  1 shows the structure of the network 
model of the participant ID#DVSH010. It shows that 
this high school student encountered the multiple rep‑
resentation difficulty, and employed resourcing and 
deducing strategies during the process of data visuali‑
zation. Then, each network model can be represented 
as a single point in the figure, so that all of the partici‑
pants’ models can be represented and analyzed collec‑
tively in the model (Fig. 2). In Fig. 2, each point is the 
centroid of the corresponding network for each partici‑
pant. Figure  2 shows all participants’ centroids in the 
form of dots. The centroid is “the arithmetic mean of 
the edge weights of the network model” and is “much 
like the center of mass of an object” (Shaffer et al., 2016, 

Table 2 Coding framework for difficulties during construction of data visualizations

Difficulty Definition

Initial representation difficulty The participant showed difficulty representing her/his ideas using a particular type of data visualization; 
the generated data visualization was different than what the participant wanted to express

Multiple representation difficulty The participant was able to generate one data visualization, but was not satisfied. The participant tried to con‑
struct another data visualization complementary to the first data visualization generated but failed

Data simplification difficulty The participant indicated a difficulty that there were too many data and it was difficult to simplify the data 
into a data visualization

Information comprehension difficulty The participant indicated a difficulty comprehending the information presented in the question or in the data 
table

Technological difficulty The participant showed difficulty using a feature or function of the data visualization technology, includ‑
ing using general functions of computer‑based data visualization tools or features that afford newer representa‑
tions than those on paper or using physical materials

Content knowledge difficulty The participant indicated a lack of sufficient content knowledge on the topic of air quality to make a good data 
visualization
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p. 16). The mean position of the points with the con‑
fidence interval can then be calculated to indicate the 
whole group’s performance (Shaffer et  al., 2016). The 
black square in Fig. 2 is the mean position, and the box 
around the square indicates the 95% confidence inter‑
val. Meanwhile, the network model demonstrated by 
all the participants collectively is represented in Fig. 3. 
A larger sized node indicates that more participants 
demonstrated this strategy or difficulty. A thicker line 
indicates that the connection between the two nodes 
occurred more frequently.

Moreover, ENA allows comparison between groups, 
such as the high school and college students in this study. 
The mean positions with the confidence intervals for the 
two groups were calculated, and an independent t test 
was performed to indicate whether the two groups’ mod‑
els were significantly different in terms of the positions 
on the X and Y dimensions. Subtracted network models 
were also employed in this study, which subtracted the 
weight of each connection in one group’s model from the 
corresponding weighted connection in the other group’s 
model, to visualize how the structure of the two groups’ 
models differed (Shaffer et al., 2016). To better visualize 
the differences, the scale for edge weights was set to 2 in 
the ENA1.7.0 Web Tool.

Results
Overview of data visualization strategies and difficulties 
(RQ1)
Overall, about 91% (52 of 57 students) constructed at 
least one adequate data visualization, although to vary‑
ing degrees of proficiency and accuracy. The evaluation 
of the data visualization products was based detailed 
scoring rubrics with procedures to ensure the validity 
and reliability of the evaluation. In general, the scoring 
rubrics focused on the suitability of the chosen visuali‑
zation type for the selected data values and the presence 
of sufficient and accurate information as forms of repre‑
sentations to accomplish the purpose of the visualization 
task. As previously mentioned, the majority of the stu‑
dents constructed satisfactory data visualization prod‑
ucts, but delving into further details on the scoring goes 
beyond the scope of this paper.

Despite the satisfactory visualization products gener‑
ated by the majority of the students, during the process of 
data visualization, they still encountered difficulties and 
used strategies to overcome them. Table  3 provides an 
overview of the difficulties and strategies demonstrated 
by the participants. During the data visualization task, 
the most common difficulty, as demonstrated by 21 of 
the 57 participants, was the technological difficulty. The 

Fig. 1 The network model of DVSH010. S.Focusing: focusing strategy; S.Inducting: inducting strategy; S.Perfecting: perfecting strategy; 
S.Resourcing: resourcing strategy; S.Deducing: deducing strategy; S.Personal.preference: personal preference strategy; S.Trial.and.error: 
trial‑and‑error strategy; D.InitialR: initial representation difficulty; D.MultipleR: multiple representation difficulty; D.SimplifyD: data simplification 
difficulty; D.Comprehend: information comprehension difficulty; D.Technological: technological difficulty; D.ContentK: content knowledge difficulty
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technological difficulty arose from constructing a data 
visualization using a computer‑based data visualization 
tool as opposed to on paper or using physical materials 
such as cardboard. Computer‑based data visualization 
tools provide new affordances not available using the 
paper‑based or physical object methods, but such new 
affordances may also introduce difficulties. The students 
showed technological difficulty in terms of using visual 
templates (e.g., wanting to create a 3‑D visualization but 
failing [ID#DVCS011]), assigning variables (e.g., includ‑
ing three variables for a visual template, but the result‑
ing visualization was useless due to inadequate variable 
assignment [ID#DVCS003]), or formatting visualizations 
(e.g., wanting to show and hide the latitude and longitude 
lines on a map representation [ID#DVCS001]).

The second most common difficulty relates to content 
knowledge difficulty. The participants expressed that they 
were unsure about which elements in the air were most 
detrimental to humans’ health. Also, 17 of the partici‑
pants demonstrated the initial representation difficulty, 
indicating a lack of representation skills, and 11 indicated 
the difficulty of simplifying the data for visualization. 

Only three participants indicated the difficulty of com‑
prehending the information presented in the task or in 
the data table.

Moreover, Fig. 3 presents the ENA result showing the 
mean network model of the participants in light of how 
the difficulties and strategies co‑occurred with each 
other. It is evident that the difficulties and strategies did 
not occur in isolation. Rather, a central pattern revealed 
in Fig.  3 is that the inducting and resourcing strategies 
were used by the students to overcome the technologi‑
cal and content difficulties. Moreover, it is revealed in the 
figure that the technological difficulty may co‑occur with 
the content or other types of difficulties.

In terms of strategy use, 27 of the 57 students used 
the inducting strategy. The second most frequently used 
strategy was the resourcing strategy, followed by the 
deducing strategy. Ten of the participants used the per‑
fecting strategy, and four used the focusing strategy. 
Moreover, eight participants used the trial‑and‑error 
strategy and five used the personal preference strategy, 
both of which are non‑metavisual strategies. The mean‑
ings of these strategies and how they were applied in the 

Fig. 2 All participants’ centroids (dots) with the mean (square) and 95% confidence interval (box) of all participants’ centroids
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context of data visualization are delineated in the follow‑
ing section.

High‑level‑, basic‑level‑, and non‑metavisual strategies 
for data visualization (RQ2)
The use of the focusing, perfecting, and inducting strat‑
egies demonstrates a high level of metavisual strategy 
since metacognition is constantly employed. For example, 
the participant, ID#DVSH044, constantly asked himself 
“What is the purpose of the task again?” during the data 
visualization process to remind himself to stay focused 
on achieving the goal of the task and to monitor his 
progress. He was therefore coded as using the focusing 
strategy. The perfecting strategy also requires monitor‑
ing and reflecting on the quality of the data visualization. 
By identifying the flaws or limitations of the current data 
visualization, some participants continued to improve 
their visualizations by constructing another data visuali‑
zation that would be complementary to the original one, 
and hence were coded as using the perfecting strategy. 
For example, the participant, ID#DVCS023, indicated 

Fig. 3 The mean network model demonstrated by all of the participants. S.Focusing: focusing strategy; S.Inducting: inducting strategy; S.Perfecting: 
perfecting strategy; S.Resourcing: resourcing strategy; S.Deducing: deducing strategy; S.Personal.preference: personal preference strategy; S.Trial.
and.error: trial‑and‑error strategy; D.InitialR: initial representation difficulty; D.MultipleR: multiple representation difficulty; D.SimplifyD: data 
simplification difficulty; D.Comprehend: information comprehension difficulty; D.Technological: technological difficulty; D.ContentK: content 
knowledge difficulty

Table 3 Overview of the difficulties and strategies 
demonstrated during the process of data visualization

Performance n (% = n/57)

Difficulty

Initial representation difficulty 17 (29.8%)

Multiple representation difficulty 6 (10.5%)

Data simplification difficulty 11 (19.3%)

Information comprehension difficulty 3 ( 5.3%)

Technological difficulty 21 (36.8%)

Content knowledge difficulty 18 ( 31.6%)

Strategy

Focusing strategy 4 ( 7.0%)

Inducting strategy 27 (47.4%)

Perfecting strategy 10 (17.5%)

Resourcing strategy 21 (36.8%)

Deducing strategy 16 (28.1%)

Personal preference strategy 5 ( 8.8%)

Trial‑and‑error strategy 8 (14.0%)



Page 12 of 22Chang et al. International Journal of STEM Education           (2024) 11:11 

Fig. 4 Example student‑generated data visualizations (ID#DVCS023). 4(a): upper, the first data visualization created by DVCS023; 4(b):lower, 
the second data visualization created by DVCS023
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that her data visualization did not clearly show the rela‑
tionships between two variables (Fig. 4a), so she wanted 
to “make a new graph and then see if it can clearly show 
the relationship of the data.” She then successfully made 
a second data visualization (Fig. 4b) to complement her 
first one.

The inducting strategy also requires substantial meta‑
cognition, and is a very useful strategy demonstrated by 
the participants to make progress in the process of data 
visualization, when there is a large amount of data and 
the participant at first has not had clear or formed con‑
ceptual frameworks to guide the data visualization pro‑
cess. The following excerpt from ID#DVCS026 shows an 
example of using the inducting strategy.

DVCS026: If the data are for the government to 
make decisions about which location should receive 
more funding, I feel that it seems meaningless to 
compare among the dates. I should focus on the 
location…such as those [the values] that are so small 
across the locations, I will first remove them because 
it seems meaningless to compare these small num-
bers across the sites…now I need to think about how 
to present the changes by years across the sites…I 
think I will use this presentation, first the sites then 
the years to see the changes…But I think right now 
the content is still too much, and I want to present 

the information in one chart, so I am going to remove 
more variables that have very small numbers.

Through self‑questioning and reflecting, the partici‑
pant ID#DVCS026 was able to generate the criteria that 
guided her construction of the data visualization. She 
decided to focus on the variables that addressed the pur‑
pose of the task, and variables that were critical to indi‑
cate the air quality across the sites. She removed those 
variables based on her criteria that they were not critical 
(all with small numbers across the sites) and were not rel‑
evant to the purpose. These criteria were not formed at 
first before the task; rather, they were formed as a result 
of DVCS026’s inspection and observation of the data 
(Fig. 5 shows the data visualization created by DVCS026). 
This bottom‑up approach is therefore called the induct‑
ing strategy. The constant self‑questioning and reflection 
indicate employment of metacognition.

The use of the resourcing and deducing strategies 
demonstrates the basic level of metavisual strategy 
since metacognition is needed, but is implicitly and 
less constantly employed. For example, the participant 
ID#DVSH010 checked and confirmed the purpose of the 
task and searched online for information based on the 
purpose: “I think the government will allocate the fund‑
ing based on the degree of air pollution, so I am going to 
search for information regarding degrees of air pollution 

Fig. 5 An example of a student‑generated data visualization (ID#DVCS026)
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and which elements and the amount of them will cause 
different degrees of air pollution” (ID#DVSH010). The 
search behavior of DVSH010 was guided by her keeping 
in mind the purpose of the task; hence, metacognition 
was employed; this strategy is called the resourcing strat‑
egy. Another strategy, the deducing strategy, also involves 
the participant keeping in mind the purpose of the task, 
and the data visualization is fluently conducted and com‑
pleted following the participant’s own ideas or knowledge 
with less reflecting or self‑questioning, as the following 
excerpt shows, which indicates that the participant com‑
pleted the task in a top‑down manner in that she applied 
her knowledge to form the data visualization that she 
wanted, which is therefore called the deducing strategy.

DVCS009: I want to know at every location by each 
year, how much the element, Cr, was detected. I put 
year and location as the rows, and the element Cr as 
the column. Then I use a bar chart. Now I see that in 
every year the amount of Cr detected is always the 
highest in Xiaogang.

In summary, 43 out of the 57 participants (75%) dem‑
onstrated the basic or high‑level metavisual strategies. 
This result indicates that the task of constructing data 
visualizations may prompt the majority of the students 
to engage in the use and practice of metacognition. Nev‑
ertheless, there were four students who used only the 
non‑metavisual strategies, and 10 students did not dem‑
onstrate any of the strategies; this finding is discussed as 
follows.

The personal preference and trial‑and‑error strate‑
gies are non‑metavisual in that they involve very little 
metacognition. The participant, ID#DVCS022 showed 
an example of using the trial‑and‑error strategy. During 
the process of constructing the data visualization, she 
first selected two variables, date and site, and defined one 
as one variable in the column and the other as one vari‑
able in the row. She then said, “Now I am thinking how 
to put all the chemicals (the other variables) into the 
table…I will just select several of them randomly, and 
then change the type of graph.” In the retrospective inter‑
view when she was asked about the strategies she used, 
she indicated, “I think the best way is just to try every‑
thing out. I tried every type of graph and diagram to find 
the one that looks good to me.” The data from both the 
think‑aloud and retrospective interview triangulated that 
DVCS022 was using a trial‑and‑error strategy. Although 
she indicated that she wanted to “try everything out”, she 
in fact only tried out several types that she was famil‑
iar with. Therefore, DVCS022 also demonstrated a per‑
sonal preference strategy, indicating “the bar graph is the 
type that I am most familiar with”, when she was asked 
why she used the bar graph. The criteria for using and 

determining the data visualization are mainly based on 
trials and personal criteria such as “looking good to me” 
or being “most familiar”, as opposed to considering the 
purpose of the data visualization for the task.

Ten students were not coded as demonstrating any of 
the strategies. Eight of them showed a tendency to avoid 
effort by finishing the task quickly, with little evidence of 
thinking or reasoning during the process of data visuali‑
zation. The observation of their actions and evaluation 
of their products (i.e., the data visualization) indicated 
that they very quickly constructed only one acceptable 
(but not the best) data visualization. In the retrospective 
interview, they were not able to articulate any strategies, 
but responded vaguely, for example stating “I wanted to 
show a clear chart” [ID #DVSC015]. The other two stu‑
dents encountered difficulties but were unable to come 
up with strategies on their own to overcome the diffi‑
culty, which prevented them from successfully complet‑
ing the visualization task. Therefore, explicit support or 
scaffolding for using strategies is needed to address the 
needs of these students.

Comparisons of college and high school students’ network 
models of strategy and difficulty during the process of data 
visualization (RQ3)
Figure  6 shows the distribution of the centroids by the 
college (red dot) and high school (blue dot) students. 
It should be noted that the dots are positioned in the 
reduced and rotated dimensions using the visualization 
technique in ENA (Shaffer, 2018), aiming to emphasize 
the significant differences between the college and high 
school students. Judging from the positions of the means 
and the 95% confidence intervals of the two groups in 
Fig.  6, the mean models of the two groups differed sig‑
nificantly. The t‑test results further confirmed that the 
models produced by the college and high school stu‑
dents significantly differed on the X‑dimension (t = 6.32, 
p < 0.001), but not on the Y‑dimension (t = 0.00, p = 1.00). 
An overall pattern is that the college students’ mod‑
els were distributed towards the right‑hand side of the 
dimensions, whereas the high school students were 
towards the left‑hand side (Fig. 6).

The subtracted model (Fig.  7) shows how the models 
differed. According to the nodes, the college students’ 
models distributed towards the right‑hand side of the 
dimensions focused more on the technological and data 
simplification difficulties, whereas the high school stu‑
dents’ models distributed towards the left‑hand side 
focused more on the initial representation, multiple 
representation, comprehension and content knowledge 
difficulties.

Moreover, in Fig.  7, connections colored red were 
stronger in the college students’ models, whereas 
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connections colored blue were stronger in the high 
school students’ models. Connections in this study mean 
co‑occurrence of two connected nodes, which can indi‑
cate how encountered difficulties were resolved by which 
strategies, or how certain types of difficulties or strategies 
were related to each other. Figure 7 indicates that, com‑
pared to the high school students, the college students 
more often used the inducting, resourcing, and perfect‑
ing strategies to solve the problems caused by the tech‑
nological difficulty and the difficulty to simplify the data 
for representation. It was observed that more college 
students focused on the challenge of how to simplify the 
data and to perfect the data visualization for best repre‑
sentations. The technological difficulties they encoun‑
tered often related to their intention to use more and 
advanced functions to construct data visualizations that 
would best show their ideas. It is also revealed in Fig. 7 
that, more for the college students, the technological 

difficulty was related to the data simplification and some‑
times to the content knowledge difficulty.

In comparison, the high school students used the 
resourcing and deducing along with the non‑metavisual 
strategies, including the trial and error and personal pref‑
erence strategies, to solve the problems they encountered. 
Specifically, for the initial representation difficulty, more 
high school students used the resourcing and trial‑and‑
error strategy, and some used the personal preference 
strategy. For the content knowledge difficulty, which was 
often linked to the initial representation and informa‑
tion and comprehension difficulties, the students used the 
resourcing, focusing and trial‑and‑error strategies. For the 
multiple representation difficulty, which was sometimes 
related to the initial representation difficulty, the students 
used the resourcing, deducing and trial‑and‑error strate‑
gies. An overall trend revealed in the figures between the 
college and high school students was that more college 

Fig. 6 (Color online) The college (red dot) and high school (blue dot) students’ centroids. The red square and box represent the mean and 95% 
confidence interval for the mean of the college students’ centroids, respectively, and the blue square and box represent the mean and 95% 
confidence interval for the mean of the high school students’ centroids, respectively
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students used the high‑level metavisual strategies such as 
the inducting and perfecting strategies, whereas more high 
school students used the basic‑level metavisual strategies 
such as the deducing strategy, and non‑metavisual strate‑
gies such as the personal preference and trial‑and‑error 
strategies.

Discussion
Metacognition associated with construction of data 
visualization
Theoretical accounts of learning by visualization rec‑
ognize the importance of metacognitive processes, but 
have done little to clarify what those processes might be 

Fig. 7 (Color online) The subtracted network model between the college (in red) and high school (in blue) students. S.Focusing: focusing strategy; 
S.Inducting: inducting strategy; S.Perfecting: perfecting strategy; S.Resourcing: resourcing strategy; S.Deducing: deducing strategy; S.Personal.
preference: personal preference strategy; S.Trial.and.error: trial‑and‑error strategy; D.InitialR: initial representation difficulty; D.MultipleR: multiple 
representation difficulty; D.SimplifyD: data simplification difficulty; D.Comprehend: information comprehension difficulty; D.Technological: 
technological difficulty; D.ContentK: content knowledge difficulty
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(Van Meter & Firetto, 2013). Similarly, the process of data 
visualization construction and interpretation suggested 
by Börner et al. (2019) has also focused on the cognitive 
or behavioral processes, including acquiring, analyz‑
ing, visualizing, deploying and interpreting. This current 
study provides evidence for the importance of metacog‑
nition by identifying metacognitive strategies for suc‑
cessful data visualization. These metacognitive strategies 
demonstrated by the majority of the participants indicate 
the important role of metacognition that is associated 
with and also needed during the process of constructing 
data visualizations. Specifically, it was identified in this 
study that the metacognitive process may include self‑
questioning, monitoring and reflecting. The metavisual 
strategies associated with data visualization may include 
inducting, focusing, perfecting, resourcing and deducing 
strategies.

Research has been clear about three main types of 
metacognitive strategies, namely planning, monitor‑
ing, and evaluating (Blackford et al., 2023; de Boer et al., 
2018; Ku & Ho, 2010). This study builds on these find‑
ings to further identify metacognitive strategies at finer‑
grained levels, so that these strategies provide concrete 
examples of how to employ metacognition in the subject 
area of data visualization. Recent research has started to 
incorporate metavisual strategies in instruction to teach 
students using metavisual strategies for visualization 
tasks in science (Locatelli & Arroio, 2014, 2016; Loca‑
telli & Davidowitz, 2021). Future research may consider 
choosing and incorporating various metavisual strategies 
identified in this study into instruction for the learning of 
data science and different subject areas, and for testing 
the effects.

Learning difficulties for constructing computer‑based data 
visualizations
Research has identified three types of challenges faced 
by students constructing computer‑based data visualiza‑
tions, namely decomposing questions and goals into data 
attributes, designing visual mappings, and interpreting 
visualizations (Grammel et al., 2010). In comparison, the 
six types of difficulties identified in this study may pro‑
vide insights into the reasons why challenges relating 
to the visualization construction may occur, or the fac‑
tors contributing to the challenges. For example, the first 
challenge, decomposing questions and goals into data 
attributes, can stem from the information comprehen‑
sion, content knowledge and data simplification difficul‑
ties. The second challenge, designing visual mappings, 
may be related to the initial representation, multiple rep‑
resentation and technological difficulties.

Moreover, research has found that designing visual 
mappings was the most problematic step demonstrated 

by students, referring to the difficulty of selecting ade‑
quate visual templates (Grammel et al., 2010). Similarly, 
another study identified a common difficulty of con‑
structing a data visualization, which is the inappropriate 
or poor choice of visualization types for particular data‑
sets, causing the problem of the constructed visualization 
failing to convey clear meaning or not being aligned with 
the purpose (Chrysantina & Sæbø, 2019). In this current 
study, we found that the most demonstrated difficulty 
was the technological difficulty, including using the fea‑
tures and functions of the application tool to select visual 
templates, assign variables, and format visualizations. 
Moreover, based on the difficulties identified in this cur‑
rent study, we may further provide insights into the pos‑
sible factors causing this common problem, including 
students’ lack of knowledge needed to comprehend the 
information in the dataset and the task (i.e., the content 
aspect, which would be the knowledge of data and the 
topic of air quality in this study), and the computer‑based 
visualization tool (i.e., the technology aspect), and a lack 
of representation skills to generate initial and multiple 
representations (i.e., the representation aspect).

Learning strategies for constructing computer‑based data 
visualizations
Research indicates that novices often rely heavily on their 
prior experiences with data visualization types when 
constructing a data visualization (Grammel et al., 2010). 
This current study found five students who used a similar 
strategy, which is called the personal preference strategy 
in this study. They chose to construct a certain type of 
data visualization only because the data visualization was 
most familiar or looked good to them, without being able 
to further provide other reasons at the time of using the 
strategy.

Another non‑metavisual strategy, the trial‑and‑
error strategy was used by eight students in this study. 
Researchers argue that all programming is reasoned 
through the trial‑and‑error strategy if the definition of 
this strategy refers to a method to explore decision trees 
that involve considering all possible solutions (Merisio 
et al., 2021). However, in this study, we have defined the 
trial‑and‑error strategy as a strategy demonstrated by the 
participant who randomly, arbitrarily, and purposelessly 
tries out some data visualization types, as opposed to sys‑
tematically trying out all possible solutions. Moreover, 
the use of ENA to generate the network model indicates 
a result that the trial‑and‑error strategy was more often 
used by the high school students who encountered the 
difficulty of generating an initial data visualization. The 
model also shows that participants may combine the use 
of the trial‑and‑error strategy with other strategies, such 
as the resourcing strategy.
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Therefore, the argument we would like to make is that 
rather than treating the non‑metavisual strategies as 
inappropriate or undesirable, we think that these strate‑
gies are intuitive and can be useful as building blocks for 
students to make progress and develop other strategies. 
However, students who used only these non‑metavisual 
strategies showed limitations in the process of construct‑
ing data visualizations and using the visualizations for 
scientific reasoning. Moreover, there were students in 
the study who encountered difficulties but were unable 
to generate any strategies on their own. The metavisual 
strategies identified and exemplified in this study includ‑
ing the focusing, inducting, perfecting, resourcing and 
deducing strategies can be incorporated into instruction 
to teach students about these strategies.

Designing interventions to promote data visualization 
literacy
Research on teaching data visualization in formal educa‑
tion has proposed various teaching methods or interven‑
tions, such as the three‑phase data visualization process 
(Camm et  al., 2023) and the seven data visualization 
stages (Byrd & Dwenger, 2021). These methods primar‑
ily draw on theoretical and epistemological perspectives, 
advocating a top‑down approach for designing interven‑
tions or instruction. In comparison, the current study 
employed an equally important bottom‑up approach for 
instructional design. Specifically, it identified students’ 
challenges and strategies relating to data visualization, 
offering insights into designing learning support and 
scaffolds tailored to students’ needs.

Constructing data visualizations is an important aspect 
of DVL, but relatively few studies have addressed this 
aspect (Börner et al., 2019). By systematically investigat‑
ing the learning difficulties faced by the 57 students, the 
study proposes three core aspects for consideration when 
designing teaching support and scaffolds to promote stu‑
dents’ DVL, especially for data visualization construc‑
tion, namely the content, representation and technology 
aspects. That is, students need support in developing suf‑
ficient content knowledge of data for a certain topic (such 
as data attributes for the topic of air quality), and repre‑
sentation skills to precisely represent data and ideas in 
visual formats. Also, with easy access to computer‑based 
data visualization tools which provide new affordances, 
it is becoming equally important to support students’ 
development of knowledge of the application tools.

Instrumentation theory emphasizes the mediat‑
ing role of a tool in learning since the affordances and 
constraints of a tool may influence students’ learning 
processes and strategies (Doorman et al., 2012). There‑
fore, supporting students in constructing data visu‑
alizations via a computer‑based data visualization tool 

may require substantially different interventions or 
instruction than those on paper or when using physical 
objects. Specifically, the newly identified technological 
difficulty in this study indicates the need for students to 
develop knowledge of the application tool for data visu‑
alization. This kind of knowledge is called technological 
content knowledge, and refers to the “knowledge about 
the manner in which technology and content are recip‑
rocally related” (Graham, 2011, p. 1954). Interventions 
are needed to support students in integrating knowl‑
edge of topic data, representation, and technology 
affordance, as the cognitive model of drawing construc‑
tion (CMDC) suggests that prior knowledge plays an 
important role in the construction process (Van Meter 
& Firetto, 2013).

Research has found that college and high school 
students’ DVL may be significantly different in the 
aspect of comprehending and interpreting data visu‑
alizations (Binali et al., 2022). This is likely due to dif‑
ferences stemming from past experiences as college 
students may be more often exposed to the Internet, 
social media and diverse courses that provide oppor‑
tunities for interacting with data visualizations (Angra 
& Gardner, 2017; Binali et  al., 2022; Mansoor & Har‑
rison, 2018). In exploring the differences in college and 
high school students’ processes of constructing data 
visualizations, this study evidenced significant differ‑
ences through ENA. More college students in this study 
focused on the difficulty of how to simplify the data 
with the intention to generate the best data visualiza‑
tion. This led to the need to use more and advanced 
functions of the computer‑based data visualization 
tool. With the rapid development of computer technol‑
ogy, data visualizations can be easily generated using 
computer visualization tools (Li, 2020; Unwin, 2020). 
However, the college students still needed support and 
guidance to take full advantage of the functions and 
features of the visualization tool, as the results showed 
that the technological difficulty was the most frequent 
difficulty encountered. Future research needs to design 
instruction that addresses the different needs of col‑
lege and high school students in order to promote stu‑
dents’ DVL, and should test the effectiveness of the 
instruction.

Moreover, the study goes beyond identifying difficulties 
and comparing the differences between the college and 
high school students to also systematically investigating 
the demonstrated strategies. The identified metavisual 
strategies and how they connected to the difficulties via 
ENA provide concrete examples for incorporating learn‑
ing strategies to facilitate students’ development of DVL, 
especially for constructing data visualizations using 
application tools.
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Innovative use of ENA to reveal how difficulties are 
resolved with strategies
ENA is an innovative and established method that can 
be used to analyze and model individuals’ cognitive work 
or conceptual frameworks (e.g., Chang & Tsai, 2023; 
Rachmatullah & Wiebe, 2022), or groups’ collaborative 
discourse, discussion, action or behavior (e.g., Bressler 
et al., 2019; Sun et al., 2022; Zhang et al., 2022). The use 
of ENA is based on the perspective that students’ ideas or 
actions, no matter whether working individually or col‑
laboratively, rarely occur in isolation (Linn et  al., 2004). 
This current study applied ENA to model and visualize 
the co‑occurrence of the difficulties and strategies so that 
how the participants demonstrated the difficulties and 
how they used strategies to resolve the difficulties during 
the practice of data visualization could be investigated. 
Such application of ENA enables results and insights that 
may not be realized when only codes are counted sepa‑
rately without consideration of their co‑occurrence.

Conclusions
Developing students’ data visualization literacy (DVL), 
such as the ability to adequately construct and interpret 
data visualizations through which conclusions are made 
and communicated, has increasingly become an impor‑
tant goal of STEM education in the Big Data era (Börner 
et al., 2019; Bybee, 2010; NRC, 2012; Peppler et al., 2021). 
This study investigated learners’ difficulties and meta‑
cognitive patterns as they engaged in the practice of data 
visualization construction so that curricula and interven‑
tions can be developed to address learners’ needs. More‑
over, the study contributes to extending and elaborating 
the current understanding of the CMDC and metavisu‑
alization perspectives by providing concrete examples 
and empirical evidence of metacognitive processes in the 
context of data visualization. The study also provides a 
case of applying these perspectives for the topic of data 
visualization in STEM education.

This study identified six types of difficulties associated 
with students constructing data visualizations. The diffi‑
culties indicate areas that data science curricula or inter‑
ventions need to consider in order to develop students’ 
DVL, including the content knowledge to comprehend 
the information in the dataset and context, the techno‑
logical content knowledge to know about the computer‑
based data visualization tool, and the knowledge and 
skills to simplify the data set and represent the data in 
visual forms.

Combining the qualitative coding and analysis and 
quantitative ENA technique, it can be concluded that the 
majority (about three‑quarters) of the students were able 
to generate and use strategies to overcome the data visu‑
alization difficulties. The most frequent strategies used by 

the students are the inducting and resourcing strategies 
to address the most common difficulties, including the 
technological and content difficulties. The study further 
distinguished the strategies into non‑, basic‑ and high‑
level metavisual strategies, which provides insights into 
trajectories for supporting students in forming and using 
data visualization strategies.

Moreover, the different patterns of the college and high 
school students were identified in this study. Specifically, 
the high school students demonstrated more fundamen‑
tal needs including the needs for content knowledge and 
representation skills. In comparison, the college students 
demonstrated the need for knowledge and skills regard‑
ing how to simplify the data to construct the best data 
visualization in a computer‑based data visualization 
environment. Future research is needed to design data 
science curricula to address the different needs of the 
college and high school students and to investigate the 
effects.

One limitation of this study stems from the nature of 
the study which engaged participants in individual inter‑
view sessions; this is a trade‑off for the purpose of focus‑
ing on individuals’ data visualization processes. Future 
research may engage a group or class of students in a 
session and investigate the collaborative and interactive 
processes of data visualization among peers and experi‑
enced others to understand the social factors relating to 
data visualization. The affective factors were not investi‑
gated in this study. Moreover, the participants, the data 
visualization tool used and the visualization task imple‑
mented in the context of the study addressed the issue of 
developing novices’ DVL. The results may not be gener‑
alizable to students with statistics or data science majors. 
Another limitation relates to the use of the think‑aloud 
technique which has constraints depending on individu‑
als’ verbalization abilities, as well as whether metacogni‑
tive or cognitive processes are accessible (Jääskeläinen, 
2010). Future work may combine other techniques such 
as eye tracking to obtain visual attention data for uncon‑
scious cognitive or metacognitive performance (e.g., 
Martinez et al., 2021).

Also, due to the voluntary nature of this study, which 
mainly attracted female students, the generalization of 
the results may be limited. Gender difference was not 
investigated here, but may be investigated in future 
studies, given that gender‑based self‑beliefs, self‑regu‑
lation and metacognitive strategies are presently major 
topics in STEM education and research, and that lit‑
tle research has investigated gender differences in the 
topic of data science education. We found only one 
study investigating this topic, which reported that male 
students exhibited higher levels of learning motiva‑
tion and expectancy for success in taking data science 
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courses, but no gender difference was observed in aca‑
demic performance (Ivaniushina et  al., 2016). While 
Ivaniushina et al.’s (2016) study indicated that male stu‑
dents exhibited higher motivation levels in taking data 
science courses, our study revealed another trend that 
is worthy of discussion and warrants further investi‑
gation. More female students willingly participated 
in the data visualization tasks and interviews in the 
study. However, the student population at the recruit‑
ing schools showed a nearly equal distribution of gen‑
der. Future research is needed to investigate the reason 
for the observed gender difference in this study. Never‑
theless, we conjecture the possible significance of con‑
textual factors. For instance, participation in research 
scenarios such as the visualization tasks and interviews 
in this study did not require the long‑term commit‑
ment needed in the context of taking a data science 
course. How different contexts of learning data science 
may motivate different populations merits increased 
attention and warrants further exploration in future 
research. Finally, the study did not focus on reporting 
the quality of the visualization products or explore the 
relationships between the students’ demonstrated strat‑
egies and difficulties and the quality of the final prod‑
ucts, which can be continuing and future work.
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