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Abstract 

Background There exist shared competencies between computational thinking (CT) and mathematics, and these 
two domains also mutually benefit from various teaching approaches. However, the linkages between mathemat‑
ics and computational thinking lack robust empirical support, particularly from student‑centered learning perspec‑
tives.  Our study aimed to enhance our understanding of the connections between students’ mathematics learning 
and computational thinking. To assess students’ mathematics learning, we measured their beliefs about mathematics 
learning and their level of mathematical literacy (ML). Our hypothesis posited that students’ beliefs concerning math‑
ematics learning, encompassing their views on the nature of mathematics and their attitude towards the subject, 
can both directly and indirectly influence their CT, with ML serving as a mediating factor. Our data were gathered 
through surveys and tests administered to eighth‑ and ninth‑grade students. Data were analyzed using partial least 
squares–structural equation modeling (PLS–SEM).

Results The evaluation of the measurement model indicated strong internal consistency for each construct. Both 
convergent and discriminant validity were also established. Upon assessing the structural model, it was found 
that beliefs about the nature of mathematics positively predicted attitudes towards mathematics, and this belief 
also indirectly predicted ML through positive attitudes towards mathematics. In addition, ML directly and positively 
predicted both CT subscales. Notably, a comprehensive mediating effect of ML on beliefs about mathematics learn‑
ing and CT was identified in the analysis.

Conclusions This study advances the understanding of the relationships between mathematics learning and CT. 
We have further confirmed the importance of mathematical literacy in predicting CT and its mediating role 
between beliefs about mathematics learning and CT. It is suggested that teachers could promote students’ CT 
competence by enhancing their mathematical literacy or integrating mathematics and CT into the same learning 
activities. Finally, we propose that upcoming investigations treat CT assessments as formative constructs, diverging 
from their reflective counterparts.
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Introduction
Computational thinking (CT) is a widely applicable form 
of literacy in the twenty-first century that is necessary for 
solving problems in various domains (Çoban & Korkmaz, 
2021; Grover & Pea, 2018; Peel et al., 2022). The impor-
tance of providing students with CT-integrated educa-
tion has been gaining global attention, and the presence 
of CT in K-12 classrooms has also been increasing over 
the last decade (Hurt et al., 2023; Lee & Lee, 2021; Shute 
et al., 2017; Weintrop et al., 2021; Ye et al., 2023). CT is 
regarded as a series of thinking abilities that use fun-
damental concepts of computer science to solve prob-
lems (Wing, 2006). It integrates mathematical thinking, 
engineering thinking and scientific thinking in solving 
problems, designing and evaluating systems, and under-
standing intelligence and human behavior (Wing, 2008). 
Researchers have also claimed that CT should be con-
sidered as a domain-general ability, that is, the ability to 
solve complex daily-life problems (Li et al., 2020b; Yadav 
et  al., 2016). In other words, CT involves solving prob-
lems using the abilities to order logically, analyze data, 
and create solutions by following sequences and rules. It 
also allows students to apply what they have learned in 
real-life situations (Yadav et al., 2016).

Recent literature provides valuable insights into the 
intricate interplay between CT and mathematics educa-
tion, as well as the connection between CT and mathe-
matical thinking (MT). From a competency perspective, 
CT and mathematics share common competencies, such 
as problem solving, modeling, analyzing and interpret-
ing data, statistics and probability (Sneider et  al., 2014). 
Mathematics thinking and computational thinking are 
similar in terms of abstract problem solving, and they 
may support each other (Rycroft-Smith & Connolly, 
2019). Researchers have also claimed that the process of 
mathematical problem solving involves components of 
CT (Denning, 2017; Nurhayati & Lutfianto, 2020).

From a teaching perspective, mathematical activities 
can be used as a starting point for CT (Kallia et al., 2021), 
and CT and mathematics learning objectives can be inte-
grated into the same curriculum (Chan et  al., 2023; Pei 
et al., 2018). Through a systemic literature review, Khoo 
et al. (2022) found that CT was implemented into math-
ematics education through two common approaches, 
namely, using software tools as a medium for CT in the 
mathematics curriculum, and teaching CT as a way of 
thinking. The former approach was also commonly used 
in engineering and STEM, where computing skills and 
computer programming were taught using CT in rela-
tion to mathematics (Ersozlu et  al., 2023). In another 
study, Wu and Yang (2022) reviewed how CT and MT 
have been integrated into mathematics education. They 
concluded three types of relationships between CT and 

MT, namely: (1) contribution of CT to MT, usually when 
using software and programming; (2) contribution of MT 
to CT in problem solving, and (3) reciprocal relationships 
between CT and MT through embedding CT into math-
ematics education.

Although the aforementioned studies have classified 
the relationships between mathematics and CT from 
teaching perspectives, empirical evidence from learn-
ers’ perspectives and competence in this area remains 
limited. Moreover, while past studies have been using 
qualitative methods to explore the relationships between 
mathematics and CT teaching, there is a lack of statisti-
cal models that accurately depict the direct and indirect 
relationships among constructs related to mathematics 
learning and CT (Lv et al., 2023). Thus, our study aimed 
to gain insights into the associations between students’ 
mathematical learning and CT through quantitative 
modeling. In our model, we specifically include beliefs 
about learning mathematics as a crucial component. 
Learners’ beliefs about, attitude towards, and perceptions 
of mathematics can significantly influence their engage-
ment in, motivation for, and approach to mathematical 
learning (Gjicali & Lipnevich, 2021; Metzger et al., 2019). 
To adopt a competency-focused perspective and to 
emphasize the real-life applicability of mathematics and 
computational thinking, we chose to measure two key 
constructs: mathematical literacy and non-programming 
CT competence.

The Organization for Economic Cooperation and 
Development (OECD, ) defines mathematical literacy as 
the ability to engage with and use mathematics in vari-
ous contexts, effectively applying mathematical concepts, 
reasoning, and problem-solving skills to solve real-life 
problems. It encompasses the capacity to understand, 
interpret, and critically evaluate mathematical informa-
tion. Non-programming CT competence refers to the 
ability to think critically and algorithmically, solve prob-
lems, analyze data, and make informed decisions using 
computational thinking strategies that do not require 
programming (Selby & Woollard, 2013; Shute et  al., 
2017). Further details about our hypothesized model 
will be provided later, offering a more comprehensive 
explanation.

Computational thinking (CT)
Researchers have provided various definitions of CT. 
On one hand, CT has been described as being related 
to computer programming and computer concepts. For 
instance, CT has been defined as identifying computa-
tional aspects of the world and applying computer science 
tools and methodologies to comprehend the functioning 
of natural and man-made systems (Royal Society, 2012). 
Brennan and Resnick (2012) have specifically defined 
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three key dimensions of CT: computational concepts, 
computational practices, and computational perspec-
tives. Looking through a data modeling lens, Weintrop 
et  al. (2016) classified CT into four categories, namely, 
data practices, modeling and simulation, computational 
problem solving, and systems thinking. In sum, the pro-
gramming-related CT definitions are diverse and focus 
on different aspects of computing or programming.

On the other hand, CT has been recognized as a fun-
damental competence for general problem solving and 
as a cognitive process rooted in logical reasoning (Csiz-
madia et  al., 2015; Tang et  al., 2020). Many definitions 
encompass algorithmic thinking, decomposition, pattern 
generalization, abstractions, and evaluation, which can 
be effectively utilized for curriculum development and 
assessment (Csizmadia et  al., 2015; Selby & Woollard, 
2013; Shute et al., 2017). According to Csizmadia et al.’s 
(2015) suggested CT definitions, algorithmic thinking 
refers to the capability to discern sequences and rules to 
address issues or understand scenarios. Decomposition 
involves the ability to break down problems into compo-
nents, while generalization is the ability for solving prob-
lems rapidly based on previous solutions. In addition, 
abstraction denotes the skill to eliminate unnecessary 
details for making problem solving more feasible and 
effective. Finally, evaluation pertains to the capacity to 
ascertain if a solution, whether an algorithm, system, or 
process, is suitable for its intended purpose. In our study, 
we adopted the CT definition aligned with the problem-
solving perspective and assessed students’ thinking skills 
in real-life situations (Selby & Woollard, 2013; Shute 
et al., 2017).

Scholars have developed different assessment tools 
based on the aforementioned definitions of CT, and 
the assessment tools for CT are categorized into self-
reported CT scales and CT tests (Cutumisu et al., 2019). 
An instance of a CT scale is the Computational Thinking 
Scale (CTS) devised by Korkmaz et al. (2017), comprising 
subscales, such as algorithmic thinking, creativity, coop-
erativity, critical thinking, and problem solving. CT tests 
could be further categorized into two subtypes: domain-
specific CT assessment, such as programming-based or 
computer concept-based CT assessment, and domain-
general CT assessment. An illustration of a domain-
specific assessment is the computational thinking test 
(CTT), a programming-based CT assessment introduced 
by Román-González et  al. (2018a). It was designed to 
assess middle school students’ CT skills through com-
puter science concepts, such as sequences and loops. 
A sample question asks students which code makes the 
correct path that takes Pac-Man to the ghost. An exam-
ple of domain-general CT assessment is the Bebras® 
Computing Challenge, an international competition for 

informatics and computational thinking (https:// www. 
bebras. org/). Bebras aims to foster students’ CT interest 
and competence by solving problems based on real-life 
situations. Devoid of any programming involvement, the 
Bebras challenge aims to evaluate participants’ abilities, 
whether directly or indirectly linked to CT (Dagiene & 
Stupuriene, 2016). In this study, the CT measurement 
was derived from Bebras to assess students’ proficiency 
in applying their CT skills to diverse problems and situa-
tions (del Olmo-Muñoz et al., 2020).

Mathematical literacy
Researchers have also uncovered the interplay between 
ML and various psychological factors, including 
enhanced mathematics self-efficacy, motivation, math-
ematics intentions, and perseverance (Kitsantas et  al., 
2021; Ozgen, 2013; Rahmi et  al., 2017; Skaalvik et  al., 
2015). Mathematical Literacy (ML) encompasses a spec-
trum of attributes, spanning from adept mathematical 
reasoning and comprehensive content knowledge to a 
positive mathematical disposition. It further encapsu-
lates an awareness of mathematics’ practical utility and 
an appreciation of the essence and nature of mathematics 
(Edge, 2009).

Beyond mere proficiency in mathematical knowledge 
and skills, mathematical literacy (ML) encompasses the 
adeptness and confidence to apply mathematical insights 
within real-life contexts (Ojose, 2011). In other words, the 
significance of mathematical literacy lies in its potential 
to inspire students to address practical problems rooted 
in mathematical concepts (Consortium for Mathematics 
and Its Applications [COMAP], 2015). This imperative is 
reflected in the assessment of ML within the Programme 
for International Student Assessment (PISA) test, where 
it emphasizes the application of mathematics in authen-
tic scenarios. Here, students’ capacity for mathematical 
reasoning and depicting relationships holds more weight 
than their proficiency in tackling conventional textbook 
queries, serving as a robust indicator of their mathemati-
cal competencies (Lin & Tai, 2015).

In this study, we adopted the ML definitions coined 
by the Organization for Economic Co-operation and 
Development (OECD) by which ML is as "an individual’s 
capacity to formulate, employ, and interpret mathemat-
ics across a spectrum of situations" (OECD, 2013, p. 25). 
The term employ refers to the application of accumulated 
mathematical knowledge, which encompasses principles, 
methodologies, facts, and tools, to address mathemati-
cal challenges. Formulate signifies the ability to identify 
opportunities for applying mathematics and to trans-
form problems into patterns that align with mathematical 
structural representations. Interpret refers to the abil-
ity to recognize and explain the relationship between 

https://www.bebras.org/
https://www.bebras.org/
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mathematical solutions or responses and the contexts of 
real-world scenarios (OECD, 2019).

Beliefs related to mathematics learning
In the field of cognitive psychology, there has been 
increasing interest in studying students’ beliefs about 
mathematics learning (Jin et al., 2010; Leder et al., 2006). 
Mathematical beliefs refer to the personal opinions, atti-
tude, or values that individuals hold about mathematics 
and the nature of mathematics (Ernest, 1989; Underhill, 
1988). Other researchers have also included students’ 
perceptions of mathematics usefulness, mathemat-
ics learning, and mathematics teaching as constructs 
of beliefs about mathematics learning (Lazim, 2004; 
McLeod, 1992). Researchers have found empirical evi-
dence of a relationship between students’ beliefs about 
the nature of mathematics and their mathematics learn-
ing. Students with positive beliefs about and attitude 
towards mathematics tend to perform better (Papanasta-
siou, 2000). Studies have shown that beliefs about math-
ematics learning could positively predict mathematics 
outcomes, such as performance on mathematics tests 
(Bonne & Johnston, 2016; House & Telese, 2008; Suthar 
& Tarmizi, 2010; Suthar et al., 2010). Scholars have sug-
gested that future research could further investigate 
beliefs about the nature of mathematics and about stu-
dents’ mathematical capability due to their relationships 
with students’ mathematics self-efficacy and their math-
ematics achievements (Yin et al., 2020).

Hypothesized model
In this study, we hypothesized that students’ beliefs about 
the nature of mathematics and their attitude towards 
mathematics could both directly and indirectly predict 
their CT through the mediation of mathematics perfor-
mance. First, we hypothesized that beliefs about math-
ematics learning are predictors of ML and CT. These 
hypotheses have been based on previous studies which 
found that students’ beliefs may contribute to higher lev-
els of thinking or competencies. As mentioned earlier, 
studies have shown that beliefs about mathematics learn-
ing can positively predict mathematics outcomes (Bonne 
& Johnston, 2016; House & Telese, 2008; Suthar & 
Tarmizi, 2010; Suthar et al., 2010). Sanico’s (2019) study 
demonstrated that mathematics belief was positively cor-
related with mathematics problem-solving performance, 
but could only indirectly predict mathematical problem-
solving performance. Schommer-Aikins et al. (2005) also 
discovered that mathematical problem-solving beliefs 
and epistemological beliefs could positively predict stu-
dents’ mathematics performance. To date, few studies 
have explored the relationships between beliefs about 
mathematics learning and CT. Nevertheless, other beliefs 

have been found to be predictors of CT. For instance, 
research has shown that students’ beliefs about computer 
programming can predict their computational thinking 
(Lee et al., 2023).

Second, we hypothesized that ML predicts students’ 
CT. Since our study focused on non-programming CT, 
we adopted the perspective of the “contribution of math-
ematical thinking to CT,” as previously mentioned (Wu 
& Yang, 2022). Studies integrating CT into mathemat-
ics education have shown positive results regarding the 
relationship between CT and mathematics learning out-
comes (Sung & Black, 2020; Sung et  al., 2017; Suters & 
Suters, 2020). For instance, Özgür (2020) conducted 
research on the relationship between CT and students’ 
previous mathematics academic achievement through 
structural equation modeling (SEM). The results dem-
onstrated that students’ previous mathematics academic 
achievement was not only positively correlated with CT, 
but could also positively predict CT, and the same result 
was found by Durak and Saritepeci (2018) and Finke et al. 
(2022). Guggemos (2021) measured CT and mathemati-
cal skills at three different timepoints to see the rela-
tionships between these two types of skills. The results 
showed that CT at any timepoint was positively corre-
lated with students’ mathematical skills, and CT was pos-
itively predicted by mathematical skills. What is worth 
mentioning here is that most of the aforementioned 
studies studied mathematics achievement. Mathemat-
ics achievement measures an individual’s performance 
within the confines of a specific curriculum or learning 
content within a certain period of time (i.e., a semester), 
while mathematical literacy, as the focus of the current 
study, goes beyond this and assesses the practical appli-
cation of mathematics knowledge in real-world contexts. 
Nevertheless, both concepts are important for overall 
mathematics proficiency, and are interconnected.

Finally, we hypothesized relationships between the 
sub-scales of beliefs about mathematics learning and the 
sub-scales of CT. Our primary interest was to explore 
potential hierarchical relationships between these two 
sets of sub-scales. Furthermore, we chose to use first-
order rather than second-order constructs as they offer 
a more straightforward representation of relationships 
(Hair et al., 2021).

Specifically, we hypothesized that beliefs about 
nature of mathematics would predict attitude towards 
mathematics. However, we also acknowledged the pos-
sibility of a reciprocal relationship, where the nature 
of mathematics could also predict attitude towards 
mathematics. Beliefs about nature of mathematics rep-
resents a learner’s philosophical orientation towards 
the nature of knowledge, while attitude towards math-
ematics reflects self-evaluations of emotions, interest, 
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motivation, and perceived usefulness of the subject. We 
assume that an epistemic and philosophical construct 
can serve as a predictor of an affective construct.

In a previous study, Tsai et  al. (2022) found that CT 
dispositions were divided into lower level and higher 
level based on the level of cognitive complexity and 
the information-processing theory of human problem 
solving. Tsai et  al. (2022) showed that lower level CT 
components, such as abstraction and decomposition, 
significantly predicted higher level CT, including algo-
rithmic thinking, evaluation, and generalization. We 
aimed to investigate whether a similar pattern exists in 
the context of CT competence.

In this study, the measurement of CT, the computa-
tional thinking test for Junior High Students (CTT–JH) 
(Lee et  al., 2023), was adapted and modified from the 
Bebras Challenges and was used to determine how well 
students could apply their CT skills to real-life prob-
lems and situations (del Olmo-Muñoz et al., 2020). This 
instrument focused on a generous process of problem 
solving which is independent of the type of program-
ming language. In addition, this instrument has been 
well-validated and has good reliability overall, as well 
as in all five dimensions based on empirical data (Lee 
et al., 2023).

In sum, the hypothesized model is shown in Fig.  1. 
The purposes of this study were (1) to investigate the 
roles of beliefs about mathematics learning and math-
ematical literacy in predicting CT competence, and 
(2) to investigate the mediating role of ML in the pro-
posed model.

Methods
Research instruments
Computational thinking test
We adapted items from the measurement of CT, the com-
putational thinking test for Junior High Students (CTT–
JH) (Lee et  al., 2023). The test was developed based on 
Bebras Challenge tasks for assessing five dimensions 
of CT, namely, abstraction, decomposition, algorith-
mic thinking, evaluation, and generalization. These five 
dimensions were defined as the competence of abstract-
ing essential information, breaking down complicated 
problems into manageable parts, thinking procedurally 
as a sequence of steps to reach a solution, deciding the 
most appropriate solution to the problem, and adapting 
and transferring solutions to other problems (Lee et  al., 
2023). Each item was designed to assess one or more CT 
dimensions simultaneously, and collectively CTT–JH 
is a multi-dimensional research instrument. The assess-
ment comprises multiple-choice questions, with each 
correct answer earning 1 point. To further categorize the 
items into lower and higher levels of CT, the first author 
and two other experts in computing education and CT 
research reviewed the items. The group of experts exam-
ined the CT dimensions assessed by each item and, as 
a result, four items assessing lower level CT and four 
assessing higher level CT were selected. Lower level CT 
primarily assesses abstraction and decomposition, while 
higher level CT assesses algorithmic thinking, evaluation, 
and generalization (Tsai et al., 2022). A sample question 
is shown in Appendix 1. The corresponding CT dimen-
sions for each item are shown in Appendix 2.

Fig. 1 Hypothesized model showing the relationships between beliefs about the nature of mathematics, attitude towards mathematics, 
mathematical literacy, and computational thinking (lower level and higher level)
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Mathematical literacy test
The ML measurement was adapted from the mathemati-
cal reasoning items of PISA 2012. A total of nine items 
were included in the test in this study, with three ques-
tions for each of the employ, formulate and interpret 
constructs. Each item in the assessment consisted of a 
multiple-choice question, with 1 point awarded for a cor-
rect answer. Students’ ability to work out solutions to 
mathematical problems through applying mathematical 
concepts (employ), transform problems into mathemati-
cal structures (formulate), and determine and explain the 
connection between mathematical solutions and real-life 
situations (interpret) were assessed. To further ensure 
the content validity of the items, the first author and 
two other experts in mathematics education reviewed 
and selected the items. Sample questions are shown in 
Appendix 3.

The beliefs about the nature of mathematics scale 
and the attitude towards mathematics scale
The items for both the Beliefs about the Nature of Math-
ematics Scale and the Attitude towards Mathematics 
Scale were adapted from a questionnaire about beliefs in 
mathematics (Lazim et al., 2004; Su, 2018). Beliefs about 
the nature of mathematics refers to students’ perspec-
tives on mathematics and its significance in their lives. 
Attitude towards mathematics encompasses students’ 
holistic evaluation, perception, and emotional stance 
towards mathematics, encompassing their preferences, 
confidence, interest, and perceived utility or relevance of 
mathematics in their daily lives. We made the decision 
to rename the original “self-evaluation” scale to “attitude 
towards mathematics” to better capture the essence of 
the items included in this scale.

The initial questionnaire consisted of five items each 
for beliefs about the nature of mathematics (NM) and 
attitude towards mathematics (AM). All items were rated 
on a 5-point Likert scale, ranging from 1 (strongly disa-
gree) to 5 (strongly agree). For example, an NM sample 
item is “Mathematics enables people to understand the 
world better,” while an AM sample item is “I have been 
performing well in mathematics exams.” During the PLS–
SEM analysis, one item from the original set of questions 
for the NM scale was excluded due to its low factor load-
ing. For a comprehensive list of the remaining items in 
both scales, please refer to Table 1 in the Results section.

Data collection and data analysis
Participants were recruited from eighth- and ninth-grade 
students attending four junior high schools in central 
Taiwan. Data collection took place in both urban and 
rural areas, with two schools selected from each setting. 

This approach ensured the inclusion of a more diverse 
range of socio-economic backgrounds. Out of the 265 
students who initially participated in the study, 247 valid 
samples were retained, comprising 131 females and 116 
males. Data were collected using face-to-face paper-
and-pencil questionnaires and tests. Prior to administer-
ing the survey, the research team obtained oral consent 
from each participant. This process involved explaining 
the study’s purpose and nature, highlighting voluntary 
participation, and assuring the confidentiality and ano-
nymity of responses. Participants were assured that their 
test results would not impact their school grades. Their 
rights were fully disclosed, and they had the option to 
decline participation or withdraw at any time without 
any consequences. The research team also ensured that 
participants had the opportunity to ask questions and 
seek clarification before giving their oral consent. Subse-
quently, the questionnaires and tests were administered 
consecutively, with the entire process typically taking no 
more than 90 min to complete.

The decision to employ partial least squares–structural 
equation modeling (PLS–SEM) instead of covariance-
based structural equation modeling (CB–SEM) in this 
study was driven by several considerations. First, due 
to the relatively small amount of data, PLS–SEM was 
deemed more appropriate. Second, PLS–SEM is recog-
nized for its strong predictive capabilities, as it focuses 
on minimizing residual variance and enabling accurate 
predictions based on the model (Lin et  al., 2020). This 
aligns well with the study’s focus on variables related to 
mathematics learning that potentially predict CT.

Third, PLS–SEM offers the advantage of accommodat-
ing both formative and reflective constructs within the 
model (Hair et al., 2021). Reflective constructs represent 
latent variables measured by observed indicators, while 
formative constructs are composed of observed variables 
that collectively define the latent variable. Formative con-
structs are particularly useful when the construct being 
measured is seen as a combination of different dimen-
sions or factors, with each observed variable contribut-
ing uniquely to the construct (Hair et  al., 2021). In this 
study, while beliefs about the nature of mathematics and 
attitude towards mathematics were treated as reflective 
constructs, the CT test and ML test were considered as 
formative constructs. In sum, by utilizing PLS–SEM, 
this study addressed the limitations posed by the small 
amount of data, leveraged the predictive capabilities 
of the model, and accommodated both formative and 
reflective constructs.

Two-stage evaluation was employed using PLS–SEM: 
evaluation of the measurement model and evaluation 
of the structural model. The evaluation criteria for the 
measurement model (i.e., the first stage evaluation) have 
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to be met before further analyzing the structural model 
(i.e., the second-stage evaluation). For the measurement 
model, the reflective constructs were evaluated by assess-
ing the internal consistency reliability, convergent valid-
ity, and discriminant validity. The formative constructs 
were evaluated by assessing variance inflation factor val-
ues (VIF), and outer weights. The structural model was 
then evaluated using the PLS–SEM algorithm and boot-
strapping resampling to test the statistical significance 
of the path coefficients. The path weighting scheme was 
selected as the weighting method, with a threshold value 
of 1·10–5 (i.e., stop criterion), and a value of at least 300 
for the maximum number of iterations (Hair et al., 2021). 
This study applied the bootstrapping procedure with 247 
cases and 5000 samples to test the contribution of the 
formative indicators to their associated constructs and 
the structural path significance.

To assess the predictive power of the model, several 
measures were calculated, including the effect size (f2), 
coefficient of determination (R2 value), and Q2 value. The 
R2 value quantifies the extent to which the exogenous 
constructs linked to an endogenous construct explain 
its variance (Sarstedt et  al., 2016). The effect size f2, on 
the other hand, quantifies the magnitude of change in 
R2 when a construct is omitted from the model, offering 
insights into the influence of one construct on another 
(Hair et  al., 2021). In addition, the Q2 value (Geisser, 
1974) serves as another measure to assess the internal 
model, specifically its predictive relevance for a given 
endogenous construct.

Results
Measurement model
Construct reliabilities and construct validities were tested 
to examine the quality of the measurement model. Reli-
ability for verifying internal consistency of the indicators 

of each construct was tested by the composite reliabil-
ity (CR) values and the Cronbach’s alpha values (Fornell 
& Larcker, 1981). As shown in Table 1, the CR values of 
the constructs were 0.82 and 0.93, which were above the 
suggested value of 0.70. The Cronbach’s alpha values of 
the constructs were 0.71 and 0.90, which also met the 
requirement of being greater than 0.70. These results 
show that the internal consistency of the indicators for 
each construct was good, and the measurement model 
had sufficient reliability.

To verify whether the measurements effectively 
reflected the corresponding measured constructs, con-
vergent validity and discriminant validity were assessed. 
Convergent validity of the measurements was validated 
by factor loadings of indicators and the average vari-
ance extracted (AVE) of constructs (Hair et  al., 2019). 
The factor loadings of the individual items were all above 
0.6 (see Table  1), which is acceptable according to Hair 
et al. (2021). The AVE values of the constructs were 0.53 
and 0.72, which were higher than the suggested value of 
0.5. In accordance with Fornell and Larcker (1981), these 
results suggested adequate convergent validity.

Discriminant validity, which refers to the degree to 
which each construct in the resulting model is distinct 
from the others, was measured through the Fornell–
Larcker criterion (Fornell & Larcker, 1981) and cross 
loadings. The cross loadings of measurement variables 
should be higher than the related latent variable (Chin, 
1998). The correlation matrix and the square root of 
the AVE value of Nature of Mathematics and Attitude 
towards Mathematics are shown in Table 2. The results 
showed that the two variables were significantly corre-
lated with each other (r = 0.56, p < 0.001) and the square 
root of the AVE value of each variable was higher than 
0.5 (0.73, 0.85) and larger than the Pearson’s correla-
tion coefficient between the two variables. As shown in 

Table 1 Construct reliability and validity

CR: composite reliability; AVE: average variance extracted

Mean SD Factor loadings Cronbach’s 
alpha

CR AVE

Nature of Mathematics (NM) 0.71 0.82 0.53

 NM 1. Mathematics is a field of manipulating numbers and symbols 3.72 0.86 0.64

 NM 2. Mathematics is important in real life 3.74 0.88 0.68

 NM 5. Mathematics provides a foundation for applied sciences 3.95 0.87 0.83

 NM 6. Mathematics enables people to understand the world better 3.13 1.04 0.76

Attitude towards mathematics (AM) 0.90 0.93 0.72

 AM 1. I have been doing well in mathematics exams 2.90 1.19 0.85

 AM 2. I have been interested in mathematics, since I was little 2.64 1.18 0.87

 AM 3. I like mathematics 2.84 1.24 0.90

 AM 4. I do not hate mathematics classes 3.30 1.17 0.83

 AM 5. I think mathematics is a useful subject and is worth learning 3.42 1.07 0.79
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Table 3, all cross loadings were higher than each related 
latent variable. Therefore, the discriminant validity of 
the variables was confirmed (Hair et al., 2021).

In our analysis, the collinearity, significance, and 
relevance of formative indicators or items within the 
measurement models were assessed by variance infla-
tion factor (VIF), outer weights, and outer loadings for 
this analysis. In this research, both CT and ML were 
considered as formative constructs. Moreover, CT was 
categorized into lower level (LLCT) and higher level 
CT (HLCT). The presence of acceptable collinearity 
and adequate construct validity were signified by VIF 
values less than 5. This indicated that an item’s contri-
bution to the primary latent construct was unique, as 
noted by Hair et  al. (2021). As shown in Table  4, the 
VIF values for all items in this study ranged from 1.02 
to 1.25.

According to Hair et  al. (2021), an item’s relative 
importance in formative constructs is determined by its 
outer weight, while its absolute importance to the con-
struct is determined by its outer loading. An item was 
kept in the measurement model if it had a significant 
outer weight (p < 0.05), or if its outer loading was higher 
than 0.5. Items that did not meet these criteria were 
further evaluated based on the significance of their 
outer loading. If an item’s outer loading was lower than 
0.5 and not significant, indicating no absolute impor-
tance to the construct, it was ultimately removed from 
the model. As per these criteria, the items that were 
retained are shown in Table 4.

The structural relationships
We used PLS–SEM to test our proposed theoretical 
hypotheses, which included the relationships between 
NM, AM, ML, and the higher and lower levels of CT. The 
paths with statistical significance (p < 0.05) are shown in 
Fig. 2. The results indicated that beliefs about the nature 
of mathematics positively predicted attitude towards 
mathematics (β = 0.56, t = 11.22, p < 0.001); attitude 
towards mathematics positively predicted mathemati-
cal literacy (β = 0.48, t = 7.06, p < 0.001); mathematical 
literacy positively predicted lower level computational 
thinking (β = 0.42, t = 6.40, p < 0.001) and higher level 
computational thinking (β = 0.38, t = 5.77); and lower 
level computational thinking positively predicted higher 
level computational thinking (β = 0.34, t = 5.61, p < 0.001).

In addition, as shown in Fig.  2, the f 2 effect sizes for 
significant paths were all larger than 0.15, showing a 
moderate or large effect according to Cohen’s (1988) sug-
gestion that 0.02, 0.15 and 0.35 indicate small, moderate, 
and large effects, respectively. It is worth noting that the 
f 2 value of beliefs about the nature of mathematics pre-
dicting attitude towards mathematics was 0.45, which 
showed a large effect on attitude towards mathematics.

The predictive validities of the model were indicated 
by the coefficient of determination  (R2) and predictive 
relevance (Q2) (see Fig. 2). The endogenous constructs 
including attitude towards mathematics (R2 = 30.95%), 
mathematical literacy (R2 = 18.33%), lower level CT 
(R2 = 20.09%) and higher level CT (R2 = 40.06%) pre-
sent acceptable levels of explained variance (Chin, 
1998; Tenenhaus et al., 2005). Moreover, the predictive 

Table 2 Discriminant validity (Fornell–Larcker criterion)

Diagonal numbers in bold type are the square root of AVE of each construct

NM AM

NM 0.73
AM 0.56 0.85

Table 3 Discriminant validity (cross loadings)

NM: beliefs about nature of mathematics; AM: attitude towards mathematics

NM AM

NM1 0.64 0.31

NM2 0.68 0.35

NM5 0.83 0.48

NM6 0.76 0.46

AM1 0.45 0.85
AM2 0.41 0.87
AM3 0.41 0.90
AM4 0.49 0.83
AM5 0.59 0.79

Table 4 Formative indicator weights and significance testing 
results (VIF and significance of outer weights)

CT: computational thinking; LLCT: lower level CT; HLCT: higher level CT

**p < 0.01, ***p < 0.001

Indicator VIF Outer weight p value (OW)

LLCT CT1 1.05 0.38 < 0.001***

CT2 1.10 0.51 < 0.001***

CT3 1.03 0.32 0.009**

CT4 1.03 0.49 < 0.001***

HLCT CT5 1.14 0.30 0.006**

CT6 1.23 0.53 < 0.001***

CT7 1.02 0.24 0.004**

CT8 1.19 0.43 < 0.001***

ML Employ1 1.21 0.14 0.161

Employ3 1.12 0.10 0.300

Formulate1 1.25 0.56 < 0.001***

Formulate2 1.15 0.27 0.009**

Interpret2 1.12 0.38 < 0.001***

Interpret3 1.12 0.17 0.054
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relevance is evaluated through Stone–Geisser’s Q2 test. 
Q2 greater than 0 implies that the model has predic-
tive relevance, whereas a Q2 less than 0 suggests that 
the model lacks predictive relevance (Stone, 1974). 
Our model shows positive Q2 values of the endogenous 
constructs (see Fig.  2; attitude towards mathematics 
Q2 = 0.216, mathematical literacy Q2 = 0.049, lower level 
CT Q2 = 0.053 and higher level CT Q2 = 0.136) which 
suggests that the model has predictive validity.

Mediation
As shown in Table  5, attitude towards mathematics, 
mathematical literacy and lower level computational 
thinking played significant mediating roles. Attitude 

towards mathematics mediated the relationship between 
beliefs about the nature of mathematics and mathemati-
cal literacy (β = 0.269, p < 0.001), while mathematical lit-
eracy mediated the relationship between attitude towards 
mathematics and lower level computational thinking 
(β = 0.203, p < 0.001), and between attitude towards 
mathematics and higher level computational thinking 
(β = 0.181, p < 0.001). In addition, lower level computa-
tional thinking mediated the relationship between math-
ematical literacy and higher level computational thinking 
(β = 0.142, p < 0.001).

Analysis showed a serial mediation effect between 
beliefs about the nature of mathematics and lower 
level computational thinking through attitude towards 

Fig. 2 Structural model results (only significant paths are shown). NM: beliefs about the nature of mathematics; AM: attitude towards mathematics; 
ML: mathematical literacy; LLCT: lower level CT; HLCT: higher level CT. ***p < 0.001

Table 5 Mediation analyses showing the direct, indirect, and total effects for the hypothesized model paths

NM: beliefs about the nature of mathematics; AM: attitude towards mathematics; ML: mathematical literacy; LLCT: lower level CT; HLCT: higher level CT

Path Direct effect Mediator Indirect effect Total effect Mediation

β p β p β p

NM–ML − 0.121 0.155 AM 0.269 < 0.001 0.148 0.061 Full

NM–LLCT 0.144 0.058 AM − 0.016 0.736 0.125 0.064 None

ML − 0.051 0.187 0.093 0.171 None

AM–ML 0.113 < 0.001 0.257 < 0.01 Full

NM–HLCT 0.022 0.701 AM 0.030 0.450 0.052 0.247 None

ML − 0.045 0.181 − 0.023 0.718 None

LLCT 0.049 0.091 0.071 0.259 None

AM–LLCT − 0.005 0.742 0.017 0.778 None

ML–LLCT − 0.017 0.210 0.005 0.933 None

AM–ML 0.101 < .001 0.123 0.064 Full

AM–ML–LLCT 0.038 < .01 0.060 0.289 Full

AM–LLCT − 0.029 0.727 ML 0.203 < .001 0.174 < 0.05 Full

AM–HLCT 0.054 0.434 ML 0.181 < .001 0.235 < 0.001 Full

LLCT − 0.010 0.733 0.044 0.566 None

ML–LLCT 0.069 < 0.001 0.123 0.084 Full

ML–HLCT 0.375 < .001 LLCT 0.142 < 0.001 0.517 < 0.001 Partial
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mathematics and mathematical literacy (β = 0.113, 
p < 0.001), and also between beliefs about the nature of 
mathematics and higher level computational thinking 
(β = 0.101, p < 0.001). Moreover, there was a serial media-
tion effect between beliefs about the nature of mathe-
matics and higher level computational thinking through 
attitude towards mathematics, mathematical literacy, and 
lower level computational thinking (β = 0.038, p = 0.002). 
Finally, a serial mediation effect between attitude towards 
mathematics and higher level computational thinking 
through mathematical literacy and lower level computa-
tional thinking was also shown by the analysis (β = 0.069, 
p = 0.001).

As there were no significant direct relationships 
between beliefs about the nature of mathematics and 
mathematical literacy, the indirect effect for the media-
tion by attitude towards mathematics was full media-
tion. Similarly, the indirect effect for the mediation by 
mathematical literacy was full mediation as well. Because 
mathematical literacy directly predicted higher level 
computational thinking, the indirect effect for the media-
tion by lower level computational thinking was partial 
mediation.

Discussion and implications
This study proposed a hypothesized model to assess the 
relationships among beliefs about mathematics learn-
ing (beliefs about the nature of mathematics, and atti-
tude towards mathematics), ML, and CT (lower level 
CT, higher level CT). According to the model analysis, 
it was confirmed that beliefs about mathematics learn-
ing could positively predict ML, and ML could, in turn, 
positively predict CT. Although the direct relationship 
between beliefs about mathematics learning and CT was 
not found in the model, beliefs about mathematics learn-
ing could indirectly predict CT through ML, which con-
firms the mediating role of ML in the proposed model. 
In addition to the above findings, beliefs about the nature 
of mathematics were found to positively predict attitude 
towards mathematics, and lower level CT was also con-
firmed to positively predict higher level CT. In the fol-
lowing, we will discuss our major findings.

First, it was found that CT was directly predicted by 
ML, indicating that an increase in students’ ML cor-
responded to an enhancement in their CT skills. These 
results resonate with the findings of Durak and Saritep-
eci (2018) and Özgür (2020). Wing’s (2008) comments 
indicating that CT is a concept that integrates math-
ematical thinking into solving a problem, designing and 
evaluating a system, and understanding intelligence and 
human behavior support this finding in this research. 
Similarly, Alyahya and Alotaibi’s (2019) discovery of a 
significantly positive correlation between CT and TIMSS 

mathematics achievements aligns with our findings. In 
addition, the outcomes from Román-González et  al. 
(2018b) affirm that CT serves as a crucial indicator for 
estimating mathematics achievement, further reinforcing 
our study’s outcomes.

Moreover, the findings indicated that students’ beliefs 
about mathematics could positively predict ML. Besides 
the positive correlation between beliefs about math-
ematics and ML, the increase in students’ beliefs about 
mathematics could positively increase their ML. Moreo-
ver, the results showed that beliefs about the nature of 
mathematics as part of beliefs about mathematics posi-
tively predicted the other subscale—attitude towards 
mathematics, which indicates that the stronger students’ 
thoughts about the value of mathematics, the higher 
their confidence in learning mathematics. A past study 
found that beliefs about the nature of mathematics was 
positively correlated with attitude towards mathematics 
(Kaldo & Hannula, 2014), and this study provides further 
indication of the direction of the predictive relationship. 
Nevertheless, beliefs about the nature of mathematics 
only indirectly predicted ML through attitude towards 
mathematics. This outcome might be attributed to the 
abstract nature of beliefs about the nature of mathematics 
for junior high school students. In this stage of learning, 
students’ attitude towards mathematics plays a pivotal 
role in predicting their mathematical literacy. Future 
studies could explore whether older students, such as 
high school or post-secondary students, possess a better 
grasp of these abstract concepts.

Finally, our findings revealed that beliefs about math-
ematics positively predicted CT, albeit through the 
intermediary of ML. In essence, enhancing students’ per-
ceptions of mathematics and its significance in life not 
only boosts their confidence in learning mathematics but 
also augments their real-life problem-solving abilities. 
While previous studies primarily focused on the relation-
ship between pairs of constructs, our results extend this 
examination to encompass the relationships among all 
three constructs.

There are two implications of teaching mathematics 
and CT. This study demonstrated the importance of stu-
dents’ beliefs about mathematics and ML in predicting 
CT competence. Therefore, to promote CT competen-
cies, in addition to providing more learning opportunities 
for CT, improving students’ understanding of mathemat-
ics may be beneficial. Specifically, researchers and teach-
ers should pay more attention to students’ beliefs about 
mathematics in addition to promoting their mathematical 
literacy. Some researchers have suggested that students’ 
beliefs about mathematics depend on their mathemat-
ics learning experiences and their view of mathematics 
(Lazim et al, 2004). One approach to enhancing students’ 
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mathematical literacy and providing meaningful math-
ematics learning experiences is through integrating real-
life situations into mathematics learning (Barcelos et al., 
2018; Cui et al., 2023). Designing a mathematics curricu-
lum based on topics relevant to students’ daily life expe-
riences may help students develop mathematical literacy 
and views of mathematics (Amirali, 2010), which, in turn, 
can help them develop CT competencies.

Second, we suggest integrating the teaching of CT with 
mathematics, such as designing STEM (science, technol-
ogy, engineering, and mathematics) -oriented activities 
or curricula (Zhang et  al., 2023). Recently, the trend of 
incorporating CT into interdisciplinary education, par-
ticularly within STEM domains, has been noted (Lee 
et al., 2020; Li et al., 2020a). In addition to gaining knowl-
edge and skills, students can develop multi-dimensional 
and multidisciplinary competence through integration 
(Dolgopolovas & Dagienė, 2021). Studies have also shown 
the benefit of STEM content for CT learning (Bortz et al., 
2020). Studies have implemented problem-based instruc-
tion, games, or robots in the STEM curriculum for stu-
dents of various ages and for pre-service teachers as well 
(Wang et al., 2021; Wawan et al., 2022). Examples include 
using Scratch (Rodríguez-Martínez et  al., 2020) or the 
integrated 6E Learning by DeSIGN™ Instructional Model 
(i.e., engage, explore, explain, engineer, enrich, evalu-
ate) with LEGO robots to improve students’ CT (Chiang 
et al., 2022), and designing an engineering-based activity 
at a STEM camp (Shang et al., 2023). There are also stud-
ies that have implemented innovative teaching methods 
in the curriculum, such as integrating CT into math-
ematics education through programming role-playing or 
embodiment (Sung et al., 2017).

Finally, the findings of this study also have some meth-
odological implications. First, while most of the studies 
treated the CT scale or CT assessment as a reflective con-
struct (e.g., Korkmaz et  al., 2017), in this study, CT was 
treated as a formative construct. Researchers have also sug-
gested the importance of carefully considering the nature 
of the items and making informed decisions regarding 
whether to treat the measurement as formative or reflective 
to prevent model mis-specification (Lin et al., 2020). Sec-
ond, based on Tsai et al. (2022), this study confirmed that 
CT could be divided into lower level (abstraction, decom-
position) and higher level (algorithmic thinking, evaluation, 
and generalization), where lower level CT could positively 
predict higher level CT. The results of categorization in 
the previous study were based on CT disposition, and this 
study used assessment data to further verify the two-level 
structure of the constructs. Future studies should consider 
CT as a two-level rather than a one-level construct.

While this study contributes insights into the relation-
ships between mathematics learning and computational 

thinking, it has some limitations that should be acknowl-
edged. One limitation is the sample size and the age of the 
students. Due to the time needed to complete the survey 
and tests, we were only able to recruit a limited number 
of participants, which may not fully represent the diverse 
range of learners. In addition, our sample was limited to 
students at the junior high school level. The relationships 
between mathematics learning and computational think-
ing may change due to, for instance, students’ mastery of 
abstract thinking. Another limitation of the educational 
study is the exclusion of heuristic and meta-cognitive 
aspects of mathematics learning, such as the monitor-
ing and control of problem-solving strategies (Schoenfeld, 
1992). Furthermore, this study failed to account for per-
sonal attributes, such as self-efficacy, persistence, and crea-
tivity (Rozgonjuk et al., 2020). Neglecting these factors may 
hinder a comprehensive understanding of the multifac-
eted nature of mathematics learning. Incorporating these 
aspects into future research could provide a more holis-
tic perspective on the relationships between mathematics 
learning and CT.

Conclusions
In this study, we proposed a model suggesting the relation-
ships between students’ understanding of mathematics and 
CT. The model highlights the roles of mathematical literacy 
(ML) in both directly predicting CT competence and medi-
ating the relationships between beliefs about mathematics 
and CT. Therefore, we suggest enhancing students’ math-
ematical literacy or integrating mathematics and CT into 
the same learning activities to promote CT competence. 
Another interesting finding is that attitude towards math-
ematics directly predicted students’ ML and also mediated 
the relationships between beliefs about the nature of math-
ematics and ML. The results indicate that students’ attitude 
towards mathematics may be a more important predictor 
than their beliefs about the nature of mathematics, at least 
for students at this stage. Finally, we recommend that future 
studies consider CT as a two-level construct and treat CT 
tests as a formative rather than a reflective construct.

Appendices
Appendix 1
A sample item from CTT–JH
There are various agricultural products on Jack’s Happy 
Farm. To distinguish different items, Jack developed a 
method called Quick Jack Code (referred to as QJ-code). 
It is a code made up of squares, each of which represents 
a certain value. The squares were filled row by row from 
bottom to top and from right to left. Starting with 1 from 
the bottom right square, the value of the other squares is 
twice the value of the previous one.
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For example, this is a 3 × 3 QJ-code. Jack darkens some 
squares to encode numbers. The coded number is the 
sum of the values of all the dark squares, so the coded 
number in this QJ-code is 2 + 32 + 64 = 98.

Which of the following 4 × 4 QJ-codes represents the 
largest coded number?

Appendix 2
The corresponding CT constructs assessed by the CT test 
items

Level Item Abstr
action

Decom
position

Algorithm Evalu
ation

General
ization

L Q1 V #

L Q2 V V

L Q3 V

L Q4 V V #

H Q5 # V V

H Q6 V V

H Q7 V V

H Q8 V V

H: higher level; L: lower level; V: primary construct; #: secondary construct

Appendix 3
Sample items of the Mathematics Literacy Test
Q1. Ferris wheel

A giant Ferris wheel is on the bank of a river. See the picture and diagram below.
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The Ferris wheel has an external diameter of 140 m and 
its highest point is 150 m above the bed of the river. It 
rotates in the direction shown by the arrows.

Translation note: in this unit, please retain metric units 
throughout

Q1-1: Ferris wheel (PM934Q01, Employ)

The letter M in the diagram indicates the centre of 
the wheel.

How many metres (m) above the bed of the river is 
point M?

Answer: _______________ m.
Q1-2: Ferris wheel (PM934Q02, Formulate)

The Ferris wheel rotates at a constant speed. The 
wheel makes one full rotation in exactly 40 min.
John starts his ride on the Ferris wheel at the board-
ing point, P.
Where will John be after half an hour?

A. At R.
B. Between R and S.
C. At S.
D. Between S and P.

Q2. GARAGE

A garage manufacturer’s “basic” range includes 
models with just one window and one door.
George chooses the following model from the 
"basic" range. The position of the window and the 
door are shown here.

Q: GARAGE (PM991Q01, Interpret)

The illustrations below show different “basic” mod-
els as viewed from the back. Only one of these 
illustrations matches the model above chosen by 
George.
Which model did George choose? Circle A, B, C or 
D.

Abbreviations
AM  Attitude towards mathematics
AVE  Average variance extracted
CR  Composite reliability
CT  Computational thinking
HLCT  Higher level computational thinking
LLCT  Lower level computational thinking
ML  Mathematical literacy
MT  Mathematical thinking
NM  Beliefs about the nature of mathematics
PLS–SEM  Partial least square–structural equation modeling
STEM  Science, technology, engineering, and mathematics
VIF  Variance inflation factor values

Acknowledgements
This work was supported by the National Science and Technology Council in 
Taiwan [Grant Number MOST 109‑2511‑H‑003‑052‑MY3].

Author contributions
SWL designed and supervised the research. She analyzed and interpreted the 
data and provided suggestions for the structure of the manuscript. She con‑
tributed to the writing and revisions. HYT analyzed the data and contributed 
to the writing and revisions. GLC contributed to data collection. HML provided 
suggestions regarding statistical methods.

Funding
This research is funded by the National Science and Technology Council in 
Taiwan. It was also supported by the “Institute for Research Excellence in 
Learning Sciences” of NTNU sponsored by the Ministry of Education (MOE) in 
Taiwan.

Availability of data and materials
The data sets analyzed during the current study are not publicly available but 
are available from the corresponding author on reasonable request.

Declarations

Competing interests
There is no conflict of interest in this study.

Author details
1 Graduate Institute of Information and Computer Education, National Taiwan 
Normal University, No. 162, Sec. 1, Hoping E. Rd., Taipei City 106, Taiwan. 
2 Graduate Institute of Science Education, National Changhua University 



Page 14 of 16Lee et al. International Journal of STEM Education           (2023) 10:64 

of Education, No. 1, Jin‑De Rd., Changhua 500, Taiwan. 3 Department 
of Cosmetic Science, Chang Gung University of Science and Technology, No. 
261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan. 4  Institute 
for Research Excellence in Learning Sciences, National Taiwan Normal Univer‑
sity, Taipei, Taiwan. 

Received: 24 March 2023   Accepted: 13 October 2023

References
Alyahya, D. M., & Alotaibi, A. M. (2019). Computational thinking skills and 

its impact on TIMSS achievement: An Instructional Design Approach. 
Issues and Trends in Learning Technologies, 7(1), 3–19.

Amirali, M. (2010). Students’ conceptions of the nature of mathematics and 
attitudes towards mathematics learning. Journal of Research and Reflec-
tions in Education, 4(1), 27–41.

Barcelos, T. S., Muñoz‑Soto, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018). 
Mathematics learning through computational thinking activities: a 
systematic literature review. Journal of Universal Computer Science, 
24(7), 815–845.

Bonne, L., & Johnston, M. (2016). Students’ beliefs about themselves as 
mathematics learners. Thinking Skills and Creativity, 20, 17–28.

Bortz, W. W., Gautam, A., Tatar, D., & Lipscomb, K. (2020). Missing in meas‑
urement: Why identifying learning in integrated domains is so hard. 
Journal of Science Education and Technology, 29(1), 121–136.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and 
assessing the development of computational thinking. In Proceedings 
of the 2012 annual meeting of the American educational research associa-
tion, Vancouver, Canada (Vol. 1, p. 25).

Chan, S. W., Looi, C. K., Ho, W. K., & Kim, M. S. (2023). Tools and approaches for 
integrating computational thinking and mathematics: A scoping review 
of current empirical studies. Journal of Educational Computing Research, 
60(8), 2036–2080.

Chiang, F. K., Zhang, Y., Zhu, D., Shang, X., & Jiang, Z. (2022). The influence of 
online STEM education camps on students’ self‑efficacy, computational 
thinking, and task value. Journal of Science Education and Technology, 
31(4), 461–472.

Chin, W. W. (1998). The partial least squares approach for structural equation 
modeling. In G. A. Marcoulides (Ed.), Modern methods for business research 
(pp. 295–336). Lawrence Erlbaum Associates Publishers.

Çoban, E., & Korkmaz, Ö. (2021). An alternative approach for measuring 
computational thinking: Performance‑based platform. Thinking Skills and 
Creativity, 42, 100929.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Academic 
press.

Consortium for Mathematics and Its Applications (COMAP). (2015). For all 
practical purposes: Mathematical literacy in today’s world (10th ed.). W. H. 
Freeman & Co.

Csizmadia, A.,Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, 
J. (2015).Computational thinking-A guide for teachers. Retrieved from 
https:// eprin ts. soton. ac. uk/ 424545/ 1/ 150818_ Compu tatio nal_ Think ing_ 
1_. pdf

Cui, Z., Ng, O. L., & Jong, M. S. Y. (2023). Integration of computational thinking 
with mathematical problem‑based learning. Educational Technology & 
Society, 26(2), 131–146.

Cutumisu, M., Adams, C., & Lu, C. (2019). A scoping review of empirical research 
on recent computational thinking assessments. Journal of Science Educa-
tion and Technology, 28(6), 651–676.

Dagiene, V., & Stupuriene, G. (2016). Bebras–a sustainable community building 
model for the concept based learning of informatics and computational 
thinking. Informatics in Education, 15(1), 25–44.

del Olmo‑Muñoz, J., Cózar‑Gutiérrez, R., & González‑Calero, J. A. (2020). Com‑
putational thinking through unplugged activities in early years of Primary 
Education. Computers & Education, 150, 103832.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. 
Communications of the ACM, 60(6), 33–39.

Dolgopolovas, V., & Dagienė, V. (2021). Computational thinking: Enhancing 
STEAM and engineering education, from theory to practice. Computer 
Applications in Engineering Education, 29(1), 5–11.

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between compu‑
tational thinking skills and various variables with the structural equation 
model. Computers & Education, 116, 191–202.

Edge, D. L. (2009). Math literacy: The relationship of algebra, gender, ethnicity, 
socioeconomic status, and AVID enrollment with high school math course 
completion and college readiness. University of North Texas.

Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. Math-
ematics Teaching: THe State of the Art, 249, 254.

Ersozlu, Z., Swartz, M., & Skourdoumbis, A. (2023). Developing Computational 
Thinking through Mathematics: An Evaluative Scientific Mapping. Educa-
tion Sciences, 13(4), 422. https:// doi. org/ 10. 3390/ educs ci130 40422

Finke, S., Kemény, F., Sommer, M., Krnjic, V., Arendasy, M., Slany, W., & Landerl, 
K. (2022). Unravelling the numerical and spatial underpinnings of com‑
putational thinking: a pre‑registered replication study. Computer Science 
Education, 32, 1–22.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with 
unobservable variables and measurement error. Journal of Marketing 
Research, 18(1), 39–50.

Geisser, S. (1974). A predictive approach to the random effect model. Biom-
etrika, 61(1), 101–107.

Gjicali, K., & Lipnevich, A. A. (2021). Got math attitude?(In) direct effects of 
student mathematics attitudes on intentions, behavioral engagement, 
and mathematics performance in the US PISA. Contemporary Educational 
Psychology, 67, 102019.

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time 
has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer sci-
ence education: Perspectives on teaching and learning in school (pp. 20–38). 
Bloomsbury Publishing.

Guggemos, J. (2021). On the predictors of computational thinking and its 
growth at the high‑school level. Computers & Education, 161, 104060.

Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data 
analysis (8th ed.). Pearson.

Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial 
least squares structural equation modeling (PLS-SEM). Sage publications.

House, J. D., & Telese, J. A. (2008). Relationships between student and instruc‑
tional factors and algebra achievement of students in the United States 
and Japan: An analysis of TIMSS 2003 data. Educational Research and 
Evaluation, 14(1), 101–112.

Hurt, T., Greenwald, E., Allan, S., Cannady, M. A., Krakowski, A., Brodsky, L., 
Collins, M. A., Montgomery, R., & Dorph, R. (2023). The computational 
thinking for science (CT‑S) framework: Operationalizing CT‑S for K‑12 sci‑
ence education researchers and educators. International Journal of STEM 
Education, 10(1), 1–16.

Jin, M., Feng, X., Liu, J., & Dai, F. (2010). Comparison study on high school 
students’ mathematics belief systems between Han and Chaoxian nation‑
ality. Journal of Mathematics Education, 3(1), 138–151.

Kaldo, I., & Hannula, M. (2014). Gender differences favouring females in 
Estonian university students’ views of mathematics. Nordic Studies in 
Mathematics Education, 19(1), 3–22.

Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). 
Characterising computational thinking in mathematics education: A 
literature‑informed Delphi study. Research in Mathematics Education, 
23(2), 159–187.

Khoo, N. A. K. A. F., Ishak, N. A. H. N., Osman, S., Ismail, N., & Kurniati, D. (2022, 
September). Computational thinking in mathematics education: A sys‑
tematic review. In AIP Conference Proceedings (Vol. 2633, No. 1, p. 030043). 
AIP Publishing LLC. https:// doi. org/ 10. 1063/5. 01026 18

Kitsantas, A., Cleary, T. J., Whitehead, A., & Cheema, J. (2021). Relations among 
classroom context, student motivation, and mathematics literacy: A 
social cognitive perspective. Metacognition and Learning, 16(2), 255–273.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of 
the computational thinking scales (CTS). Computers in Human Behavior, 
72, 558–569.

Lazim, M. A., Abu Osman, M. T., & Wan Salihin, W. A. (2004). The statistical 
evidence in describing the students’ beliefs about mathematics. Interna-
tional Journal for Mathematics Teaching and Learning, 6(1), 1–12.

Leder, G. C., Pehkonen, E., & Törner, G. (Eds.). (2006). Beliefs: A hidden variable in 
mathematics education? (Vol. 31). Springer Science & Business Media

Lee, M., & Lee, J. (2021). Enhancing computational thinking skills in informatics 
in secondary education: The case of South Korea. Educational Technology 
Research and Development, 69(5), 2869–2893.

https://eprints.soton.ac.uk/424545/1/150818_Computational_Thinking_1_.pdf
https://eprints.soton.ac.uk/424545/1/150818_Computational_Thinking_1_.pdf
https://doi.org/10.3390/educsci13040422
https://doi.org/10.1063/5.0102618


Page 15 of 16Lee et al. International Journal of STEM Education           (2023) 10:64  

Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn‑Smith, J. (2020). Computational 
thinking from a disciplinary perspective: Integrating computational 
thinking in K‑12 science, technology, engineering, and mathematics 
education. Journal of Science Education and Technology, 29(1), 1–8.

Lee, S.W.‑Y., Liang, J.‑C., Hsu, C.‑Y., Chien, F.‑P., & Tsai, M.‑J. (2023). Exploring 
potential factors to students’ computational thinking: Interactions 
between gender and ICT‑resource differences in Taiwanese junior high 
schools. Educational Technology & Society, 26(3), 176.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., 
& Duschl, R. A. (2020a). On computational thinking and STEM education. 
Journal for STEM Education Research, 3(2), 147–166.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., 
& Duschl, R. A. (2020b). Computational thinking is more about thinking 
than computing. Journal for STEM Education Research, 3, 1–18.

Lin, S. W., & Tai, W. C. (2015). Latent class analysis of students’ mathematics 
learning strategies and the relationship between learning strategy and 
mathematical literacy. Universal Journal of Educational Research, 3(6), 
390–395.

Lin, H. M., Lee, M. H., Liang, J. C., Chang, H. Y., Huang, P., & Tsai, C. C. (2020). 
A review of using partial least square structural equation modeling 
in e‑learning research. British Journal of Educational Technology, 51(4), 
1354–1372.

Lv, L., Zhong, B., & Liu, X. (2023). A literature review on the empirical studies of 
the integration of mathematics and computational thinking. Education 
and Information Technologies, 28(7), 8171–8193.

McLeod, D. B. (1992). Research on affect in mathematics education: A recon‑
ceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics 
teaching and learning (pp. 575–596). New York: Macmillan.

Metzger, S. R., Sonnenschein, S., & Galindo, C. (2019). Elementary‑age children’s 
conceptions about mathematics utility and their home‑based mathe‑
matics engagement. The Journal of Educational Research, 112(4), 431–446.

Nurhayati, E., & Lutfianto, M. (2020, February). Students’ thinking process in 
solving mathematical literacy problem with space and shape content. 
In Journal of Physics: Conference Series (Vol. 1470, No. 1, p. 012039). IOP 
Publishing.

Ojose, B. (2011). Mathematics literacy: Are we able to put the mathematics we 
learn into everyday use. Journal of Mathematics Education, 4(1), 89–100.

Organisation for Economic Co‑operation and Development (OECD). (2013). 
PISA 2012 Assessment and Analytical Framework. OECD Publishing. https:// 
doi. org/ 10. 1787/ 97892 64190 511‑ en

Organisation for Economic Co‑operation and Development OECD. (2019). 
PISA 2018 Assessment and Analytical Framework. OECD Publishing, Paris. 
https:// doi. org/ 10. 1787/ b25ef ab8‑ en

Ozgen, K. (2013). Self‑efficacy beliefs in mathematical literacy and connections 
between mathematics and real world: The case of high school students. 
Journal of International Education Research (JIER), 9(4), 305–316.

Özgür, H. (2020). Relationships between computational thinking skills, ways 
of thinking and demographic variables: A structural equation modeling. 
International Journal of Research in Education and Science, 6(2), 299–314.

Papanastasiou, C. (2000). Effects of attitudes and beliefs on mathematics 
achievement. Studies in Educational Evaluation, 26(1), 27–42.

Peel, A., Sadler, T. D., & Friedrichsen, P. (2022). Algorithmic explanations: An 
unplugged instructional approach to integrate science and compu‑
tational thinking. Journal of Science Education and Technology, 31(4), 
428–441.

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking 
practices and mathematical habits of mind in lattice land. Mathematical 
Thinking and Learning, 20(1), 75–89.

Rahmi, S., Nadia, R., Hasibah, B., & Hidayat, W. (2017). The relation between 
self‑efficacy toward math with the math communication competence. 
Infinity Journal, 6(2), 177–182.

Rodríguez‑Martínez, J. A., González‑Calero, J. A., & Sáez‑López, J. M. (2020). 
Computational thinking and mathematics using Scratch: An experi‑
ment with sixth‑grade students. Interactive Learning Environments, 28(3), 
316–327.

Román‑González, M., Pérez‑González, J. C., Moreno‑León, J., & Robles, G. 
(2018a). Can computational talent be detected? Predictive validity of 
the Computational Thinking Test. International Journal of Child-Computer 
Interaction, 18, 47–58.

Román‑González, M., Pérez‑González, J. C., Moreno‑León, J., & Robles, G. 
(2018b). Extending the nomological network of computational thinking 
with non‑cognitive factors. Computers in Human Behavior, 80, 441–459.

Royal Society (Great Britain). (2012). Shut down or restart?: The way forward for 
computing in UK schools. Royal Society.

Rozgonjuk, D., Kraav, T., Mikkor, K., Orav‑Puurand, K., & Täht, K. (2020). Math‑
ematics anxiety among STEM and social sciences students: The roles of 
mathematics self‑efficacy, and deep and surface approach to learning. 
International Journal of STEM Education, 7(1), 1–11.

Rycroft‑Smith, L., & Connolly, C. (2019). Comparing conceptions of mathemati‑
cal and computational thinking cycles. Cambrigde Mathematics, 29, 1–2.

Sanico, A. C. (2019). Causal Effects of Cognitive and Affective Factors on Stu‑
dents’ Mathematical Problem‑solving Performance. International Journal 
of Scientific and Research Publications (IJSRP), 9(9), 682–688.

Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estima‑
tion issues with PLS and CBSEM: Where the bias lies! Journal of Business 
Research, 69(10), 3998–4010.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem‑solving, 
metacognition, and sense making in mathematics. In D. Grouws (Ed.), 
Handbook for research on mathematics teaching and learning (pp. 
334–370). Macmillan.

Schommer‑Aikins, M., Duell, O. K., & Hutter, R. (2005). Epistemological beliefs, 
mathematical problem‑solving beliefs, and academic performance of 
middle school students. The Elementary School Journal, 105(3), 289–304.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. 
University of Southampton.

Shang, X., Jiang, Z., Chiang, F. K., Zhang, Y., & Zhu, D. (2023). Effects of robotics 
STEM camps on rural elementary students’ self‑efficacy and computa‑
tional thinking. Educational Technology Research and Development, 71, 
1135–1160.

Shute, V. J., Sun, C., & Asbell‑Clarke, J. (2017). Demystifying computational 
thinking. Educational Research Review, 22, 142–158.

Skaalvik, E. M., Federici, R. A., & Klassen, R. M. (2015). Mathematics achievement 
and self‑efficacy: Relations with motivation for mathematics. International 
Journal of Educational Research, 72, 129–136.

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational think‑
ing in high school science classrooms. The Science Teacher, 81(5), 53.

Stone, M. (1974). Cross‑validatory choice and assessment of statistical predic‑
tions. Journal of the Royal Statistical Society: Series B (methodological), 36(2), 
111–133.

Su, Y‑T. (2018). Exploring the Relationships between Junior High School Students’ 
Beliefs about and Practice of Learning Mathematics. [Unpublished master’s 
thesis]. National Taiwan University of Science and Technology.

Sung, W., & Black, J. B. (2020). Factors to consider when designing effective 
learning: Infusing computational thinking in mathematics to support 
thinking‑doing. Journal of Research on Technology in Education, 53(4), 
404–426.

Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to 
young learners: Practicing computational perspectives through embodi‑
ment in mathematics education. Technology, Knowledge and Learning, 
22(3), 443–463.

Suters, L., & Suters, H. (2020). Coding for the core: Computational thinking 
and middle grades mathematics. Contemporary Issues in Technology and 
Teacher Education, 20(3), 435–471.

Suthar, V., & Tarmizi, R. (2010). Effects of students’ beliefs on mathematics 
and achievement of university students: Regression analysis approach. 
Journal of Social Sciences, 6(2), 146–152.

Suthar, V., Tarmizi, R. A., Midi, H., & Adam, M. B. (2010). Students’ beliefs on 
mathematics and achievement of university students: Logistics regres‑
sion analysis. Procedia-Social and Behavioral Sciences, 8, 525–531.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational 
thinking: A systematic review of empirical studies. Computers & Education, 
148, 103798.

Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. 
Computational Statistics & Data Analysis, 48(1), 159–205.

Tsai, M.‑J., Liang, J.‑C., Lee, S.W.‑Y., & Hsu, C.‑Y. (2022). Structural validation for 
the developmental model of computational thinking. Journal of Educa-
tional Computing Research, 60(1), 56–73.

Underhill, R. (1988). Focus on research into practice in diagnostic and prescrip‑
tive mathematics: mathematics learners’ beliefs: A review. Focus on Learn-
ing Problems in Mathematics, 10(1), 55–69.

https://doi.org/10.1787/9789264190511-en
https://doi.org/10.1787/9789264190511-en
https://doi.org/10.1787/b25efab8-en


Page 16 of 16Lee et al. International Journal of STEM Education           (2023) 10:64 

Wang, C., Shen, J., & Chao, J. (2021). Integrating computational thinking in 
stem education: A literature review. International Journal of Science and 
Mathematics Education, 20, 1–24.

Wawan, C., Fenyvesi, K., Lathifah, A., & Ari, R. (2022). Computational thinking 
development : Benefiting from educational robotics in STEM teaching. 
European Journal of Educational Research, 11(4), 1997–2012.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, 
U. (2016). Defining computational thinking for mathematics and science 
classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Weintrop, D., Wise Rutstein, D., Bienkowski, M., & Mcgee, S. (2021). Assessing 
computational thinking: An overview of the field. Computer Science 
Education, 31(2), 113–116.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 
33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. 
Philosophical Transactions of the Royal Society a: Mathematical, Physical and 
Engineering Sciences, 366(1881), 3717–3725.

Wu, W. R., & Yang, K. L. (2022). The relationships between computational and 
mathematical thinking: A review study on tasks. Cogent Education, 9(1), 
2098929.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: 
Pedagogical approaches to embedding 21st century problem‑solving in 
K‑12 classrooms. TechTrends, 60(6), 565–568.

Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational 
thinking in K‑12 mathematics education: A systematic review on 
CT‑based mathematics instruction and student learning. International 
Journal of STEM Education, 10(1), 3.

Yin, H., Shi, L., Tam, W. W. Y., & Lu, G. (2020). Linking university mathematics 
classroom environments to student achievement: The mediation of 
mathematics beliefs. Studies in Educational Evaluation, 66, 100905.

Zhang, Y., Ng, O. L., & Leung, S. (2023). Researching computational thinking 
in early childhood STE (A) M education context: A descriptive review on 
the state of research and future directions. Journal for STEM Education 
Research. https:// doi. org/ 10. 1007/ s41979‑ 023‑ 00097‑7

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s41979-023-00097-7

	Exploring the multifaceted roles of mathematics learning in predicting students’ computational thinking competency
	Abstract 
	Background 
	Results 
	Conclusions 

	Introduction
	Computational thinking (CT)
	Mathematical literacy
	Beliefs related to mathematics learning
	Hypothesized model

	Methods
	Research instruments
	Computational thinking test
	Mathematical literacy test
	The beliefs about the nature of mathematics scale and the attitude towards mathematics scale

	Data collection and data analysis

	Results
	Measurement model
	The structural relationships
	Mediation

	Discussion and implications
	Conclusions
	Appendices
	Appendix 1
	A sample item from CTT–JH

	Appendix 2
	The corresponding CT constructs assessed by the CT test items

	Appendix 3
	Sample items of the Mathematics Literacy Test


	Acknowledgements
	References


