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Abstract 

Background Representational competence is commonly considered a prerequisite for the acquisition of concep-
tual knowledge, yet little exploration has been undertaken into the relation between these two constructs. Using an 
assessment instrument of representational competence with vector fields that functions without confounding topical 
context, we examined its relation with N = 515 undergraduates’ conceptual knowledge about electromagnetism.

Results Applying latent variable modeling, we found that students’ representational competence and conceptual 
knowledge are related yet clearly distinguishable constructs (manifest correlation: r = .54; latent correlation: r = .71). 
The relation was weaker for female than for male students, which could not be explained by measurement differences 
between the two groups. There were several students with high representational competence and low conceptual 
knowledge, but only few students with low representational competence and high conceptual knowledge.

Conclusions These results support the assumption that representational competence is a prerequisite, yet insuf-
ficient condition for the acquisition of conceptual knowledge. We provide suggestions for supporting learners in 
building representational competence, and particularly female learners in utilizing their representational competence 
to build conceptual knowledge.

Keywords Conceptual understanding, Representational competence, Multiple external representations, Latent 
variable modeling, Gender

In science education, multiple external representations 
such as texts, graphs, charts, or formulae are commonly 
used to support learners’ acquisition of conceptual 
knowledge (Ainsworth, 2008; Corradi et  al., 2012; Trea-
gust et al., 2017). These different forms of representations 

provide learners with specific information about the 
learning object. However, to understand, apply and trans-
fer these different forms, learners need a set of skills that 
is collectively referred to as representational competence. 
Kozma and Russel (2005) define representational com-
petence as the ability to interpret, generate, and switch 
between different forms of representation.

It is commonly assumed that without sufficient rep-
resentational competence, learners will struggle to 
build knowledge about the represented concepts (e.g., 
Kohl et  al., 2007). This assumption predicts a consider-
able relation between conceptual knowledge and repre-
sentational competence. This relation has rarely been 
examined (Stieff & DeSutter, 2021). The few available 
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studies that attest to a positive association between the 
two constructs (e.g., Nieminen et al., 2013) did not focus 
on this relation, did not use psychometrically validated 
assessment-instruments, and applied measures of repre-
sentational competence that were likely confounded with 
conceptual knowledge (Nieminen et al., 2013; Nitz et al., 
2014a, 2014b). Prior studies also left out possible differ-
ential effects that might help explain why females tend to 
struggle more with acquiring conceptual knowledge in 
STEM (i.e., science, technology, engineering, and math-
ematics) than males (e.g., Liu et al., 2008; Madsen et al., 
2013).

In the present study, we attempt to close these research 
gaps. Using psychometric measures of representational 
competence with fields and conceptual knowledge about 
electromagnetism, a central topic in physics education in 
which fields play a crucial role, we examine the relation 
of students’ representational competence and concep-
tual knowledge. We study this relation in undergraduate 
students, considering differences between females and 
males.

Introduction
Representational competence in science learning
A central learning goal in science education is to improve 
students’ conceptual knowledge, that is, relational knowl-
edge about the concepts within a domain (Goldwater 
& Schalk, 2016). For example, in biology, learners are 
expected to acquire conceptual knowledge about photo-
synthesis, in chemistry about ionic, covalent, and metal-
lic bonds, and in physics about electromagnetism. To this 
end, science education commonly includes the extensive 
use of different types of external representations that 
depict or describe specific features of scientific phenom-
ena or concepts (Treagust et al., 2017). Disciplinary rep-
resentations, such as line graphs, reaction equations, or 
circuit schematics, for example, are considered tools for 
students’ conceptual development, concept-related rea-
soning, problem solving, and scientific communication 
(e.g., Hubber et al., 2010; Rau, 2017).

The use of representations can place considerable 
challenges on learners’ representational competence 
(Kozma & Russel, 2005). Representational competence, 
which enables learners to interpret generate, and switch 
between different representations, is considered a pre-
requisite for successful conceptual learning (e.g., Kohl 
et  al., 2007; Nitz et  al., 2014a, 2014b; Nitz et  al., 2014a, 
2014b; Scheid et al., 2018). As Medina and Suthers (2013) 
put it, since conceptual knowledge builds with repre-
sentational activity such as deliberately using multiple 
representations for learning or communicating about 
science concepts, representational competence is a con-
stituent of one’s conceptual knowledge. Similarly, Scheid 

et al. (2018) argue that scientific representations are often 
domain-specific, implying that representational compe-
tence and conceptual knowledge might be inherently 
related.

Meta-representational competence means dealing with 
representations at a particularly high level, for example, 
by creating new forms of representations for creative 
problem solving. Such activities are considered particu-
larly conducive for conceptual learning across domains 
(diSessa, 2004; Sherin, 2000).

Whereas these assumptions sound theoretically com-
pelling, little empirical research has been conducted to 
pin down the quantitative relation between representa-
tional competence and conceptual knowledge. In addi-
tion, the available research struggles with methodological 
issues.

In an intervention study in the context of biology, Nitz 
et al., (2014a2014b) found a positive correlation between 
secondary school students’ representational competence 
regarding visual-graphical and symbolic representa-
tions, and conceptual knowledge about photosynthesis. 
In addition, both constructs moderately predicted each 
other’s development from before to after a teaching 
sequence. Nieminen et al. (2013) found a strong positive 
correlation of upper secondary school students’ repre-
sentational competence regarding visuo-spatial and sym-
bolic representations with conceptual knowledge, both 
embedded in the context of Newtonian mechanics in the 
Force Concept Inventory (FCI; Hestenes et al., 1992). In 
addition, representational competence exhibited mod-
erate predictive value for students’ learning gains after a 
course on kinematics, force, and Newton’s laws encom-
passing nine lessons (Nieminen et al., 2013). Scheid et al. 
(2019) found that secondary school students’ conceptual 
knowledge in optics predicted their representational 
competence regarding textual, diagrammatic, and for-
mal representations within this topic, as well as improve-
ment therein after an intervention. Going further into the 
mutual interplay between the two constructs, it has been 
found that in introductory organic chemistry, students’ 
prior knowledge (including both factual and conceptual 
knowledge) predicted whether and how efficiently they 
adopted new visual representations (Hinze et  al., 2013). 
In contrast, a recent study indicated little relation of the 
abilities to construct and select representations with con-
ceptual knowledge, although based on a very small sam-
ple (Stieff & DeSutter, 2021).

The assessment of representational competence
The outlined studies providing evidence on the rela-
tion between representational competence and concep-
tual knowledge have at least two limitations. First, they 
did not focus on quantifying this relation. Instead, these 
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studies focused on examining the dynamic interplay of 
representational competence and conceptual knowledge 
within specific learning contexts (Nieminen et al., 2013; 
Nitz et al., 2014a, 2014b; Scheid et al., 2019; Stieff & DeS-
utter, 2021). For this reason, these studies did not employ 
psychometrically developed assessments of representa-
tional competence (e.g., Klein et  al., 2017; Scheid et  al., 
2018). As we will argue, psychometrically developed 
instruments allow controlling important factors related 
to measurement quality.

Second, these studies assessed learners’ represen-
tational competence and their conceptual knowledge 
within similar topical contexts (Nieminen et  al., 2013; 
Nitz et al., 2014a, 2014b; Scheid et al., 2019). This is also 
the case for available psychometrically validated meas-
ures of representational competence, which also fol-
low the practice of embedding the assessment within 
disciplinary contexts (Klein et  al., 2017; Scheid et  al., 
2018). Whereas for some research purposes, it is useful 
to embed measures within typical learning contexts, for 
the purpose of pinning down the exact relation between 
representational competence and conceptual knowledge, 
this practice induces a methodological artefact. Spe-
cifically, embedding the items related to both constructs 
within the same or similar topical contexts induces con-
founding. Such confounding likely leads to an overes-
timation of the relation between the two constructs. 
Indeed, prior studies embedding measures of both con-
structs within the same topical contexts have yielded 
rather strong estimates of their relation (Nieminen et al., 
2013; Nitz et al., 2014a, 2014b; Scheid et al., 2019). Dis-
similar contexts on the other hand might deflate the 
relation. For example, a recent study found little rela-
tion between the same aspects of representational com-
petence across two dissimilar topics, indicating that the 
variance that is captured by measures of representational 
competence depends significantly on the context (Chang, 
2018).

For the present study, we utilize a measure of repre-
sentational competence that does not explicate a specific 
topical context. Our employed test of representational 
competence is a psychometrically validated measure 
that involves different types of representations of vector 
fields (Küchemann et  al., 2021). Such field representa-
tions are essential across many contexts in physics. For 
example, they are used to describe electric and mag-
netic fields, gravitational fields, and velocity fields of fluid 
flows. Students are usually first confronted with vector 
fields in physics courses in the context of electromagne-
tism, which we chose as topic for our employed test of 
conceptual knowledge. The test of representational com-
petence presents vector fields without utilizing the topi-
cal context of electromagnetism. This instrument thus 

allows examining the relation between representational 
competence and conceptual knowledge without relying 
on a confounding topical context. This measure assesses 
two components of representational competence: Under-
standing how information is encoded in one form of 
representation, and translating from one form of repre-
sentation to the other. Other components of represen-
tational competence that require reference to a specific 
context (e.g., meta-representational competence) are not 
measured. We employ this measure to examine how rep-
resentational competence regarding fields relates to indi-
viduals’ conceptual knowledge about electromagnetism.

Representational competence in electromagnetism
Electromagnetism is a standard topic in national and 
international high-school physics curricula (ISB, 2012; 
National Research Council, 2012). Due to its abstract 
nature, it is typically considered a very challenging topic 
for learners. Two central concepts within this topic are 
those of electric and magnetic fields. Electric and mag-
netic fields are vector fields, which means that they con-
tain information about the direction and the magnitude 
at each point in space. Apart from mathematical-sym-
bolical equations and concrete-analog illustrations in 
demonstration experiments (e.g., with iron filings), elec-
tric and magnetic fields are typically visualized via two 
types of representations, namely vector-field plots and 
field lines. In general, vector-field plots and field lines are 
convention-based representations that can be embedded 
in a certain context, such magnetic or electric fields, or 
they can be context-independent, for instance, to visual-
ize mathematical functions of vector fields. Examples of 
different representations of fields are provided in Fig. 1. 
Each of these representations comes with certain affor-
dances for learners and is linked to specific difficulties 
(Bollen et al., 2017; Küchemann et al., 2021). For instance, 
students often confuse the conventions of how vector-
field plots and field lines depict the magnitude, which is 
indicated by the length of the arrows and the density of 
the field lines, respectively. Other difficulties of students 
are related to the identification of the direction of a vec-
tor field and the translation between vector-field plots 
and field line representations, specifically the under-
standing that vectors in vector-field plot are tangents to 
the field lines (Küchemann et al., 2021).

When applying these representations in the context of 
electric and magnetic fields, further difficulties can arise 
in learners. Albe et  al. (2001) observed that many “stu-
dents did not make a link between the physical concept 
that makes up the magnetic field and its representational 
modes” (p. 202). For example, even students who were 
aware that the magnetic field is a vector quantity did 
not use vectors to superpose two fields or to draw a field 



Page 4 of 19Edelsbrunner et al. International Journal of STEM Education           (2023) 10:44 

line representation of a uniform magnetic field. Further-
more, Sağlam and Millar (2006) found that some students 
think of magnetic fields as a “flow” of something. Con-
sequently, they think that charged particles experience 
forces along the field, which, however, is a misinterpreta-
tion of the field lines representing the magnetic field.

Representational difficulties might also be related to 
students’ conceptual difficulties with electric and mag-
netic fields (e.g., Bagno & Eylon, 1997; Ding et al., 2006; 
Maloney et  al., 2001). Students’ understanding of these 
topics tends to be fragmentary and not well-integrated 
into a coherent framework (Sağlam & Millar, 2006). 
Typical student difficulties concern confusions between 
electric and magnetic fields. For instance, some students 
believe that the field around a magnet suddenly ends and 
does not have an infinite extension, and that the mag-
netic field always points radially away from the magnet 
(Ding et  al., 2006). To sum up, electromagnetism is an 
important and basic, yet very challenging topic. Learn-
ing difficulties might be related to the abstract concepts 
to be acquired, but also to the multiple external repre-
sentations that play a central role for this topic. Electro-
magnetism therefore seems to be a suitable context for 
investigating the relation between representational com-
petence and conceptual knowledge.

Gender differences in representational competence
Research commonly finds lower conceptual knowledge 
in females than in males across various physics top-
ics (e.g., Hofer et  al., 2018; Madsen et  al., 2013; OECD, 
2009). Extensively researched reasons for the gender gap 
in some STEM fields such as physics and computer sci-
ence (Cheryan et al., 2017) encompass gender differences 
in interest, motivation, self-concept (Jansen et  al., 2014; 
Kang et  al., 2019; Patall et  al., 2018), and visual-spatial 
abilities (Reilly et al., 2017; Reinhold et al., 2020; Yoon & 
Mann, 2017), or a lack of female role models (Chen et al., 
2020; Mullis et al., 2016). In the present study, we do not 
focus on affective-motivational factors, basic cognitive 

abilities, or learners’ schooling environment. Instead, 
we address representational competence, which is a fac-
tor of particular relevance to the STEM domain itself 
that might contribute to gender differences in conceptual 
knowledge.

Although not in all STEM-related topics gender dif-
ferences are robustly found, in many physics topics male 
learners show an advantage in content knowledge com-
pared to female learners (e.g., Hofer et al., 2018; Liu et al., 
2008; Madsen et al., 2013; OECD, 2009). In comparison 
to these differences in content knowledge, gender differ-
ences in the use of different types of representation and 
in representational competence have hardly been stud-
ied. The available research indicates that female students 
are less able to deal with some types of representations 
than their male classmates and are less likely to use them 
for problem solving. In particular, this is the case with 
visual graphical representations, which make up a large 
part of the representations used in the STEM domain 
(e.g., Chan & Wong, 2019; Hegarty & Kriz, 2008; Tam 
et al., 2019). Lowrie and Diezmann (2011) demonstrated 
that boys outperformed girls in different types of math-
ematical-graphical tasks (e.g., axis tasks) that required 
the students to infer and consider spatial orientation or 
direction. These results are possibly associated with male 
advantages in spatial abilities (e.g., Reinhold et al., 2020), 
whose link with success in STEM fields has been dem-
onstrated (e.g., Buckley et  al., 2018). Heo and Toomey 
(2020) found that in undergraduates, effects of gender on 
learning from multimedia instruction involving visual-
graphic representations were largely explained by differ-
ences in spatial abilities. In physics, Hake (2002) showed 
that spatial abilities exhibited a higher correlation with 
conceptual learning for male than for female students. 
Nieminen et  al. (2013) found that the performance of 
female secondary school students in a force concept 
test was more dependent on the representational format 
in which tasks were presented than the performance of 
their male counterparts. This was shown by the fact that 

Fig. 1 Different types of representations of the magnetic field around a current-carrying conductor. a shows a concrete-analog representation, b 
field lines, c vector-field plot, and d mathematical-symbolical representation
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girls could not recognize that multiple isomorphic repre-
sentations represented the same facts. This finding might 
be aligned with the assumption that males may have 
an advantage on tests that require mapping relations in 
working memory (Halpern, 2004). These less beneficial 
preconditions in cognitive abilities, which are required to 
build representational competence and abstract from dif-
ferent representations, might contribute to gender differ-
ences in conceptual knowledge.

A methodological problem that can arise when study-
ing gender differences is a lack of measurement fairness. 
In psychometric terms, it can happen that some or all 
items work non-measurement-invariant across genders, 
which implies for example that they are more difficult 
to solve for one gender even when members of all gen-
ders are at the same level of the underlying latent trait 
(Wicherts et al., 2005). In research on conceptual under-
standing in physics, measurement differences between 
females and males have been found on the well-known 
Force Concept Inventory (e.g., Dietz et al., 2012; Madsen 
et al., 2013; Osborn Popp et al., 2011; Traxler et al., 2018). 
Traxler et  al. (2018), for example, found some items to 
be more difficult for females than for males, which could 
explain a good part of gender differences on this meas-
ure. There are two ways to deal with a potential lack of 
measurement invariance. First, invariance can be statis-
tically modeled and tested (Hofer et  al., 2017; Wicherts 
et  al., 2005). Thus, psychometric investigation of meas-
urement invariance allows testing to which degree an 
instrument established a common scale across groups 
such as genders (Hofer et al., 2017). Second, latent varia-
ble modeling can be used to incorporate deviations from 
measurement invariance. This approach allows unbiased 
comparisons across genders despite moderate deviations 
(Wicherts et  al., 2005). Consequently, the application of 
well-developed psychometric measures in combination 
with modeling of measurement invariance contributes 
to reliable and valid testing of gender differences. In the 
present study, in order to ensure that commonalities or 
differences found between genders are not mere meth-
odological artefacts (e.g., Dietz et al., 2012), we examine 
measurement invariance in both assessment instruments 
and correct for potential violations thereof.

Present study
In the present study, we investigate the relation between 
representational competence regarding vector fields and 
conceptual knowledge about electromagnetism in female 
and male undergraduate students. The assessed students, 
from universities in Germany and Switzerland, should 
all have received instruction about electromagnetism in 
their high school science lessons, but they have not yet 
received any further instruction on this topic at their 

universities. Within this context, we examine the follow-
ing research questions:

(1) What is the relation between undergraduates’ rep-
resentational competence regarding vector fields, and 
their conceptual knowledge about electromagnetism?

Based on the assumption that representational com-
petence acts as a prerequisite, yet insufficient condition 
for the acquisition of conceptual knowledge (Kohl et al., 
2007; Nitz et al., 2014a, 2014b; Nitz et al., 2014a, 2014b; 
Scheid et  al., 2018), we expect a positive but imperfect 
correlation (i.e., r < 1) between the two constructs.

(2) Does the relation between representational compe-
tence and conceptual knowledge differ between female 
and male students?

Given the prior findings that female students typically 
exhibit lower conceptual knowledge in physics than male 
students (e.g., Hofer et al., 2018) and might also possess 
lower competence regarding some representations (e.g., 
Heo & Toomey, 2020), we examine whether the relation 
between the two constructs is similar or differs between 
these two groups of students.

Methods
Sample and procedure
Undergraduate students were selected as study partici-
pants, who had not yet had any experience with vector-
field representations and contents in electromagnetism 
during their studies at university. Consequently, it can 
be assumed that the students were at similar levels con-
cerning representational competence and conceptual 
knowledge in electromagnetism as immediately after 
graduating from secondary school. To gather an apt 
sample size, the students were recruited from different 
fields of study of which some were more strongly related 
to physics than others. It was assumed that this proce-
dure would result in a total sample of students who had 
physics lessons of varying length and depth during high 
school. The sample size was determined by the sizes of 
the student cohorts at the participating universities.

The participating students received links to an online 
survey. Of over 1000 invited participants, 845 opened 
the link, and 540 completed the survey. Of those who 
had completed the survey, we excluded participants who 
had finished it in less than 10 min or had indicated on a 
validation question that their data was not trustworthy. 
The final sample consisted of N = 515 participants. The 
students came from universities in Germany and Ger-
man-speaking Switzerland. They were recruited within 
four different courses, with the first course consisting 
of teacher education students in STEM and non-STEM 
fields (n = 188, 71 female, Mage = 20.75, SD = 3.82; an 
average of 4.45 years of physics at school). In the second 
course, students came from mechanical engineering and 
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electrical engineering (n = 149, 14 female/1 diverse or 
unspecified, Mage = 20.72, SD = 2.36; average 5.57  years 
of school-physics). The third course was offered for stu-
dents from environmental sciences (n = 98, 69 females/3 
diverse or unspecified, Mage = 21.10, SD = 1.60; average 
3.11 years of school-physics), and the fourth course was 
offered for physics students (n = 80, 29 female/3 diverse 
or unspecified, Mage = 19.74, SD = 2.96; average 4.08 years 
of school-physics). Overall, the majority of our partici-
pants were undergraduates specialized in STEM who 
had not yet had university education in electromagne-
tism. For further details on the sampling procedure, see 
Küchemann et al. (2021).

The students were provided with a link to the survey 
and could participate within their regular lecture hours 
or within two weeks after. In addition to the tests on rep-
resentational competence and conceptual knowledge in 
electromagnetism, demographic and school background 
information as well as some information on students’ 
attitudes towards science (which is not part of the pre-
sent analysis) was assessed. Information on all assessed 
variables is provided in Malone et  al. (2021). The aver-
age time required to fill out the survey was 25 min. Par-
ticipants provided informed consent for data usage. The 
study was conducted in full accordance with the ethi-
cal standards for research of the American Psychologi-
cal Association’s “Ethical Principles of Psychologists and 
Code of Conduct” (American Psychological Association, 
2017). The first author’s Swiss institution as well as Ger-
man regulations did not require formal ethical approval 
for studies obtaining anonymized data on adult students 
within university courses.

Transparency and openness
We report how we determined our sample size, all 
data exclusions, all manipulations, and all measures 
in the study. All data and research materials are avail-
able from https:// osf. io/ p476u, Küchemann et al. (2021), 
and Malone et al. (2021), and the analytic scripts for the 
present analysis from https:// osf. io/ rfyh6/. Data were 
analyzed using Mplus, version 8.6 (Muthén, & Muthén, 
1998-2021) run from within the R software environment 
version 4.0.2 (R Core Team, 2021) via the MplusAuto-
mation package (Hallquist & Wiley, 2018). The tidyverse 
packages were used for data wrangling and visualization 
(Wickham et al., 2019). This study’s design and its analy-
sis were not pre-registered. For statistical tests in analysis 
that were undertaken on the whole sample, we use 95% 
significance levels and report 90% confidence intervals 
to convey uncertainty in parameter estimates (Schweder 
& Hjort, 2016). For statistical tests on sub-samples (e.g., 
within or comparing genders), we use 90% significance 

levels to prevent increased rates of beta-errors, again 
reporting 90% confidence intervals.

Measures
Representational competence
The inventory for representational competence of fields 
(RCFI; Küchemann et  al., 2021) was used to assess stu-
dents’ understanding of vector-field plots (4 items) and 
field-line representations (4 items), as well as transla-
tion between these (4 items). Ten of these items have a 
single-choice format and contain between 4 and 5 answer 
options of which always one is correct. The two remain-
ing items have a multiple true–false format, which were 
considered as correct if the students chose all three 
respective correct answer options. For more detailed 
descriptions of the instrument as well as results from 
Rasch scaling and cognitive interviews, see Küchemann 
et  al. (2021). The items do not explicate a specific topi-
cal context such as electromagnetism. An example item 
depicting how this topical context-independence is 
achieved is presented in Fig. 2.

To examine the psychometric validity of the instru-
ment, a unidimensional confirmatory factor analysis was 
fitted using the WLSMV-estimator in the software pack-
age Mplus 8.6 (Muthén & Muthén, 1998-2021). For all 
latent variable models, we inspected multiple fit indices 
and particularly residual associations to judge the sever-
ity of misfit (Greiff & Heene, 2017). There were no out-
standing residual associations in any of our models that 
would point towards substantial model misspecification. 
Including one residual covariance between two items 
with the same item stem, the analysis showed acceptable 
fit, χ2

53 = 88.45, p = 0.002, RMSEA = 0.036, CI90[0.022; 
0.049], CFI = 0.939, TLI = 0.923, with standardized factor 
loadings between 0.34 and 0.85 and no salient residual 
covariances. The internal consistency-estimates were 
α = 0.86 and ω = 0.86 (for a description of the model-
based Omega-coefficient, see Dunn et  al., 2014). For 
descriptive analyses, the sum of students’ correct answers 
on the instrument was used, ranging from 0 to 12 points.

Since we wanted to compare the relation between rep-
resentational competence and conceptual knowledge 
between females and males, we examined measurement 
invariance across these groups to ensure that potential 
group differences could not be attributed to measure-
ment bias. We followed the steps outlined by Svetina 
et al. (2020) that are appropriate for testing invariance of 
measures with categorical items. Note that these steps 
differ in order and details of implementation from meas-
urement invariance analysis with continuous items; we 
refer readers interested in the details of the applied steps 
to Svetina et  al. (2020). We followed their procedure to 
examine invariance of structure, loadings, and thresholds, 

https://osf.io/p476u
https://osf.io/rfyh6/
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which are the appropriate steps to ensure that differences 
in latent means or in the latent relation between the two 
constructs would not be a measurement artefact. Fol-
lowing the steps described by Svetina et  al. (2020), the 
instrument exhibited partial measurement invariance 
of loadings and thresholds across females and males, 
with a fit of χ2

108 = 158.43, p = 0.001, RMSEA = 0.043, 
CI90[0.028; 0.057], CFI = 0.970, TLI = 0.964. Only two 
factor loadings exhibited lack of measurement invari-
ance, which we could easily accommodate and correct for 
in all further latent variable models to ensure fair com-
parisons (Van de Schoot et al., 2012). This level of meas-
urement invariance thus allows the unbiased comparison 
of latent correlations and mean values across genders. 
Internal consistency estimates were α = 0.83, ω = 0.84 for 
females, and α = 0.87, ω = 0.87 for males.

Conceptual knowledge
To assess students’ conceptual knowledge about elec-
tromagnetism, we compiled a test cpnsisting of 13 
single-choice items with between five and ten distrac-
tors. The test covers four of the conceptual areas on 
electromagnetism suggested by Maloney et  al. (2001) 
and McColgan et  al. (2017), namely magnetic fields 
generated by magnets and electric currents, and mag-
netic force (also known as Lorentz force) on current-
carrying wires and moving charged particles. Nine test 
items were adopted from established inventories by 
Ding et  al. (2006), Maloney et  al. (2001), and McCol-
gan et al. (2017). Four additional items were developed 
and validated by four experts: two experienced physics 

professors, and two researchers with PhDs in physics 
education and teacher’s qualifications. The test com-
prises three items that ask about the direction of a mag-
netic field at a selected point, and three items in which 
the magnetic field of a configuration of magnets or cur-
rents has to be determined. In three cases, the solution 
involves superposing magnetic fields. Considering the 
magnetic force, three items cover the magnitude of the 
force, and four items are related to the direction of the 
force. Determining magnetic forces requires students 
to relate magnetic fields to the direction of the flow of 
charged particles (either in a wire or freely moving). 
Therefore, all items include the interpretation of mag-
netic fields, which are either represented by single vec-
tors of the vector-field plot (five items) or by field lines 
(eight items). An example item is shown in Fig.  3. In 
this item, students have to determine the direction of 
the magnetic field.

After estimation of a unidimensional confirmatory 
factor analysis, one item was removed that showed a 
very low factor loading. The item was among the more 
difficult items but still showed sufficient variation (27% 
solution rate). A potential explanation for the item’s 
misfit was that it demanded knowledge about a rather 
specific detail of the magnetic force, namely that the 
force affects only those parts of the conductor that are 
located within the range of the magnetic field. Students 
with generally low conceptual knowledge about elec-
tromagnetism might have learned this fact, whereas it 
might not have been part of instruction for those with 
otherwise good conceptual understanding. This item 

Fig. 2 Example item from the representational competence with fields-inventory (Küchemann et al., 2021)
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might thus cover knowledge of a specific isolated fact 
more than thorough conceptual knowledge, indicating 
a lack of validity.

After removal of this item, the unidimensional 
model showed acceptable fit, χ2

54 = 102.78, p < 0.001, 
RMSEA = 0.042, CI90[0.029; 0.054], CFI = 0.967, 
TLI = 0.959, with standardized loadings between 0.59 
and 0.84 and no salient residual covariances. Item mean 
values (percent solved) ranged from 0.20 to 0.47, indi-
cating rather high item difficulties within this sample. 
The internal consistency estimates for the instrument 
were α = 0.91 and ω = 0.92. For descriptive analyses, the 
sum of students’ correct answers on the instrument was 
used, ranging from 0 to 12 points. Note that based on the 
number of items and answer options within each item, 
the expected score for an individual engaging in random 
guessing on this instrument would be 1.7 points.

Following the steps outlined by Svetina et  al. (2020), 
this instrument exhibited partial measurement invari-
ance of loadings and thresholds across females and males, 
with only one loading differing between genders and a fit 
of χ2108 = 230.45, p < 0.001, RMSEA = 0.067, CFI = 0.945, 
TLI = 0.932. Internal consistency estimates were α = 0.83, 
ω = 0.83 for females, and α = 0.93, ω = 0.93 for males.

Analytic approach
We will employ the same set of analytic approaches for 
our two research questions. The first research question 
is concerned with the relation between representational 
competence and conceptual knowledge. In order to 
examine this relation, we will use three statistical tools. 
First, we will use a scatter plot as a visual representation 
of the two constructs’ relation. A scatter plot can reveal 
details about such a relation that might remain hidden 

in descriptive or inferential statistical estimates, such as 
the specific nature of a relation (e.g., linear, quadratic, or 
more complex), width of variances across the whole spec-
trum of the variables, and specific details of the bivari-
ate distribution between the constructs such as learners 
being high only on one construct, but low on the other.

The second statistical tool we use is a linear correlation 
estimate with confidence interval. The reason to report 
such a basic statistical estimate is that in contrast to more 
elaborate models, such as structural equation modeling, 
such a statistic does not make rely on meta-theoretical 
assumptions such as reflective latent variables (see e.g., 
Borsboom, 2008; Edelsbrunner, 2022). This statistic is 
also commonly used in meta-analyses (e.g., Schneider 
et al., 2017, 2018).

Note that although we are not interested in examin-
ing similarities and differences in the relation between 
the constructs across the different sub-samples that were 
used in this study, we will correct standard errors and 
confidence intervals for all statistical estimates, includ-
ing estimates of correlations and Cohen’s ds, for cluster 
dependence via cluster-robust maximum likelihood esti-
mation (Szpiro et al., 2010). Comparative analyses across 
the four samples are presented elsewhere (Edelsbrunner 
& Hofer, 2023) and the data for further comparisons are 
freely available (Malone et al., 2021). Standard errors and 
confidence intervals will also be corrected for deviation 
from bivariate normality with a multivariate kurtosis-
robust estimator (Yuan et al., 2004).

The third statistical tool that we will use is latent vari-
able modeling (Beaujean, 2014). In contrast to mani-
fest variables, in latent variable modeling specific 
meta-theoretical assumptions (e.g., that all non-shared 
variation between indicator variables is measurement 

Fig. 3 Example item from the assessment of conceptual knowledge in electromagnetism (taken from McColgan et al., 2017)
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error; Edelsbrunner, 2022; White et al., 2022) allow sepa-
rating measurement error from true construct variance 
(Beaujean, 2014). We will use this approach to estimate 
the latent (i.e., measurement error-free) correlation 
between the two constructs. In this step, we will also test 
for a quadratic relation that was indicated by the scatter 
plot.

Finally, to examine our second research question, 
which is concerned with gender differences in the rela-
tion between the two constructs, we will again conduct 
the same three analytic steps, but separate for genders 
and with the following adaptations. In reporting the lin-
ear correlation between the two constructs, we will add a 
robustness-check across samples since the gender distri-
bution was skewed in some of the samples. This robust-
ness-check can be found in the Additional file 1: Table S4. 
We will also report estimates of covariances in addition 
to correlations, since differences in correlations do not 
necessarily have to go hand-in-hand with differences in 
covariances if variances of the involved variables differ 
between genders (Little, 2013). Both, covariances and 
correlations, indicate the strength of the relation between 
the two constructs, but from different (i.e., raw vs. stand-
ardized) perspectives. Raw regression weights will also 
be reported as the basis for extended interpretations of 
gender differences in the discussion. The third analysis, 
latent variable modeling, will be extended into a multi-
group-model (Beaujean, 2014) to examine similarities 
and differences in the two latent variables across genders.

Results
Descriptive statistics on the two main variables (concep-
tual knowledge and representational competence) are 
presented first, followed by the analyses concerning the 
two research questions.

Descriptive statistics
Figure 4 depicts distributions of students’ scores on rep-
resentational competence and on conceptual knowledge. 
On representational competence, the students yielded a 
mean score of M = 6.38 (53.17% solved) out of 12 items, 
with a standard deviation of SD = 3.90 and range of 0–12. 
On conceptual knowledge, the students yielded a mean 
score of M = 3.60 (30.00% solved) out of 12 items, with 
a standard deviation of SD = 3.19 and a range of 0–12. 
For more detailed descriptive statistics, see Additional 
file 1: Table S1. Additional file 1: Table S2 presents item 
statistics for the representational competence-test, and 
Additional file 1: Table S3 for the conceptual knowledge-
test. Overall, the students achieved medium scores on 
representational competence, and rather low scores on 
conceptual knowledge, which exhibited a moderate floor 
effect.

Relation between representational competence 
and conceptual knowledge
In order to examine the relation between students’ rep-
resentational competence and conceptual knowledge, 
we inspected a scatter plot, estimated a Pearson corre-
lation, and set up a latent variable model to obtain an 
estimate of the latent (measurement-error free) corre-
lation between the two constructs. The scatter plot is 
provided in Fig. 5.

As visible from Fig.  5, there appeared to be a posi-
tive relation between representational competence and 
conceptual knowledge. The more representational com-
petence students had, the more conceptual knowledge 
they tended to have as well. The estimated linear cor-
relation between the two measures was significant and 

Fig. 4 Distributions of Students’ Scores on Representational 
Competence and Conceptual Knowledge. Distributions are indicated 
as boxplots, complemented by violin-shapes outlining kernel 
densities and overall means indicated by diamonds. Outliers (more 
than 1.5 interquartile-ranges above third quartile) indicated by 
individual points

Fig. 5 Scatter Plot Depicting Relation Between Representational 
Competence and Conceptual Knowledge. Points jittered for better 
readability. Full line indicates linear fit with 90% confidence band, 
dashed line smooth fit from general additive model



Page 10 of 19Edelsbrunner et al. International Journal of STEM Education           (2023) 10:44 

moderate to strong, r = 0.54, p < 0.001, with a 90% con-
fidence interval of CI90[0.48; 0.60]. The smooth fit line 
in the scatter plot (dashed line in Fig. 4; stemming from 
a general additive model implemented via the ggplot2-
package, Wickham et al., 2019) indicated that the rela-
tion between the two constructs might have a quadratic 
characteristic, being stronger at higher levels of the two 
variables. We first remain with modeling a linear rela-
tion between the two constructs and then present an 
explorative model including a quadratic term.

In the next step, we set up latent variable models 
to yield measurement error-corrected estimates of 
the relation between the two constructs. This model 
allowed testing our priorly stated hypothesis regard-
ing this relation, namely, that it would be strong but 
clearly below unity (r < 1). To test this assumption, we 
set up the following two models. The first model was a 
unidimensional model, in which representational com-
petence and conceptual knowledge were described by 
the same factor. This unidimensional model is statisti-
cally equivalent to a model with two latent variables 
that share a perfect correlation of r = 1. We set up this 
model and compared it with a second model in which 
the two constructs represented two separate, yet cor-
related latent variables. By comparing the fit of both 
models, we could test our hypothesis. To account for 
the moderate floor effect in conceptual knowledge and 
for cluster-dependence stemming from the four dif-
ferent samples, we used a cluster- and kurtosis-robust 
Huber-White sandwich-maximum likelihood estima-
tor (cluster-robust MLR; Szpiro et al., 2010; Yuan et al., 
2004).

The fit of the first, unidimensional assuming one 
latent variable to describe the common variance across 
all items of the two constructs, was χ2

251 = 344.96, 
p < 0.001, RMSEA = 0.027, CI90[0.020; 0.034], CFI = 0.945, 
TLI = 0.939. The second model, in which the two constructs 
were represented by two correlated latent variables, showed 
a fit of χ2

250 = 302.69, p = 0.013, RMSEA = 0.020. CI90[0.010; 
0.028], CFI = 0.969, TLI = 0.966. The fit indices of the sec-
ond model with two correlated latent variables appeared 
better. To statistically test this impression, we conducted a 
chi-square model difference test (Asparouhov & Muthen, 
2010). The test supported this impression, showing that the 
model assuming two latent variables instead of one exhib-
ited significantly better model fit, Δχ2

1 = 43.19, p < 0.001. 
The latent linear correlation between the two constructs 
in the two-dimensional model was r = 0.71, p < 0.001, 
CI90[0.66; 0.77]. These results provide evidence that the 
relation between representational competence and concep-
tual knowledge in this sample is substantial, however far 
from unity (i.e., r < 1.00).

Since the scatter plot (Fig. 5) indicated that the relation 
between the two constructs might be described as quad-
ratic, we also set up a quadratic latent variable model. We 
present both models but interpret the linear model as 
our main model and the quadratic model as an additional 
explorative model because the quadratic part of the rela-
tionship appears not very pronounced and adds interpre-
tational difficulty, as a quadratic model has to be set up as 
a regression instead of regular correlation. Specifically, in 
order to be able to include a quadratic term for the rela-
tion between the two constructs, we had to predict con-
ceptual knowledge from representational competence, 
including both linear and quadratic regression terms. 
This required maximum likelihood-estimation with 
numerical integration. A Satorra-Bentler scaled Chi-
square difference test (Satorra & Bentler, 2010) was used 
to test for significance of the quadratic regression term. 
Model estimates confirmed a quadratic relation between 
the two latent variables (Δχ2

1 = 20.65, p < 0.001), with an 
estimated linear regression term of b = 1.32, (β = 0.68), 
and an estimated quadratic regression term of b = 0.30 
(β = 0.17). The positive quadratic term showed that as 
indicated by the scatter plot, the relation was stronger 
at the upper end. Overall, via the linear and quadratic 
regression terms, students’ representational compe-
tence could explain 52% of variance in their conceptual 
knowledge.

Gender differences in the relation 
between representational competence and conceptual 
knowledge
To examine gender differences in the relation between 
representational competence and conceptual knowledge, 
we investigated descriptive statistics and scatter plots 
for the means, covariances, and correlations across gen-
ders, and then estimated a multiple-group latent vari-
able model (Beaujean, 2014) in which we could compare 
unstandardized (i.e., covariances) and standardized (i.e., 
correlations) estimates of the relation across genders.

The distributions of scores on both instruments are 
depicted separately for female and male students in Fig. 6. 
Descriptive statistics indicated that females showed 
a lower mean score on representational competence 
(M = 5.59, SD = 2.71) than males (M = 7.10, SD = 2.89), 
with a standardized mean difference of Cohen’s d = 0.55, 
CI90[0.40; 0.69]. Females also showed a lower mean score 
on conceptual knowledge (M = 2.55, SD = 2.30) than 
males (M = 4.60, SD = 3.58), with a standardized mean 
difference of Cohen’s d = 0.68, CI90[0.60; 0.77]. The plot 
in Fig.  6 corroborates these numbers, showing that on 
representational competence, the highest density of the 
distribution was around 3 points for females and around 
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7 points for males. On conceptual knowledge, males 
showed the highest density at only about 1 or 2 points, 
and females were even lower, representing statistical out-
liers when they obtained a high result (indicated by indi-
vidual points in Fig. 6). It will be discussed how some of 
these results might represent guessing. Students indicat-
ing gender diverse identity (n = 7) showed mean values of 
M = 6.00, SD = 2.55 on representational competence, and 
M = 1.80, SD = 1.92 on conceptual knowledge, indicating 
average representational competence but low conceptual 
knowledge within this group. This group of students was 
too small to be included in the further statistical models.

The estimated covariances of students’ sum scores on 
representational competence and conceptual knowledge 
were cov = 2.92 for females, and cov = 5.74 for males. 
Note that these covariance estimates translate into 
regression weights of b = 0.37 for females, respectively 
b = 0.69 for males for predicting conceptual knowledge 
from representational competence. Pearson correlation 
estimates showed an estimated correlation between the 
two constructs of r = 0.44, p < 0.001, CI90[0.38; 0.50] for 
females, and r = 0.56, p < 0.001, CI90[0.50; 0.62] for males. 
In accordance with these estimates, Fig.  7 indicates a 
weaker association for female students than for male stu-
dents. These results were relatively robust across samples 
(Additional file 1: Table S4).

We examined whether these differences in the relation 
between the two constructs could also be found on the 
latent level. Differences in the latent association between 
males and females were modeled by extending the latent 

variable model that we used for the first research ques-
tion to a multigroup-model (Beaujean, 2014) that allowed 
comparing parameters between females and males. In 
this model, we implemented invariance of item loadings 
and thresholds according to the results from the measure-
ment invariance-results described in the method section. 
We first remained with modeling a linear association, 
because the quadratic term in the overall sample was 
significant yet rather weak. Introducing quadratic terms 
into the model necessitates specification of a regression 
instead of correlation, as well as numerical integration 
in the estimation, which is computationally demanding. 
We therefore abstained from quadratic terms at first and 
remained with inspecting latent correlations between 
genders, before trying to fit a quadratic implementation. 
Within the linear model, we first examined whether the 
covariance estimate between representational compe-
tence and conceptual knowledge differed between males 
and females. In accordance with the descriptive statis-
tics, the estimated covariance turned out to be weaker 
in in females, cov = 0.69, CI90[0.65; 0.74] than in males, 
cov = 1.65, CI90[1.05; 2.23], with a difference test cor-
roborating a difference between these covariances, 
Δχ2

1 = 29.79, p < 0.001. A different picture emerged when 
comparing the resulting correlation coefficients on the 
latent level by standardizing these covariances based on 
the genders’ latent variance estimates. The latent corre-
lation coefficient for females, r = 0.69, CI90[0.65; 0.74], 
was very similar to that of males, r = 0.70, CI90[0.62; 
0.78]. Note that the estimate for the females is equal to 

Fig. 6 Distributions of Females’ and Males’ Scores on Representational Competence and Conceptual Knowledge. Distributions are indicated 
as boxplots, complemented by violin-shapes outlining kernel densities and overall means indicated by diamonds. Outliers (more than 1.5 
interquartile-ranges above third quartile) indicated by individual points
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the females’ covariance estimate because the variances 
of the latent variables in that group were fixed to 1 for 
identification of the latent scales (Kline, 2015). The simi-
larity in latent correlations despite differences in latent 
covariances can be traced back to differences in the two 
groups’ latent variances. The female students had a mod-
erately lower latent variance estimate in representational 
competence (females: fixed to 1.00 for identification, see 
Kline, 2015; males: 1.25) and more strongly so in concep-
tual knowledge (females: fixed to 1.00; males: 4.38). Since 
the latent correlation coefficients are standardized based 
on these latent variances, the estimated correlation for 
females turned out so similar in contrast to the differ-
ences in manifest correlations.

We finally fitted the quadratic extension of the latent 
variable model across genders, to explore how similar or 
different females and males were in the linear and quad-
ratic parts of their associations. Whereas the quadratic 
part of the relation was similar in both groups, females: 
b = 0.038, p = 0.006, males: b = 0.040, p < 0.001, the linear 
term was weaker in females, b = 0.17, p < 0.001 than in 
males, b = 0.28, p = 0.002.

Discussion
In this study on undergraduates from Germany and 
Switzerland, we found that representational competence 
regarding visual-graphical field representations and 
conceptual knowledge about electromagnetism show 
a substantial relation, yet the two constructs’ relation is 
far from unity (i.e., r < 1). Results indicated a quadratic 

relation that was weaker in female than in male students. 
We discuss these results and their implications for sci-
ence education and research in turn.

The interrelation between representational competence 
and conceptual knowledge
The substantial positive association between representa-
tional competence and conceptual knowledge supports 
the argument by Scheid et al. (2018) according to which 
the two constructs might develop interdependently and 
even bootstrap one another. A positive relation between 
representational competence and conceptual knowledge 
has been found before (e.g., Nieminen et al., 2013). How-
ever, in this and further prior studies representational 
competence was measured in the same topical context 
which might inflate the relation. It is therefore notewor-
thy that in the present study, the two constructs exhibited 
a substantial relation despite being measured without 
confounding topical context.

As representational competence and conceptual 
knowledge build together, representational competence 
is often seen as a constituent of one’s conceptual knowl-
edge (Medina & Suthers, 2013). However, the two con-
structs were found to be clearly statistically separable. 
There might be several reasons why the statistical rela-
tion between the two constructs was not stronger. First, 
the development of conceptual knowledge in STEM 
instruction relates to a number of aspects that might be 
(partially) independent of representational competence. 
These may include, for example, more general reasoning 

Fig. 7 Relation Between Representational Competence and Conceptual Knowledge in Female and Male students. Points Jittered for Better 
Readability. Full lines indicate linear fit with 90% confidence bands, dashed lines quadratic fit
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abilities (Stelzer et al., 2021), prior conceptions developed 
from everyday experiences (Edelsbrunner et  al., 2018), 
prior knowledge from former instruction on related top-
ics (e.g., on forces; Simonsmeier et al., 2022), and affec-
tive-motivational factors (Cordova et al., 2014).

Moreover, reference should be made to the further 
facets of representational competence and the concept 
of meta-representational competence, which relate to a 
person’s ability to understand the meaning of representa-
tions in the respective domain and the specific concepts 
(diSessa, 2004; diSessa & Sherin, 2000). For groups of 
people with very high meta-representational competence, 
the correlation of the two constructs might approximate 
1. In other words, individuals who understand very well 
how to best solve a specific conceptual task using or cre-
ating the appropriate type of representation might be 
able to perfectly invest their representational competence 
into conceptual knowledge. Note that this assumes that 
(meta-) representational competence is the only deci-
sive factor for building up conceptual knowledge, which 
should be scrutinized theoretically and empirically. At 
a lower level of meta-representational competence, the 
two may develop more independently (although high 
conceptual knowledge is probably virtually impossible 
at low meta-representational competence). Differences 
in meta-representational competence could in turn be 
due to differences in the emphasis placed by teachers on 
addressing the relationship between representation and 
concept in their lessons through representational activity 
tasks (Scheid et al., 2019), or to differences in the efforts 
that individuals invest into relating the two.

Besides the observation that there were students with 
high scores in representational competence and low 
scores in conceptual knowledge, Fig. 4 shows that there 
were almost no students with the opposite pattern: High 
scores in conceptual knowledge did rarely occur with low 
representational competence. This supports the assump-
tion that representational competence is a prerequisite 
for the acquisition of conceptual knowledge (e.g., Kohl 
et  al., 2007; Nitz et  al., 2014a, 2014b; Nitz et  al., 2014a, 
2014b; Scheid et al., 2018).

A related explorative finding is the quadratic type of 
relation between the two constructs. A reasonable expla-
nation lies in the observed moderate floor effect in the 
scores on conceptual knowledge. If many students have 
very low scores in conceptual knowledge but low to 
medium scores in representational competence, the cor-
relation curve naturally flattens out on the lower end (see 
Fig. 6). Rather low overall scores in conceptual knowledge 
are in line with earlier findings based on similar test items 
(Ding et al., 2006; Maloney et al., 2001; Sağlam & Millar, 
2006). Considering the expected test guessing score of 
1.7, the observed floor effect with many scores between 

0–3 points might be attributed to guessing. However, the 
quadratic relation remained when it was estimated on the 
latent level, where most variance that can be attributed 
to guessing should be corrected for (for details on this, 
see e.g., Holster & Lake, 2016). This robustness indicates 
that the quadratic relation might be more than a statisti-
cal artefact. For example, it might suggest a threshold in 
representational competence necessary for building con-
ceptual knowledge. Since our study is the first to focus on 
this relation in such detail, the quadratic relation needs 
to be replicated on further samples and with alternative 
analytic approaches (e.g., Weiss et  al., 2020) to examine 
whether it holds across samples and contexts and goes 
beyond a statistical artefact.

From these results, we infer the hypothesis that it 
seems to be worthwhile for teachers to invest time in 
building representational competence in their students 
in order to support them in learning physics concepts. 
However, the findings also show that even a high level of 
representational competence does not guarantee success 
in understanding physics concepts.

Differences in males’ and females’ relation 
between representational competence and conceptual 
knowledge
The weaker relation between representational compe-
tence and conceptual knowledge in females may indicate 
that the males in our sample had higher meta-represen-
tational competence (diSessa, 2004; diSessa & Sherin, 
2000). This gender difference could result from the fact 
that the females might have failed to use their develop-
ing representational competence to build conceptual 
knowledge on electromagnetism in school. Assuming 
that the effect of representational competence on con-
ceptual knowledge is causal (note that the present study 
examined relations, not causality, so this is a hypotheti-
cal assumption), the estimated regression coefficients 
indicate that each point of representational competence 
translates into 0.37 points of conceptual knowledge for 
females, and into 0.69 points for males. In these raw 
terms, we would infer males to do almost twice as well 
as females in investing their representational competence 
into conceptual knowledge. If one further assumes that 
the two abilities bootstrap each other during learning 
(Scheid et al., 2019), this may be one mechanism of why 
females are less likely than males to perform outstand-
ingly in some science subjects (e.g., Meho, 2021): When 
males have acquired a certain level of representational 
competence, they can invest it into the advancement of 
their conceptual knowledge, but this process might work 
worse for females. Since this is a correlational study, 
however, we do not yet know how much of this relation 
is causal. In addition, a part of the weaker relation found 
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in females might be explained by range restriction due to 
floor effects. At the same time, our results clearly show 
that even for females with high representational compe-
tence, the relation is much weaker than in males, ruling 
out such a statistical artifact as a sufficient explanation. 
We suggest running replication studies in students from 
university and high schools. This needs to be done to 
examine whether the weaker relation of representational 
competence and conceptual knowledge in females gen-
eralizes to further contexts and populations and might 
really hint at differential dynamics.

It is noteworthy that in contrast to the covariance 
between the two constructs, the difference in the relation 
appeared more moderate in the manifest correlation esti-
mates, and the latent correlation estimates even appeared 
very similar between females and males. In other words, 
whereas the females’ covariance between the two con-
structs is clearly smaller than that of the males, set in 
relation to the much smaller variances in both constructs 
for females, the resulting latent correlation coefficients 
are very similar. This finding points to the importance 
of using graphical inspections and unstandardized sta-
tistical approaches in order not to overlook differences 
in relations that might not be apparent in standard-
ized coefficients such as correlations, an observation 
that relates to discussions almost 100 years old (Wright, 
1923). The manifest correlations in our sample appeared 
more different than the latent correlations. This can be 
accounted to the fact that whereas the (unstandardized) 
parameters in the measurement models were very simi-
lar in both groups, as evidenced by our tests of measure-
ment invariance, the residual variances were larger in the 
female sample. This is reflected in the higher estimates of 
internal consistency according to the Alpha and Omega 
indices in males. The latent variable models corrected 
for the resulting higher amount of measurement error in 
females, making the latent correlations even more simi-
lar to each other than the manifest estimates. An aspect 
that should be considered in interpreting this result 
is the strong meta-theory that latent variable models 
imply (White et al., 2022). Latent variable theory induces 
strong assumptions about the modelled constructs, such 
as all the non-shared variance between items represent-
ing (measurement) error (Borsboom et al., 2003; Hair & 
Sarstedt, 2019; Kline, 2015). For constructs in education 
(Edelsbrunner, 2022; White et  al., 2022) and more spe-
cifically for conceptual knowledge (Stadler et  al., 2021; 
Taber, 2018), it has been recently debated whether tradi-
tional latent variable models with this specific assump-
tion regarding measurement error are useful. We leave it 
to readers to decide whether they prefer interpreting the 
manifest, or the latent estimates of the two constructs’ 
covariances and correlations. In both approaches, the 

covariance, which is the primary statistical estimand 
regarding our research question of gender differences 
(Lundberg et  al., 2021), turned out to be clearly smaller 
in females.

It should be noted that the gender differences reported 
here could be caused by many factors. While there is still 
no agreement about the relative importance of socio-
cultural and biological factors, most researchers concur 
that the gender gap in science domains can be considered 
a product of both nature and nurture (e.g., Stewart-Wil-
liams & Halsey, 2021; Stoet & Geary, 2018). The gender 
differences found in this study can hence be expected to 
largely reflect differences in exposure and prior experi-
ences in and out of school (Quaiser-Pohl & Lehmann, 
2002). In the context of science and scientific thinking, 
both teachers (e.g., McCullough, 2002; Taasoobshirazi & 
Carr, 2008) and parents (e.g., Crowley et al., 2001; Tenen-
baum & Leaper, 2003), for example, tend to put more 
demanding questions on, and engage in more sophisti-
cated communication with, boys than girls.

To gain further insight into possible explanatory vari-
ables for the gender gap, future studies should addition-
ally assess spatial ability. However, since spatial ability 
is a broad construct comprising several factors (Carroll, 
1993), the applied spatial ability tests should be cho-
sen carefully and matched to the spatial requirements 
of the tasks to draw explanatory conclusions. Moreover, 
although spatial ability is considered a general cognitive 
ability (Lohman, 1996) and males are assumed to profit 
from an initial advantage based on social and biologi-
cal factors (Reilly et  al., 2017), evidence suggests that it 
is highly trainable (Uttal et  al., 2013a, 2013b). Previous 
research showed that spatial training can reduce the 
gender gap regarding spatial abilities (Uttal et al., 2013a, 
2013b), improve grades in physics courses (Miller & 
Halpern, 2013) and even increase the gender diversity 
in professional STEM fields (Sorby et  al, 2018). In the 
course of their educational path, males become increas-
ingly superior with respect to their spatial intelligence 
due to biological and environmental factors (Baenninger 
& Newcombe, 1989). Since we expect representational 
competence to be closely related to spatial ability, early 
STEM education should break the widening and consoli-
dation of the gender gap by addressing spatial learning 
and link it to content-related representational tasks. Tzu-
riel and Egozi (2010) already showed that a training pro-
gram on improving representation and transformation of 
visuospatial information in young children could close 
the spatial ability gender gap. In studies taking up such 
training programs, it might be examined whether after 
undergoing such training, learners manage to improve 
their conceptual knowledge, and if such trainings for 
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females can close a part of the gender gap in representa-
tional competence and conceptual knowledge.

In line with the ability-as-compensator hypothesis, 
assuming that spatially weak learners benefit from 
explicit visuo-spatial support (Hays, 1996; Höffler, 2010), 
Yezierski and Birk (2006) showed for conceptual under-
standing in chemistry that additional molecular-level 
animations could eradicate initial gender differences 
in middle-school students. Based on this, it should be 
investigated if the use of animations, for example illus-
trating Maxwell’s law, Faraday’s law, or a Hertzian dipole, 
as these concepts explicitly address temporal changes in 
magnetic and electric fields, could be used as a simple 
tool to support spatially weak learners’ conceptual under-
standing of electromagnetism.

A further step should be to explore how learners could 
be promoted in the classroom to combine representa-
tions and concepts in order to facilitate high achievement 
and access to STEM careers. To motivate them to invest 
more in making these essential connections, care should 
be taken to incorporate activities into STEM lessons that 
girls prefer, such as those that involve cooperative work, 
address real-world problems, and have creative elements 
(for a review, see Meece et  al., 2006). In particular, this 
last aspect seems promising, as creating and inventing 
representations for concepts can foster meta-representa-
tional competence (diSessa, 2004) and conceptual knowl-
edge acquisition (Scheid et al., 2019).

Limitations
The present study only provides an observational look 
into the relation between representational competence 
and conceptual knowledge. A part of the observed 
relation in our study might be explained by unmeas-
ured confounding variables. At the very least, however, 
we very likely have obtained an estimate of the upper 
asymptote of the relation between the two constructs 
that has built up through their causal interplay (Ryan 
& Dablander, 2022) in undergraduates. By using equi-
librium causal models, cross-sectional data like ours 
might be used to yield a first approximation of the 
potential causal interplay between the two constructs 
(Ryan & Dablander, 2022). We suggest further exam-
ining the dynamic interplay between representational 
competence and conceptual knowledge in longitudi-
nal and experimental studies. In a longitudinal design, 
we suggest assessing both constructs repeatedly dur-
ing phases in which learners receive relevant school 
instruction. This could for example be done while they 
are working on theoretical materials about physics-
topics that are accompanied by experiments employing 
multiple representations. Cross-lagged analysis of both 
constructs during such a phase (for example by means 

of random intercept-, lag2 cross-lagged-, change-, our 
outcome-wide approaches and study designs; Klopack 
& Wickrama, 2020; Lüdtke & Robitzsch, 2022; Van-
derWeele et  al., 2020) might yield insights into their 
longer-term developmental interplay. In a more con-
trolled lab-based design, learners could be asked to 
work on experiments that make use of multiple rep-
resentations. The shorter-term dynamic interplay 
between the two constructs might then be gauged for 
example by eye tracking. Since gaze data are assumed 
to allow interferences about a subject’s attention allo-
cation and cognitive processes (van Gog & Jarodzka, 
2013), prospective studies can use eye tracking to cap-
ture learners’ representational competence in action. 
This could be complemented by repeated assessments 
capturing development in learners’ conceptual knowl-
edge. Moreover, analyzing gaze behavior could shed 
light on different task-solving processes occurring in 
males vs. females or high- vs. low-performing subjects. 
Prior research attributes gender differences in spatial 
ability to gender-specific strategies in processing visuo-
spatial information (Kramer et  al., 1996). For the pur-
pose of methodological triangulation (Denzin, 2012), 
future studies could also collect verbal data to improve 
the interpretation of gaze data. Cued retrospective 
reports for which subjects are shown their own eye 
movements recordings to explain why they looked on 
specific task areas in a certain order seem to be a prom-
ising future approach as they do not affect performance 
or data quality (Holmqvist et al., 2011). The uncovering 
of gender-specific or experts’ task-solving processes, 
particularly regarding the representational knowledge 
test, could further be used to derive supportive instruc-
tions for low-performing students.

Since students in our sample self-selected into their 
studies, we do also not know about the generalizability of 
gender differences and our other findings to other popu-
lations. It would be informative to examine the generaliz-
ability is samples that are more heterogeneous regarding 
characteristics such as socioeconomic status and prior 
educational experiences. Although electromagnetism is 
a standard topic in high school Physics-curricula, some 
teachers still might have skipped this topic. Future studies 
should assess learners’ actual experience with this topic 
to be better able to interpret their content knowledge-
data. In addition, analyses of our data could further com-
pare our findings across our four samples of students (the 
data set is publicly available from the link indicated under 
Malone et al., 2021). This might also include analyses of 
measurement invariance to examine to which extent the 
employed measures show similar or different psychomet-
ric structure across students with different backgrounds. 
Gender differences were only briefly compared between 
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samples in the present manuscript, since this was not in 
the focus of our research questions. This might be done 
in more detail in future research, to examine how differ-
ences in learners’ background relate to potential differ-
ences in gender differences across samples.

Although we corrected the standard errors of cor-
relation estimates for clustering within samples and 
for non-normality, manifest correlations still contain 
measurement error and, from the perspective of cau-
sality, confounding. We still reported and interpreted 
manifest correlations since simple, unadjusted corre-
lations connect well to our research question and the 
estimand that we were interested in examining (Lun-
dberg et al., 2021). Also, other studies and meta-anal-
yses commonly prefer unadjusted correlations over 
multiple regression when a simple relation is in the 
focus of research (e.g., Edelsbrunner et al., 2022; Sch-
neider et al., 2017, 2018).

Finally, we had too few students who indicated a 
diverse category to include them in the gender-specific 
statistical models. It should be examined how learn-
ers who identify with this category compare to those 
within the other categories, and whether they need 
similar or different instructional support (Fisher et al., 
2021). Descriptive statistics in our sample showed aver-
age representational competence yet low conceptual 
knowledge within this group of students, indicating 
that they might particularly require support in building 
up conceptual knowledge.

Conclusion
Our results show that conceptual knowledge and rep-
resentational competence are separable constructs on 
the one hand but are also clearly interrelated on the 
other. Even though their mutual interplay still needs to 
be investigated in more detail, it would not be going too 
far out on a limb to demand that science education be 
designed in such a way that it explicitly promotes both. 
If representational competence is considered an inde-
pendent knowledge component that is at least in parts 
contextually independent, it could also be addressed in 
interdisciplinary teaching.

The second important result of our work is the dif-
ference found between females and males, both in the 
mean scores for conceptual knowledge and represen-
tational competence, but also in the strength of the 
relation of the two constructs, which was lower for 
females. Future studies should focus on the processes 
responsible for females experiencing difficulties in 
using provided representations for understanding the 
represented concepts. Findings should then be used as 
the basis for developing and evaluating instructional 

approaches to promote (meta-) representational com-
petence for all students.
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