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Abstract 

Background In the realm of Science, Technology, Engineering, and Mathematic (STEM) education, computer pro‑
gramming stands as a vital discipline, amalgamating cross‑disciplinary knowledge and fostering the capacity to solve 
real‑world problems via fundamental concepts and logical methodologies inherent to computer science. Recog‑
nizing the important of computer programming, numerous countries have mandated it as a compulsory course 
to augment the competitiveness of K‑12 learners. Nevertheless, the inherent complexity of computer programming 
for K‑12 learners often goes unacknowledged. Constraints imposed by the course format, coupled with a low instruc‑
tor–learner ratio, frequently inhibit learners’ ability to resolve course‑related issues promptly, thereby creating dif‑
ficulties in the affective domain. While precision education tools do exist to ascertain learners’ needs, they are largely 
research‑oriented, thereby constraining their suitability for deployment in pragmatic educational settings. Address‑
ing this issue, our study introduces the precision education‑based timely intervention system (PETIS), an innovative 
tool conceived to enhance both programming skills and affective learning in K‑12 learners. Our research investigates 
the influence of PETIS on learners’ performance and evaluate its efficacy in facilitating computer programming educa‑
tion in K‑12 environments.

Results Quantitative results demonstrate that the application of the precision education‑based timely intervention 
system (PETIS) proposed by this research significantly improves programming skills and affective‑domain learning 
objectives for K‑12 learners. Similarly, qualitative results indicate that PETIS is beneficial for both teaching and learning 
in K‑12 computer programming courses.

Conclusions These results not only confirm that timely intervention and feedback improve K‑12 learners’ program‑
ming skills and affective‑domain learning objectives in computer programming courses, but also yield implications 
as to the feasibility of applying precision education in real‑world STEM scenarios.

Keywords STEM education, Precision education, Affective domain, K‑12 computer programming

Introduction
Computer programming is a critical component of Sci-
ence, Technology, Engineering, and Mathematics (STEM) 
education, intertwining cross-disciplinary knowledge and 
enhancing learners’ capacity to address real-world prob-
lems through the principles and methodologies of com-
puter science (Gao et al., 2020; Hao et al., 2023; Sun et al., 
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2021). Its significant role in promoting cognitive devel-
opment, enhancing problem-solving skills, and prepar-
ing learners for a technology-driven future has received 
substantial recognition (Ouyang et  al., 2022; Sung et  al., 
2023). Consequently, countries like Taiwan and the 
United Kingdom have integrated it as a compulsory sub-
ject within the K-12 curriculum to foster the cultivation 
of higher-order cognitive skills such as problem-solving 
(Tsai et al., 2020). Yet, most research contends that pro-
gramming presents substantial challenges for K-12 stu-
dents (Perera et al., 2021; Raj et al., 2018), predominantly 
due to affective domain deficiencies during the program-
ming learning process (Medeiros et al., 2018).

To mitigate the effects of these deficiencies, pedagogi-
cal strategies such as game-based learning, unplugged 
programming, and immersive learning have been intro-
duced to K-12 computer programming education. These 
methods aim to improve students’ affective domain, 
thus facilitating positive learning outcomes (Lindberg 
et al., 2019). They simplify the programming process and 
introduce engaging elements, fostering motivation and 
engagement, thereby altering perceptions of program-
ming as a tedious task (DemİRkiran & Tansu Hocanin, 
2021; Zhao et al., 2022).

Beyond these methods, Medeiros et  al. (2018) under-
score the significance of instructor–learner interac-
tion and feedback for improving the affective domain in 
K-12 computer programming education. They posit that 
instructors who can swiftly identify and address student 
difficulties, offering constructive feedback, significantly 
enhance the affective domain of programming learn-
ers—a perspective confirmed by Pordelan et  al. (2020). 
Yet, some research highlights that, particularly in Asia, 
educators often find it challenging to provide timely 
assistance due to a low instructor-to-learner ratio and 
learners’ reticence, thereby impeding the efficacy of com-
puter programming education (Medeiros et  al., 2018). 
Yiu (2013) corroborates that K-12 learners in Asia gen-
erally maintain the most distance from their instructors, 
often refraining from asking questions due to shyness or 
concern about peer judgment (Rapee et al., 2011).

In response, researchers have begun to incorporate 
precision education into curricula, enabling efficient 
identification of learner difficulties (Cook et  al., 2018; 
Luan & Tsai, 2021; Yang, 2021). Leveraging artificial 
intelligence and learning analytics, precision educa-
tion diagnoses and predicts learner performance, for-
mulating targeted learning strategies to provide timely 
assistance to struggling students (Tempelaar et  al., 
2021). However, a systematic review by Luan and Tsai 
(2021) reveals a dearth of studies on the application 
of precision education in K-12 computer program-
ming courses. Moreover, Gao et  al. (2020) argue that 

the analytic tools employed in precision education are 
often research-oriented and lack practical applicability 
in classroom environments.

It is widely acknowledged that cognition and the affec-
tive domain are interlinked (Jeong et al., 2021; Lee et al., 
2023; Makransky & Petersen, 2021; Wu et  al., 2022). 
Bloom’s taxonomy identifies the affective domain as a 
paramount learning objective, emphasizing the internali-
zation of values concerning learners’ feelings, emotions, 
attitudes, interests, and motivations towards people, 
events, and objects (Bloom, 1956). However, the major-
ity of existing research primarily explores the cognitive 
aspect of learners, overlooking the influence of the affec-
tive domain (Cheng et  al., 2022; Noroozi et  al., 2020). 
While a few studies do consider the affective domain, 
they mostly focus on learner emotions and seldom scruti-
nize the affective domain in relation to Bloom’s taxonomy 
levels (Yadegaridehkordi et al., 2019; Yun & Cho, 2021).

Based on Bloom’s definition of the affective domain, 
we employ learning motivation, attitude, and self-effi-
cacy as indicators to examine changes in learners’ affec-
tive domain in this study. Learning motivation fluctuates 
based on whether students are passively receiving knowl-
edge (Receiving) or actively participating in discussions 
(Responding). Learning attitude refers to learners’ feel-
ings or opinions regarding certain concepts, which con-
tribute to the development and internalization of values 
associated with these concepts (Valuing and Organizing). 
Self-efficacy reflects learners’ beliefs about their abilities 
and the outcomes of their efforts, with high self-efficacy 
indicating that concepts have been internalized as part of 
the learners’ identity (Characterizing).

In conclusion, while the introduction of precision 
education has demonstrated a positive impact on learn-
ing, its effect on the learners’ affective domain remains 
less understood. Consequently, this study will precisely 
define indicators for affective-domain learning objec-
tives to elucidate the relationship between these and 
cognition. To this end, we have developed the precision 
education-based timely intervention system (PETIS), lev-
eraging deep learning and image processing technologies 
to assist instructors in identifying when K-12 learners 
require support during computer programming courses. 
A quasi-experimental design is adopted to validate the 
use of PETIS for enhancing K-12 learners’ programming 
skill and affective-domain learning objectives. We pose 
the following research questions:

1. How significantly does the application of PETIS 
influence the programming skill of K-12 learners?

2. To what extent does PETIS affect the affective-
domain learning objectives of K-12 learners?
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3. How significantly do affective-domain learning 
objectives influence K-12 learners’ programming skill 
when PETIS is integrated into the computer pro-
gramming course?

4. Is PETIS a potent and beneficial instrument for 
advancing K-12 programming education?

Related work
Programming for K‑12 STEM education
Some studies underscore the importance of cultivat-
ing programming skills among K-12 learners (Lee et al., 
2020; Xu et al., 2019). Consequently, several nations have 
incorporated programming as a mandatory component 
of their K-12 curriculum to enhance students’ problem-
solving abilities (Yun & Cho, 2021). As an integral ele-
ment of STEM education, programming equips students 
with the aptitude to tackle real-world issues by utilizing 
basic computer science concepts and logical method-
ologies (Gao et al., 2020; Sun et al., 2021). Nevertheless, 
the syntactic and semantic complexities of programming 
languages present a significant hurdle to K-12 learn-
ers (Medeiros et  al., 2018; Perera et  al., 2021). Several 
studies have attempted to address this by incorporat-
ing varied teaching methodologies into K-12 computer 
programming instruction. For example, Xu et  al. (2019) 
have corroborated the efficacy of visual programming 
teaching methods in achieving cognitive and affective 
learning outcomes. Similarly, Panskyi et  al. (2019) have 
implemented game elements in computer programming 
coursework, demonstrating a boost in students’ compu-
tational thinking, problem-solving, and abstract thinking 
capabilities. Moreover, Sun et  al. (2021) have amalga-
mated unplugged game elements into the programming 
syllabus, revealing enhancements in students’ knowledge, 
behavior, and attitudes through a mixed method.

In essence, contemporary research prioritizes the 
amalgamation of various instructional elements to alle-
viate the learning burden for K-12 learners. Importantly, 
Medeiros et  al. (2018) in their systematic review high-
light the crucial role of teacher–student interaction and 
feedback in computer programming courses. However, 
few studies probe the influence of apt and timely teacher 
feedback on K-12 computer programming instruction. 
While prompt and suitable teacher feedback has been 
shown to enhance cognitive performance considerably, 
its impact on the affective learning domain of K-12 learn-
ers remains largely unexplored. To bridge this research 
gap, we propose PETIS—a mechanism for instructors to 
identify student difficulties promptly, provide immediate 
feedback, and thereby investigate the impact of timely 
teacher feedback on the affective learning outcomes in 
K-12 programming education.

Affective domain in STEM education
Bloom’s taxonomy posits three learning domains in edu-
cation: cognitive, affective, and psychomotor. This theory 
emphasizes that effective instruction should incorporate 
strategies to foster cognitive, emotional, and behavioral 
development in learners (Bloom, 1956; Wu et al., 2019). 
Specifically, the affective domain, which centers on learn-
ers’ emotional responses, attitudes, and values, is of great 
significance in the pedagogical process. According to 
Bloom’s taxonomy, this domain comprises five levels of 
internalization: receiving, responding, valuing, organiz-
ing, and characterizing (Bloom, 1956; Kranch, 2012; Wu 
et al., 2019), as described below:

• Receiving: This concerns the learner’s perception of 
a phenomenon or stimulus and the selection of the 
stimulus to attend to. At this level, the learner is will-
ing to listen to the voices of others.

• Responding: Once the learner has mastered receiv-
ing, he or she actively participates in discussions and 
asks questions to show others what knowledge and 
information he or she has.

• Valuing: The learners are aware of the value of a phe-
nomenon, thing, or action. Once they have mastered 
receiving and responding, they develop their own 
values that inform how they use their thinking to 
take action.

• Organizing: The learners internalize values. By com-
paring different perspectives and creating their own 
unique system, they evaluate what is happening 
according to their own values.

• Characterizing: The learners internalize the values at 
the organizational level, which then become part of 
their personalities and begin to become a philosophy 
of life. The learners act according to their resultant 
unique affective system.

The importance of the affective domain is increas-
ingly recognized in STEM education, which emphasizes 
learner-centered, hands-on activities and peer collabo-
ration (Guzey et  al., 2016). Affective outcomes such as 
interests, attitudes, motivation, and values have been 
extensively explored in STEM research (Gao et al., 2020). 
De Loof et al. (2021) argue that affective outcomes such 
as motivation, learning attitudes, and self-efficacy are 
vital in STEM education.

Learning motivation, as defined by Lin and Chen 
(2017), is dependent on the learner’s personal percep-
tion of learning. We categorize it as a lower-level affective 
outcome, influenced by whether learners are passively 
receiving knowledge (Receiving) or actively participating 
in discussions (Responding). Tzafilkou et al. (2021) posit 
that learning attitude, which encapsulates the learners’ 
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feelings or opinions about specific concepts (Valuing), is 
a mid-level affective outcome that emerges once learn-
ers have internalized their personal value of a concept 
(Organizing). Lastly, Bandura (1977) suggests that self-
efficacy, reflecting learners’ confidence in their skills and 
the outcomes of their efforts, is a high-level affective out-
come apparent when concepts have been integrated into 
learners’ personalities (Characterizing).

This trajectory from initial receptivity to active engage-
ment, formation of values, assimilation of these beliefs, 
and final internalization reflects the progression of affec-
tive development in STEM learners (Krathwohl, 2002; 
Sharunova et  al., 2022). Motivation is typically initiated 
in the early stages (Receiving and Responding), learning 
attitudes are cultivated during the intermediate phase 
(Valuing and Organizing), and self-efficacy emerges in 
the advanced stage (Characterizing). Given our research 
goal to measure these three components, Bloom’s tax-
onomy serves as a valuable framework for assessing the 
effects of strategic pedagogical interventions in STEM 
activities. It enables us to appraise the efficacy of various 
teaching strategies at each level of the affective domain, 
thereby informing the development of more effective 
interventions to enhance motivation, learning attitudes, 
and self-efficacy in STEM education.

In view of these trends and theories, we employ ques-
tionnaires to assess the impact of timely interventions in 
K-12 computer programming courses on learner motiva-
tion, attitude, and self-efficacy as key affective-domain 
learning objectives.

Precision education
Traditional education has often been characterized by 
a ‘one-size-fits-all’ approach, constraining individual-
ized learning due to low instructor–learner ratios and 
rigid educational policies. Consequently, instructors are 
typically unable to adopt pedagogical strategies that are 
responsive to the unique learning styles of each student 
(Cook et al., 2018; Hu, 2022; Snow, 1986).

However, recent advancements in artificial intelligence 
(AI) and educational data mining technologies have 
drawn attention to the potential of precision education 
(Hu, 2022). Borrowing from precision medicine, which 
considers each patient’s unique genetic makeup, living 
environment, and lifestyle for targeted prevention and 
treatment (Collins & Varmus, 2015), precision educa-
tion endeavors to accommodate individual differences in 
learning. By leveraging AI and educational data mining, 
precision education can provide prompt, individualized 
intervention aimed at enhancing learning effectiveness, 
thus mitigating the limitations of the conventional educa-
tional model (Luan & Tsai, 2021; Yang, 2021).

Existing research underscores the efficacy of precision 
education in enhancing learners’ outcomes. For instance, 
Qushem et  al. (2021) reported that blending precision 
education into online learning paradigms positively 
impacts student performance, achievement, and well-
being. This is primarily attributed to the ability of pre-
cision education to optimize the pedagogical potential 
of educational platforms and tools, thereby facilitating 
knowledge acquisition and skills development. Similarly, 
Liu (2022) deployment of the Taiwan Adaptive Learn-
ing Platform (TALP), a precision education tool, demon-
strated improvement in student engagement and math 
performance through precise identification of learners’ 
knowledge gaps, provision of diverse learning resources, 
and delivery of feedback.

Precision education aims to identify learners at risk 
of distraction early and to provide timely interventions 
through prediction, diagnosis, prevention, and treatment. 
For example, Tsai et al. (2020) developed a precision edu-
cation model integrating deep learning and educational 
statistical analysis to predict the dropout rates of univer-
sity students in Taiwan. It was determined that factors 
such as student loan applications, absenteeism, and sub-
jects of concern significantly impacted dropout rates. Lee 
et al. (2023) applied deep learning and image recognition 
to diagnose learners’ behaviors and processes, reveal-
ing correlations between learning processes and perfor-
mance in STEM education.

Nonetheless, there is a noticeable gap in the field. Luan 
and Tsai (2021) noted that few existing tools effectively 
integrate all precision education objectives, with most 
only capable of predicting learner performance. Moreo-
ver, Gao et  al. (2020) indicated that many analytical tools 
in precision education are research-oriented, conduct-
ing post-event analysis, which does not facilitate real-time 
interventions in classroom scenarios. To address these 
deficiencies, we propose PETIS. This tool utilizes image 
processing and deep learning to discern when K-12 stu-
dents encounter difficulties during computer programming 
courses. Moreover, PETIS offers an intuitive interface, inte-
grating diagnostic, therapeutic, and preventative functions, 
thereby addressing the limitations of existing tools.

ICAP framework
Chi and Wylie (2014) have proposed a distinctive frame-
work known as ICAP, which categorizes learning engage-
ment into four discrete modes. This innovative model 
provides a foundation to map learner behaviors, thereby 
assisting in understanding the nature of engagement 
leading to changes in learner’s knowledge. The ICAP 
framework specifically classifies learning engagement 
into the following quadrants:
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• Passive: Learners in this mode receive information 
passively from educational resources without signifi-
cant engagement in their learning trajectory (Chi & 
Wylie, 2014).

• Active: This mode involves learners demonstrating 
observable behavior and actively engaging in physi-
cal interactions with learning materials (Chi & Wylie, 
2014).

• Constructive: Learners in this category generate or 
produce externalized outputs or products that extend 
beyond the learning materials provided, signifying 
an active creation of new knowledge (Chi & Wylie, 
2014).

• Interactive: The definition of interactive behaviors is 
operationalized through two principal criteria: the 
learners’ utterances must be predominantly con-
structive and there must be a significant amount of 
turn-taking evident in their interaction (Chi & Wylie, 
2014).

The practicality of the ICAP framework’s method-
ology facilitates a comprehensive understanding of 
learner engagement in the context of instructional 
courses. To further this approach, we have developed 
a system, PETIS, that is rooted in the ICAP model. It 
aims to provide educators and academics with pro-
found insights into student engagement in STEM edu-
cation, thereby establishing a solid foundation for an 
evaluative mechanism in this field.

The design of PETIS
According to Yang (2021), the objectives of precision 
education are to identify at-risk learners as early as pos-
sible and provide a timely intervention through predic-
tion, diagnosis, and treatment. We present the Precision 
Education based Timely Intervention System (PETIS) 
developed in alignment with this definition of preci-
sion education. As outlined in Fig.  1, PETIS enables 
instructors to understand learners’ individual learning 
engagement by evaluating their learning behaviors (diag-
nosis), offering timely feedback or guidance (treatment) 
to address the deficiencies in traditional K-12 computer 
programming courses. Furthermore, the system allows 
instructors to modulate the lesson’s difficulty by review-
ing each learner’s record (prevention). Lastly, we investi-
gate whether the implementation of precision education 
enhances K-12 learners’ learning outcomes in both the 
affective domain and programming skills. Further details 
about the design of PETIS are presented below.

As noted by Scott and Ghinea (2014), K-12 learners 
often experience a sense of helplessness when encounter-
ing difficulties during programming lessons. Therefore, 
learners who are stagnating or inactive for an extended 
period are likely to be facing challenges. Moreover, recent 
findings from Lee et  al. (2023) suggest that the interac-
tion between learners’ hands and learning materials can 
serve as an insightful indicator to understand the learn-
ing engagement in STEM education. Consequently, 
PETIS integrates image processing and deep learning 

Fig. 1 The goals of precision education and PETIS
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technologies to detect instances where learners may be 
struggling, as discerned through the interaction between 
their hands and the learning materials. The system archi-
tecture is depicted in Fig. 2, with each section elaborated 
further below.

Data collection
In an endeavor to amass a sufficient dataset to construct 
the system, four graduate-level teaching assistants acted 
out all conceivable behaviors during a computer pro-
gramming course, all the while capturing their actions 
with a video camera. In an effort to mitigate the risk of 
overfitting, each teaching assistant produced between 
seven and eight videos at varied intervals (Lin et  al., 

2021a, 2021b). Each video was recorded at a resolution 
of 1920 × 1080, capturing 30 frames per second (fps). The 
specific camera angle employed for recording is depicted 
in Fig. 3. The collected corpus consisted of 30 simulated 
videos. From these videos, still images were extracted 
at 5-s intervals, intended for use as training data for the 
model (Lee et al., 2023; Sun et al., 2021).

Precision education‑based timely intervention system 
(PETIS)
The construction of PETIS
In the construction of the PETIS, the initial step neces-
sitates the cloning and establishment of the YOLOR 
project as proposed by Wong (2022). The operating sys-
tem utilized is Ubuntu 20.04, complemented by Python 
and Pytorch, versioned 3.9 and 1.7.0, respectively. For 
a comprehensive understanding of PETIS’s function-
ality, a pseudo-code is provided in Table  1. The initial 
phase of the PETIS operation entails the extraction of 
the learners’ hands and learning materials using the 
YOLOR, performed every 5 s. This serves as the funda-
mental input in understanding the learning engagement 
through the ICAP framework. On the collection of 60 
data points, corresponding to 5  min, PETIS decides 
whether the learners are stuck or not, and subsequently 
records both video and statistical data on the dedicated 
webpage. Based on this data, instructors can make 
informed decisions on whether immediate feedback 
and assistance are required.

Fig. 2 The workflow of PETIS

Fig. 3 Camera angle during data simulation
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Detecting learning materials and learners’ hands using 
YOLOR
We have employed the YOLOR model, as detailed by 
Wang et  al. (2021), to detect the learner’s hands and 

learning materials. The YOLOR model learns generic 
representations by integrating implicit and explicit 
knowledge, enhancing model performance and facili-
tating reasoning across multiple computer vision tasks 

Table 1 The pseudo‑code of PETIS
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with a significant reduction in parameters and com-
putational effort compared to previous models (Wang 
et  al., 2021). However, as learning materials com-
monly used in computer programming courses were 
not included in the pre-training phase of YOLOR, we 
utilized transfer learning to re-train YOLOR, enabling 
it to recognize the common learning materials used in 
these courses. The training parameters for YOLOR are 
detailed in Table 2.

The retrained YOLOR is now capable of recogniz-
ing six common objects in computer programming 
courses: hand, tablet, laptop, mouse, Raspberry Pi, and 
cellphone, as depicted in Fig. 4.

Detecting learner difficulty and facilitating timely 
intervention
Our proposal for the identification of learners who may 
be struggling in class involves a timely intervention 
mechanism. This is based on the interaction between 
hands and learning materials in the captured images. 
Such interactions are utilized to assess the learners’ pro-
gress and to identify those who may be stuck. Building 
upon the work of Lee et  al. (2023), we have integrated 
the ICAP framework into PETIS. This framework serves 
as an indicator of the learning engagement, determin-
ing whether learners are stuck. The relationship between 
these learning engagement indicators and a student’s 
progress is illustrated in Table 3. An example of an active 
indicator is a learner touching a tablet to read the learn-
ing materials, indicating that the learner is likely not 
stuck.

The PETIS records the learning process every five sec-
onds and exports these learning engagement indicators 
in CSV format every 5 min (totaling 60 records). It also 
counts the instances when a learner is stuck within these 
five minutes. If the learner is stuck for more than half of 
this time (more than 30 records), an assumption is made 
that timely intervention is required.

Interface design
Figure  5 illustrates the interactive interface we devised, 
designed to indicate to instructors whether students 
required assistance within the preceding 5-min interval, 
as symbolized by the color-coding of the text—green for 
do not need assistance, red for assistance needed.

Instructors can access group options located on the left 
of the screen, leading them to the group page. This page 
presents the high-resolution video of recognition results 
(as shown on the left-hand side of Fig. 6), the latest indi-
cators of each student’s learning process (top right), and 
a comprehensive breakdown of the learning engagement 
(bottom right).

Table 2 YOLOR training parameters

Parameter Batch size Epochs Height Width Class

Value 16 300 640 640 6

Fig. 4 YOLOR detection results

Table 3 Relationship between learning engagement indicators and difficulties

Is the learner 
stuck?

Indicator Definition Material 
being 
manipulated

No Active • Learners actively operates tablet containing learning materials to solve their questions instead 
of passively receiving knowledge from instructors

• Tablet

Constructive • Learners use laptop and mouse to complete programming
Learners assemble Pi components to solve task

• Laptop
• Mouse
• Raspberry Pi

Interactive • Learners ask peers questions when they encounter difficulty while constructing knowledge • Hands

Yes Passive • Learners’ hands do not touch objects related to programming course

Other • PETIS fails to recognize learners’ hands
• Learners use cellphone to do something unrelated to STEM workshop

• Cellphone
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Fig. 5 Main user interface

Fig. 6 Group page
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Our system, PETIS, therefore delivers not only an inci-
sive analysis of learners’ impediments, but also identifies 
the parts of the curriculum that learners find challenging. 
This information could be employed by instructors as a 
foundation for future curricular improvements.

Methodology
Participants
We organized an exploratory activity termed “STEM 
Workshop: Introduction to Python Programming”, 
where we recruited 60K-12 participants (34 males and 26 
females) from a central Taiwan high school. The partici-
pants were randomly allocated to either the experimental 
group (EG) or the control group (CG). In the EG, con-
sisting of 16 males and 14 females, instructors and teach-
ing assistants (TAs) offered real-time intervention and 
assistance predicated on PETIS results. Conversely, in 
the CG, with 18 males and 12 females, intervention and 
assistance were dispensed based on instructor’s and TA’s 
discretion, primarily when they perceived learners to be 
struggling. Participants were duly informed about the 
experiment and data collection permissions were secured 
before commencement. To mitigate downtime, both 
groups shared the same set of instructors and TAs. To 
further maintain the equivalence, both EG and CG were 
recorded and analyzed; however, the analyzed informa-
tion was exclusively provided to EG instructors for swift 
intervention, while CG instructors depended on their 
pedagogical experience for learner assistance.

Experimental procedure
We employed a quasi-experimental design and semi-
structured interviews to ascertain whether PETIS 
enhanced learners’ programming skills and impacted 
affective-domain learning objectives, including learn-
ing motivation, learning attitudes, and self-efficacy. The 
experimental procedure is depicted in Fig.  7.  The EG 
and CG undertook identical activities throughout the 
experiment, with the exception that in the EG, instruc-
tors and TAs utilized PETIS to identify instances where 
learners were struggling, while in the CG, they relied on 
their professional judgment or awaited student-initiated 
assistance requests. In the EG, the instructors could 
actively monitor the learners’ progress with PETIS sup-
port. Meanwhile, in the CG, instructors awaited student 
queries passively.

At the onset of the experiment, participants completed 
a 10-min pre-test to measure their prior programming 
skill. Subsequently, they spent 30 min familiarizing them-
selves with the development environment and Python 
principles. The foundational Python syntax and pro-
gramming logic were presented to participants, with each 

lesson encompassing 20  min of instruction and 20  min 
of practice. In the EG, PETIS was employed during prac-
tice sessions to aid instructors and TAs in recognizing 
when learners were experiencing difficulties. Following 
the lessons, learners applied their newly acquired skills to 
complete the Raspberry Pi code by filling in the blanks 
to successfully run the code. This constituted tangible 
learning, where participants were expected to solidify the 
intangible programming concepts acquired in instruc-
tional activities by manipulating the tangible Raspberry 
Pi (Marshall, 2007). Upon conclusion of the activities, 
programming skills post-tests and post-questionnaires 
regarding learning motivation, attitudes, and self-efficacy 
were administered. Researchers then conducted semi-
structured interviews with the instructors, TAs, and 
learners.

Research tools
Programming skill pre‑ and post‑tests
We administered pre- and post-tests to record the par-
ticipants’ Python programming skills. These tests, each 
comprising 20 single-choice questions worth five points 
apiece, were developed by two esteemed professors of 
computer science. To affirm the validity and appropri-
acy of the test, we ascertained the internal consistency 
(Cronbach’s α) to be 0.75—a value high enough to yield 
reliable results (Nunnally, 1978).

Scale of affective‑domain learning objectives
In the absence of established scales for measuring affec-
tive-domain learning objectives, we adopted and adapted 
questionnaires measuring learning motivation, learn-
ing attitude, and self-efficacy to gauge the low- to high-
level objectives delineated in section "Affective domain in 
STEM education". We selected four items from the Situ-
ational Motivation Scale (SIMS) by Guay et al. (2000) to 
measure low-level affective-domain learning objectives. 
We extracted four items from the Learning Computer 
Programming Attitude Scale (LeCoPAS) by Cetin and 
Ozden (2015) to measure mid-level objectives. Lastly, 
we chose four items from the New General Self-Efficacy 
Scale by Chen et al. (2001) to measure high-level objec-
tives. These 12 items were assessed using a 5-point Lik-
ert scale, ranging from 1 (strongly disagree) to 5 (strongly 
agree). Validity and reliability tests on each scale level 
were performed to verify the appropriateness of our 
study. Table  4 presents these results. All three levels of 
affective-domain learning objectives exhibited robust 
validity and reliability, with alpha values of 0.732, 0.783, 
and 0.791 for low-, mid-, and high-levels, respectively, 
endorsing this as a credible measure of affective-domain 
learning objectives.
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Semi‑structured interviews and thematic analysis
Post-activity, we selected six participants each from 
the experimental and control groups and two teachers 
(including teaching assistants) for semi-structured inter-
views. The learner interviews aimed to gauge interven-
tion immediacy during the activity, knowledge retention, 
and the learners’ emotional experience during the learn-
ing process. The instructor interviews concentrated on 
assessing the usability of PETIS, its ease of operation, and 
proposals for future enhancements. The interview ques-
tions were as follows:

Learners:

• How often do you think instructors provide assis-
tance during the activity?

• Can you recall what you learned during the activity?
• What do you think was the most impressive part of the 

activity?
• After this activity, what are your future plans for pro-

gramming?

Fig. 7 Experimental procedure
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Instructors:

• How do you think the PETIS helps in teaching?
• What suggestions do you have for PETIS’ functions?

Data analysis
To clearly address research question 1, we must first ver-
ify the homogeneity of the programming skill pre-tests 
given to the EG and CG to ensure the effectiveness of 
subsequent analysis. After confirming homogeneity, we 
use ANCOVA to identify significant differences between 
the EG and the CG in terms of post-test programming 
skill. The programming skill pre-test score was used as 
a covariate to eliminate the influence of pre-test differ-
ences on the post-test significance. To clearly address 
research question 2, we adopted an independent sample 
t-test to identify significant differences in participants’ 
affective-domain learning objectives between the EG 
and CG. To clearly address research question 3, we cal-
culated the Pearson correlation coefficient to examine 

the relationship between each level of affective-domain 
learning objectives and the post-test programming skill 
for all participants. To clearly address research question 
4, we adopted six thematic analysis steps to analyze the 
interview content (Cohen et  al., 2000): data formatting, 
separate data coding by each coder, recording specific 
coded data segments, comparing segments with like 
codes, code integration, and double-checking the final 
coded themes. We then converted the frequencies of 
the qualitative codes into quantitative data, as shown in 
tables and graphs.

Results
Impact of the timely intervention through PETIS 
on programming skill
To evaluate whether a significant difference exists 
between the experimental group (EG) and control group 
(CG) in terms of programming skill, we utilized analysis 
of covariance (ANCOVA) with the pre-test scores serv-
ing as the covariate and the post-test scores as the inde-
pendent variable. This statistical methodology allowed 

Table 4 Validity and reliability of affective‑domain learning objectives

Item Validity Reliability

Low‑level affective domain (Learning motivation) 0.643 0.732

• I think the STEM Workshop: Introduction to Python Programming was interesting

• I think the workshop activity will prove helpful for my future

• I think the workshop is necessary for me

• I think attending the workshop was a good use of time

Mid‑level affective domain (Learning attitude) 0.675 0.783

• I think programming is a distinct skill

• I think programming can make human life more convenient

• I will do much research to better understand programming

• I will work hard to become a better programmer

High‑level affective domain (Self‑efficacy) 0.712 0.791

• I can achieve the goals I set for myself during the workshop

• When I encounter difficulty in the workshop activity, I know I will be able to resolve it

• Compared to others, I complete the tasks in the workshop better than others

• I feel confident that I will be able to effectively complete the different tasks in the workshop activity

Table 5 ANCOVA for programming skill

*p < 0.05, ***p < 0.001

Bold values represent significant difference

Sum of squares df Mean squares F p Partial η2

Pre‑test scores 777 1 777 4.69 0.034* 0.076

Group 3382 1 3382 20.41  < 0.001*** 0.264

Error 9443 57 166
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us to scrutinize the disparities in post-test programming 
skill scores between the EG and CG while mitigating the 
influence of pre-existing knowledge differences. Before 
employing ANCOVA for data analysis, we conducted 
a Levene’s test to confirm the homogeneity of variances 
between the EG and CG. The results demonstrated that 
the measured variances did not have a significant impact 
(F = 0.549, p = 0.462 > 0.05), thereby supporting the use of 
ANCOVA. Table 5 outlines the ANCOVA results, reveal-
ing a significant discrepancy in post-test programming 
skill scores between the two groups (F = 20.41, p < 0.001). 
Upon comparing the group means, it was evident that the 
EG (M = 64.8, SD = 11.7) significantly outperformed the 
CG (M = 50.3, SD = 14.7) in post-test programming skill. 
Hence, it can be inferred that the application of PETIS for 
timely identification and assistance of learners’ needs can 
significantly enhance their programming skill compared 
to relying solely on instructors’ spontaneous judgments.

Impact of the timely intervention through PETIS 
on affective‑domain learning objectives
We further scrutinized significant differences in affec-
tive-domain learning objectives between the EG and the 
CG, applying an independent sample t-test. As depicted 
in Table 6, there is a significant difference in overall affec-
tive-domain learning objectives between the two groups 
(t = 4.64, p < 0.001). Significant disparities exist at the low 
(t = 3.47, p < 0.001), mid (t = 3.24, p < 0.01), and high lev-
els (t = 2.42, p < 0.05). Comparing the group means indi-
cates that the EG performs significantly better than the 
CG across all levels and in overall affective-domain learn-
ing objectives. As a result, using PETIS for timely learner 
assistance significantly improves affective-domain learn-
ing objectives, as opposed to traditional instructor-
dependent judgment calls.

The relationship between programming skill 
and affective‑domain learning objectives
To deepen our understanding of the impact of each level 
of affective-domain learning objectives on programming 
skill within the computer programming course, we com-
puted the Pearson correlation coefficient. As shown in 
Table  7, there exists a significantly positive correlation 
between the low-level affective domain and program-
ming skills (r = 0.311, p < 0.05), the middle-level affective 
domain and programming skills (r = 0.366, p < 0.01), and 
the high-level affective domain and programming skills 
(r = 0.442, p < 0.001). Therefore, at all levels, affective-
domain learning objectives significantly influence the 
programming skill of K-12 learners in computer pro-
gramming courses, with the extent of this influence pro-
gressively increasing from the low to high level.

Is PETIS a potent and beneficial instrument for advancing 
K‑12 programming education?
To address the question of usefulness in K-12 program-
ming education, we first need to define a “useful” tool. For 
learners, it should augment learning outcomes (including 
programming skills and affective domain) in program-
ming courses by providing instructors with the opportu-
nity for timely intervention when learners are stuck. For 
instructors, it should offer an understanding of learner 
struggles via a quick and straightforward examination of 
the PETIS interface. We employed semi-structured inter-
views and thematic analysis in our study to assess PETIS’s 
helpfulness for learners and instructors. Thematic analy-
sis of the learner’s interview data produced three themes: 
instructor intervention (providing timely intervention), 
cognitive issues (enhancement of programming skill) 
in programming, and affective issues (enhancement of 
affective domain) in programming.

Table 6 Independent sample t‑test for affective‑domain 
learning objectives

*p < 0.05, **p < 0.01, ***p < 0.001

Bold values represent significant difference

Group M SD t

Low‑level affective domain EG 11.90 3.73 3.47***
CG 8.63 3.57

Mid‑level affective domain EG 11.10 2.87 3.24**
CG 8.77 2.79

High‑level affective domain EG 11.70 4.04 2.42*
CG 9.36 3.30

Affective domain EG 34.70 7.15 4.64***
CG 26.80 6.04

Table 7 Pearson correlation coefficient analysis of affective 
domain and programming skill

*p < 0.05, **p < 0.01, ***p < 0.001

Low‑level Mid‑level High‑level Post‑test 
programming 
skill

Low‑level 1

Mid‑level 0.190 1

High‑level 0.248 0.305* 1

Post‑test 
programming 
skill

0.311* 0.366** 0.442*** 1
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The results of the thematic analysis, depicted in 
Table 8, highlight instructor intervention. Most EG learn-
ers felt they received immediate help from the instruc-
tors (N = 4). One learner reported, “Sometimes when 
I stopped to think about the problem, the instructors 
would approach me and provide assistance so that I 
would not be interrupted by difficulties when learning.” 
In contrast, most CG learners felt that the instructors 
only came to their aid after they had raised their hand 
(N = 3), or sometimes not at all (N = 2). One CG learner 
stated, “When I have a problem, I must raise my hand to 
ask for help, but sometimes the TAs are helping someone 
else, so I have to wait until the TAs are free to resolve my 
difficulties.” Overall, EG learners perceived their prob-
lems in the course as being better and more immediately 
resolved than those of CG learners. Although most CG 
learners believed that instructors would not provide 
immediate assistance (N = 5), most of them still felt they 
could receive help after raising their hands (N = 3). This 
underscores the importance of a sufficient number of 
teaching assistants (TAs).

Regarding cognitive issues in programming, most EG 
learners believed they had mastered all the program-
ming concepts taught in the course (N = 4). One learner 
expressed, “Because I don’t get interrupted when learn-
ing, I am very consistent in my learning and do not get 
interrupted by difficulties.” Conversely, most CG learners 
felt confused (N = 2) and found it challenging to under-
stand the programming concepts taught in the activity 
(N = 3). One learner confessed, “I felt like I spent a lot of 
time waiting for help from the TAs during the activity, so 
there was a lack of coherence in learning, and I had to 
continue learning the next concepts before I had really 
learned the previous ones.” Overall, EG learners felt they 
had a better understanding of programming concepts 

during the activity than CG learners. The introduction of 
PETIS reduces waiting time for learners, allowing those 
in EG to absorb more knowledge than their counterparts 
in CG.

Finally, regarding affective issues in programming, 
most EG learners felt more confident about future 
programming learning (N = 4) and exhibited a posi-
tive attitude towards learning programming (N = 2). 
One learner shared, “After this activity, I would like to 
pursue a programming-related major in the future.” 
In contrast, although most CG learners also had posi-
tive attitudes toward learning programming (N = 3), 
some were concerned that the level of programming 
difficulty would pose a barrier to learning (N = 2). One 
student admitted, “I think this activity taught me basic 
programming concepts, but I still don’t have a clear 
understanding of logic and loops, which makes me 
apprehensive about having to program in the future.” 
Overall, EG learners felt positive about future pro-
gramming and more confident about mastering pro-
gramming concepts than CG learners. The immediate 
resolution of difficulties in EG due to the intervention 
of PETIS resulted in no EG learners perceiving pro-
gramming learning as difficult (N = 0). In contrast, two 
learners in CG considered learning programming to be 
challenging (N = 2). The faster learners’ difficulties were 
resolved, the more positive attitudes and confidence 
were established in programming courses.

Interview data from the two instructors and the TAs 
showed that PETIS enhances teaching. One instructor 
praised, “The PETIS user interface is simple and easy 
to use, and you quickly notice when learners run into 
trouble. Additionally, the functions for past imagery 
and statistical data analysis make it easy to understand 
when learners are encountering difficulties, which I can 
use to decide how to adjust the difficulty of the teach-
ing materials.” Another instructor noted, “Some more 
introverted learners are afraid to raise their hands to 
ask questions, so they may not get anything out of the 
activity; this system helps such learners perform better 
in the activity.” Overall, two TAs believed they could 
quickly and directly understand what learners were 
doing and whether they were stuck by examining the 
interface of PETIS.

We engaged two STEM experts to further explore the 
effectiveness of PETIS in identifying difficulties encoun-
tered by students during their learning process. They 
compared their observations with the output generated 
by PETIS, using a standardized set of coding guidelines. 
Five 20-min classroom videos were analyzed by both the 
experts and PETIS to determine instances where learners 
faced challenges. The coding guidelines and PETIS sys-
tem output were uniformly set to generate reports every 

Table 8 Thematic analysis of learner interviews

Theme/sub‑theme EG (N) CG (N)

Instructor intervention

• Instructors did not help me to resolve my difficulties 0 2

• Instructors helped me only after I raised my hand 2 3

• Instructors helped me immediately when I got stuck 4 1

Cognitive issues in programming

• It was difficult to understand the programming 
concepts

1 3

• I was confused about the programming concepts 1 2

• I understood most of the programming concepts 4 1

Affective issues in programming

• I was concerned about how difficult programming is 0 2

• I had a positive attitude towards programming 2 3

• I was confident about programming 4 1
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5 min, indicating whether learners were experiencing 
problems. Cronbach’s alpha score was employed to assess 
the consistency between the codings, with a consistent 
result suggesting that PETIS has the potential to replace 
expert coding. The Cronbach’s alpha results revealed 
scores of 0.86 between Expert A and Expert B, 0.79 
between Expert A and PETIS, and 0.73 between Expert 
B and PETIS. All values exceed the threshold of 0.7, con-
firming the accuracy of PETIS in identifying learning 
difficulties.

In summary, for both K-12 learners and instructors, 
PETIS significantly facilitates programming education. 
The interviews indicate that the EG significantly out-
performed the CG in terms of cognitive and affective 
outcomes, as well as in the perception of intervention 
immediacy. This finding is in line with the quantitative 
data from the questionnaires. In addition, instructors 
also perceived PETIS as a useful tool for their teaching.

Discussion
We introduced PETIS to scrutinize its impact on pro-
gramming skill and the affective domain in K-12 
computer programming courses and to analyze the rela-
tionship between the cognitive and affective domains.

Impact on programming skill
Acknowledging the significance of programming, some 
nations have incorporated it as a mandatory K-12 course 
to instill twenty-first century skills (Tikva & Tambouris, 
2021). Yet, the challenges faced by K-12 learners in pro-
gramming are often disregarded (Perera et  al., 2021; 
Raj et  al., 2018). Specifically, the predominantly English 
grammatical and developmental contexts of program-
ming languages pose barriers to knowledge construction 
for K-12 learners who are English as a Foreign Language 
(EFL) speakers (Perera et al., 2021). Moreover, the inter-
connected nature of programming concepts can obstruct 
subsequent learning if a single concept remains unclear 
(Kranch, 2012; Nikula et  al., 2011). Low instructor–
learner ratios also contribute to learners discontinuing 
their studies (Nikula et al., 2011; Ott et al., 2016). We pro-
posed PETIS as a solution, aiding instructors in identify-
ing learners’ difficulties and providing support promptly. 
As displayed in Table  5, instructors who utilized PETIS 
significantly enhanced K-12 learners’ programming skill 
mastery compared to those who relied on conventional 
methods. By leveraging deep learning and image process-
ing technologies, we developed PETIS—a system that 
facilitates real-time assessment of learners’ progress. This 
timely evaluation empowers educators to intervene when 
students struggle, reducing learning interruptions and 
fostering an engaging learning environment. The posi-
tive impact on learners’ programming skills proficiency 

reaffirms the findings of Medeiros et al. (2018), stressing 
the importance of immediate intervention. It also aligns 
with previous studies endorsing the advantages of preci-
sion education on students’ knowledge construction (Hu, 
2022; Tsai et al., 2020).

Impact on affective‑domain learning objectives
Over recent years, a growing emphasis has been placed 
on the affective domain in K-12 computer programming 
education (Yun & Cho, 2021). As a crucial component 
of STEM education, programming also highlights the 
importance of integrating interdisciplinary knowledge to 
cultivate learners’ problem-solving abilities (Hsiao et al., 
2022). Consequently, most contemporary research posi-
tions the enhancement of the affective domain as a key 
learning outcome within both programming and STEM 
education (Apedoe et al., 2008; Guzey et al., 2016; Hsiao 
et  al., 2022). Mainstream methodologies often incorpo-
rate gaming elements or various pedagogical theories to 
promote affective-domain learning objectives. Yet, one 
of the most direct and intuitive approaches is frequently 
overlooked—providing learners with timely and relevant 
feedback and assistance when they encounter obstacles. 
Historically, technological limitations and dispropor-
tionate instructor–learner ratios made it challenging for 
educators to promptly discern when learners were strug-
gling. This often led to student demoralization and subse-
quent disengagement from the learning process (Nikula 
et  al., 2011; Ott et  al., 2016). To address this issue, we 
have developed PETIS—a tool designed to assist instruc-
tors in rapidly identifying and rectifying learner dif-
ficulties. As shown in Table  6, instructors who employ 
PETIS to detect and address learning challenges signifi-
cantly bolster the affective-domain learning outcomes of 
K-12 students compared to traditional, ad hoc methods. 
Experimental Group (EG) learners markedly outshine 
Control Group (CG) learners in achieving low-level affec-
tive-domain learning objectives, such as learning motiva-
tion—a finding that resonates with most studies on the 
implementation of precision education (Liu, 2022; Ross 
et al., 2018). The intervention of PETIS helps ensure that 
learners encounter fewer difficulties, thereby fostering an 
environment conducive to learning and enhancing their 
motivation (Lin & Chen, 2017). Likewise, EG learners sig-
nificantly outperform CG learners in achieving mid-level 
objectives, such as learning attitudes—a result that aligns 
with the majority of research in precision education (Hu, 
2022; Lin & Lai, 2021). Owing to the timely assistance 
provided by instructors using PETIS, learners are less 
apprehensive about confronting unfamiliar or cognitively 
demanding content, hence fostering positive sentiments 
and perspectives towards the learning material and ulti-
mately deepening their learning attitudes (Tzafilkou 
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et al., 2021). Finally, with respect to high-level objectives, 
such as self-efficacy, EG learners significantly surpass CG 
learners—a result consistent with prior studies on the 
integration of precision education (Hwang et  al., 2020; 
Lin et al., 2021a, 2021b). The supportive intervention of 
PETIS enables learners to engage with course content 
without disruption, thereby allowing them to experience 
their progress, build confidence in their abilities, and for-
tify their self-efficacy (Bandura, 1977).

Relationship between programming skill and affective 
domain
As indicated in Table 7, a significant relationship is pre-
sent between all levels of affective-domain learning 
objectives and programming skills. Additionally, Table 7 
demonstrates that every level of affective-domain learn-
ing objectives is significantly and positively correlated 
with programming skills. Notably, the higher-level 
affective-domain learning objective, self-efficacy, shows 
a particularly strong correlation. That is, an increase in 
learner’s self-efficacy corresponds to enhanced program-
ming skills. This observation aligns with previous stud-
ies that have linked cognition with the affective domain 
(Lee et al., 2023; Liu, 2022). Yusuf (2011) proposed that 
learners possessing greater self-efficacy can confidently 
establish suitable self-regulation strategies based on their 
learning activities, which in turn results in improved out-
comes. Furthermore, correlation coefficients displayed in 
Table  7 suggest the following hierarchy of influence on 
programming skills: high-level affective-domain objec-
tives exert the greatest influence, followed by mid-level, 
and then low-level objectives. This finding resonates with 
Bloom’s taxonomy of affective-domain learning objec-
tives (Bloom, 1956; Krathwohl, 2002). Taken together, 
these results indirectly validate the practicality of assess-
ing learners’ affective-domain learning objectives—from 
low to high levels—encompassing aspects such as moti-
vation, attitude, and self-efficacy in the context of pro-
gramming education.

The enhancement recommendations of PETIS
The semi-structured interviews conducted with instruc-
tors have yielded insightful perspectives. One instruc-
tor suggested that the system’s functionality could 
be expanded by incorporating a scoring mechanism 
predicated on the pattern of learner behaviors. This 
proposition aligns with another instructor’s view who 
emphasized the potential benefits of identifying not just 
learners who are struggling, but also those exhibiting 
traits such as indolence or inattentiveness. Such capa-
bility, the instructor posits, would allow instructors to 
prioritize assistance based on urgency, thus enhancing 

the efficacy of interventions. These views collectively 
underscore the instructors’ prioritization of recognizing 
learner engagement, and further emphasize the pivotal 
role of engagement in programming education (Hosseini 
et al., 2020; Yildiz Durak, 2020).

Conclusion
In light of the critical necessity for immediate interven-
tion and the absence of precision education applications 
in the real-world (Gao et al., 2020), we have developed 
the Precision Education based Timely Intervention Sys-
tem (PETIS) using deep learning and image process-
ing. This innovative system aids instructors in promptly 
identifying when learners encounter difficulties, pro-
viding swift and appropriate assistance. We utilize a 
quasi-experimental design to examine the enhancement 
in programming abilities and affective-domain learn-
ing objectives subsequent to PETIS implementation in 
a K-12 computer programming curriculum. Our results 
show that PETIS introduction substantially augments 
learners’ programming skill and affective-domain learn-
ing outcomes. Furthermore, qualitative data gathered 
through interviews reveal a consensus among instruc-
tors and learners alike that this tool positively impacts 
K-12 computer programming education.

Programming, a vital facet of STEM education, pro-
motes an integrated teaching and learning approach 
where discipline-specific content is not segregated but is 
treated as a dynamic and fluid area of study (Hsiao et al., 
2022). Compared to traditional courses, the immediate 
identification and detection of learning obstacles in the 
programming process are notably challenging (Gao et al., 
2020; Lee et al., 2023). Hence, under the premise that all 
learning behaviors occur through interactions between 
learners and their learning materials, we develop PETIS. 
This system contributes significant insights toward the 
development of real-world precision education tools for 
STEM education. By integrating the ICAP framework 
with learning behavior, PETIS’s capability to identify 
learning engagement also holds implications for the auto-
mated measurement of engagement in STEM education.

Despite our findings, this study has its limitations. 
Firstly, the relatively small number of participants in the 
experiment (N = 60) could potentially affect the valid-
ity of our statistical analysis. Additionally, the experi-
ment’s brief duration necessitated learners to assimilate 
a substantial amount of programming knowledge within 
a limited timeframe, possibly inducing bias due to cog-
nitive overload. Since PETIS relies on image processing 
technology, the system’s effectiveness may be compro-
mised by issues like camera angle and occlusion, leading 
to misrecognition. Consequently, future research should 
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not only expand the sample size and extend the experi-
mental period to mitigate bias and statistical error but 
also incorporate Multimodal Learning Analysis (MMLA) 
technology. MMLA’s capacity to amalgamate log files, 
images, and discussion data could provide a more com-
prehensive understanding of learning behaviors and pro-
cesses, thereby further enhancing the system’s accuracy.
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