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Abstract 

Background The objective of this systematic review is to identify characteristics, trends, and gaps in measurement in 
Science, Technology, Engineering, and Mathematics (STEM) education research.

Methods We searched across several peer‑reviewed sources, including a book, similar systematic reviews, conference 
proceedings, one online repository, and four databases that index the major STEM education research journals. We 
included empirical studies that reported on psychometric development of scales developed on college/university 
students for the context of post‑secondary STEM education in the US. We excluded studies examining scales that 
ask about specific content knowledge and contain less than three items. Results were synthesized using descriptive 
statistics.

Results Our final sample included the total number of N = 82 scales across N = 72 studies. Participants in the sam‑
pled studies were majority female and White, most scales were developed in an unspecified STEM/science and engi‑
neering context, and the most frequently measured construct was attitudes. Internal structure validity emerged as the 
most prominent validity evidence, with exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) being 
the most common. Reliability evidence was dominated by internal consistency evidence in the form of Cronbach’s 
alpha, with other forms being scarcely reported, if at all.

Discussion Limitations include only focusing on scales developed in the United States and in post‑secondary con‑
texts, limiting the scope of the systematic review. Our findings demonstrate that when developing scales for STEM 
education research, many types of psychometric properties, such as differential item functioning, test–retest reliability, 
and discriminant validity are scarcely reported. Furthermore, many scales only report internal structure validity (EFA 
and/or CFA) and Cronbach’s alpha, which are not enough evidence alone. We encourage researchers to look towards 
the full spectrum of psychometric evidence both when choosing scales to use and when developing their own. While 
constructs such as attitudes and disciplines such as engineering were dominant in our sample, future work can fill in 
the gaps by developing scales for disciplines, such as geosciences, and examine constructs, such as engagement, self‑
efficacy, and perceived fit.

Background
Measurement of students’ experiences and instruc-
tor interventions continues to be an important aspect 
of Science, Technology, Engineering and Mathematics 
(STEM) education. Given the enormous educational 
and research efforts devoted to understanding stu-
dents’ development in STEM, advancing strategies that 
measure how well interventions and experiences work 
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is imperative. Sound measurement strategies require 
access to measures, scales, and instruments with ade-
quate psychometric evidence (Arjoon et al., 2013; Cruz 
et al., 2020; Decker & McGill, 2019; Margulieux et al., 
2019).

Quantitative measurement instruments, such as sur-
veys, are commonly used tools in and important aspect 
of conducting discipline-based STEM education research 
(Arjoon et  al., 2013; Decker & McGill, 2019; Knekta 
et al., 2019). Salmond (2008) emphasizes the importance 
of measures that “accurately reflect the phenomenon or 
construct of interest” (p.28) when designing effective 
student experiences. Measurement of student experi-
ences and teaching innovations, however, is a complex 
task, as there can be many elements and constructs 
within a single experience or innovation, which contin-
ues to challenge STEM researchers and educators (Kim-
berlin & Winterstein, 2008). An even larger issue is the 
lack of measurement instruments grounded within holis-
tic STEM theoretical frameworks to guide empirical 
research that specifically targets STEM students (Wang 
& Lee, 2019). Similarly, researchers need to be aware of 
measurement instruments available to them and be able 
to make choices appropriate for their research needs, 
which can be challenging due to the inability to locate 
validated and reliable measures (Decker & McGill, 2019).

There is a gap in post-secondary STEM education 
research when it comes to measurement and psychomet-
ric evidence. For example, a review of the 20 top mathe-
matics, science, and STEM education journals found that 
less than 2% of empirically based publications in the last 
5 years were instrument validation studies (Sondergelt, 
2020).

Appianing and Van Eck (2018) share that whereas 
researchers have developed valid and reliable instru-
ments to measure students’ experiences in STEM, most 
of them focus on middle and high school students rather 
than on college students. Moreover, Hobson et al. (2014) 
have suggested that construction and usage of rubrics 
that effectively assess specific skill development such as 
collaboration, critical thinking, and communication in 
research continues to be a problem in STEM education. 
In summary, without effective measurement instruments 
and strategies that assess the efficacy of interventions and 
students’ experiences, it is difficult to trace and document 
students’ progress. Given that much of past research 
efforts in education have been focused on the K-12 level, 
and the fact that there has been increase in research 
interest in post-secondary STEM education research and 
publications (Li & Xiao, 2022; Li et al., 2022), this is espe-
cially needed at the post-secondary level.

A systematic review that compiles relevant scales in 
STEM post-secondary education and assesses available 

psychometric evidence is one strategy to mitigate the 
challenges above.

Scholars have also emphasized the importance of 
having a holistic understanding of measurement. This 
includes the statistical and theoretical underpinnings 
of validity, as well as the psychometric measures and 
dimensions that represent what is measured and evalu-
ated, which are critical in the development, selection, and 
implementation of measurement instruments (Baker & 
Salas, 1992; Knekta et al., 2019). Likewise, there is a call 
to bring the design, testing, and dissemination of meas-
urement instruments in STEM education to the fore-
front if researchers wish to have their quantitative results 
viewed as scientific by broader audiences (Sondergelt, 
2020). Thus, in this study we provide insight into the 
measurement trends in survey instruments utilized in 
STEM education research and establish a resource that 
can be used by STEM education researchers to make 
informed decisions about measurement selections.

Some work has already been done to this end, with sim-
ilar studies examining psychometric evidence for scales, 
measures, or instruments in chemistry (Arjoon et  al., 
2013), engineering (Cruz et al., 2020), and computer sci-
ence (Decker & McGill, 2019; Margulieux et  al., 2019) 
education research. These studies have examined and 
reported on psychometric evidence and the various con-
structs being measured in their respective fields as well as 
suggest professional development in measurement train-
ing for educators and researchers. For example, Arjoon 
et  al. (2013) asserts that, to bridge the gap between 
what is known about measurement and what the actual 
accepted standards are, there is a need for measurement 
education within the chemistry education community. 
However, to our knowledge, no such study has been con-
ducted across all of STEM education research. Thus, in 
the present study we build upon past work by conducting 
a systematic review of scales created for STEM education 
research, the psychometric evidence available for them, 
and the constructs they are measuring.

Purpose
The purpose of this systematic literature review is two-
fold. First, we aim to examine the measurement trends in 
survey instruments utilized in STEM education research. 
For example, we are interested in identifying which vali-
dated and reliable surveys are currently used in STEM 
education contexts, as well as what each instrument is 
measuring. Second, we intend for this paper not to be a 
repository of STEM education instruments per se, but to 
be a tool to be used by intermediate and expert STEM 
education and Discipline-Based Education research-
ers (DBER) to make informed decisions about measure-
ment when conducting their research and collaborating 
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with others. In other words, we aim to produce a system-
atic literature review that critically examines the current 
measurement and psychometric development trends in 
STEM education research and, in doing so, illustrates 
areas, where STEM education research instrumentation 
might be lacking, where additional psychometric evalu-
ation may be needed (as well as what tests those should 
be), and what kinds of surveys still need to be created 
and evaluated for STEM education research purposes. 
In doing so, our goal is to advance the development of 
robust and sound measurement instruments being used 
in the study of STEM education, teaching, and learning 
by helping researchers address some of the measurement 
challenges they currently face. We hope that by provid-
ing such a resource and pushing for advancements in 
measurement, we will contribute to the overall quality 
and advancement of the study of education, teaching, and 
learning within STEM post-secondary classrooms.

Theoretical framework
Our theoretical framework was informed by the 2014 edi-
tion of the Standards, jointly published by the American 
Education Research Association (AERA), the American 
Psychological Association (APA), and National Council 
on Measurement in Education (NCME). The Standards 
defines and outlines criteria for creating and evaluat-
ing educational and psychological tests, which includes 
scales and inventories under their definition. The Stand-
ards also provides criteria for test use and applications 
in psychological, educational, workplace, and evalua-
tive contexts. For the purposes of the present review, 
we used the Standards’ definitions, operationalizations, 
and criteria for psychometric evidence (reliability and 
validity). An overview of the theoretical framework that 
guided the formation of the coding framework and deci-
sion-making is displayed in Fig.  1. The definitions and 

operationalizations we used in the coding framework can 
be found below under psychometric evidence.

To define the term “scale”, we draw on the Stand-
ards’ definition for test as it encompasses the evaluative 
devices of tests, inventories, and scales, thus defining a 
scale as “a device or procedure in which a sample of an 
examinee’s behavior in a specified domain is obtained 
and subsequently evaluated and scored using a standard-
ized process” (AERA, APA, NCME, 2014, p. 2). We con-
ceptualize validity as “the degree to which evidence and 
theory support the interpretations of test scores for pro-
posed use of tests” (AERA, APA, NCME, 2014, p. 11) and 
reliability as “the consistency of scores across replications 
of a testing procedure, regardless of how this consistency 
is estimated or reported” (AERA, APA, NCME, 2014, p. 
33). Finally, we corroborated the National Science Foun-
dation’s (NSF) definition of STEM with information from 
a previous systematic review on STEM education (Gon-
zalez & Kuenzi, 2012; Martín-Páez et al., 2019) to define 
STEM education to include: science (biology, chemistry, 
computer and information science, geosciences, earth 
science), technology, engineering, mathematics, as well as 
any combinations of the above fields. Finally, we defined 
STEM education research as the multiple methodolo-
gies for exploring cross-disciplinary teaching, learning, 
and management strategies that increase student/public 
interest in STEM-related fields to enhance critical think-
ing and problem-solving abilities (Bybee, 2010).

Methods
We utilized the method articulated by Hess and Fore 
(2018), which itself was an extension of the method 
detailed by Borrego et  al. (2014) for the present review. 
Following Hess and Fore (2018), we began by identifying 
the need for a systematic review such as this, and then 
proceeded to define the scope and focus of the study 
with three research questions (see next section). Then, 

Fig. 1 Theoretical frame work of psychometric evidence
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we initiated scoping, which is concerned with identifying 
the ways in which we were going to search for relevant 
literature.

We then proceeded to what we term abstract screen-
ing and then full-text screening, referred to as “catalogu-
ing” by Hess and Fore (2018). Given the context of our 
systematic literature review and its demands, we deter-
mined that a slight shift was needed. In the context of the 
Hess and Fore study (i.e., engineering ethics education), 
the “cataloguing” step was concerned with the creation of 
the initial article database and the criteria by which inclu-
sion and exclusion were determined. We also created an 
article database, but we changed it to a two-step screen-
ing process (abstract screening and full-text screening) 
in the present review. During these two phases, articles 
were screened against inclusion and exclusion criteria 
that were determined a priori, which are discussed in 
depth in screening below.

In Hess and Fore (2018), the “exploring” step was 
focused on crafting a coding structure and whittling 
down the article database further based upon the evolv-
ing coding parameters of the study in a deductive man-
ner. However, our systematic review required a different 
approach.

Rather than using a deductive coding process, we cre-
ated an a priori coding structure based on information 
outlined in the Standards (AERA, APA, and NCME, 
2014). This approach allowed our article database to 
become specialized according to our study parameters. 
We only used emergent codes for categorizing the con-
structs being measured (see below under coding). Unlike 
Hess and Fore (2018), we did not further whittle down 
the article database in this phase, articles were simply 
coded for psychometric evidence present based on the 
coding structure. For this reason, we simply call this 
phase coding.

Next, during the checking phase, just as in the Hess and 
Fore (2018) review, we engaged in examining interrater 
reliability. Authors one, two, and three familiarized them-
selves with the coding structure and then we performed 
interrater reliability testing. Hess and Fore (2018) named 
their subsequent step “quantizing”; however, we decided 
to rename that step results, as we felt that this title better 
communicated the step’s purpose to report the descrip-
tive statistics related to our coding efforts. The two final 
steps identified by Hess and Fore (i.e., “interpreting” and 
“narrating”) were merged into a step we simply titled dis-
cussion. In this step, we identified and interpreted our 
results before crafting an overview of all results.

Defining
As argued in the “Purpose” section above, there is a need 
for a broad systematic review of the literature on survey 

instruments across STEM fields. Seeking out and identi-
fying a valid and reliable instrument for one’s project may 
be laborious and time consuming, especially for those 
who may be starting out as STEM education research-
ers or discipline-based education researchers. This study 
seeks to introduce current instrumentation trends across 
STEM fields to provide researchers with a tool to iden-
tify rigorously developed scales which may foster insight 
into where psychometric work still needs to be done. 
To accomplish this, we seek to address three research 
questions:

RQ1: What are the valid and reliable measures 
being reported for use in post-secondary STEM edu-
cation research in the United States between the 
years 2000 and 2021?
RQ2: What are the common categories within which 
the measures can be organized?
RQ3: What is the psychometric evidence that has 
been reported for these STEM education measures?

Scoping
We started with an initial list compiled by the first author 
as an internal resource for STEM education research in 
our institute. Building upon this, a literature search was 
conducted using both quality-controlled and secondary 
sources (see Cooper, 2010). Quality-controlled sources 
included one book (Catalano & Marino, 2020), similar 
systematic reviews (Arjoon et al., 2013; Cruz et al., 2020; 
Gao et  al., 2020; Margulieux et  al., 2019), conference 
proceedings (Decker & McGill, 2019; Verdugo-Castro 
et al., 2019), and the Physics Education Research Center 
(PERC) online repository of measures. Secondary sources 
included the Web of Science, Education Resources Infor-
mation Center (ERIC), SCOPUS, and PsycINFO data-
bases, which index the major STEM education research 
journals. These journals were identified in a previous 
systematic review examining STEM education research 
publication trends (Li et al., 2020).

Constraints and limiters
We used several constraints and limiters to narrow 
down the number of papers obtained in the literature 
search. First, given that reliability and validity are com-
plimentary, and that high reliability is needed for high 
validity (Knekta et  al., 2019), we only included papers 
that reported on both validity and reliability. Second, 
because our work and expertise primarily revolve around 
STEM education in the United States, we were interested 
in measures used in STEM education research in the 
US. This decision was further informed by the fact that 
sometimes scores can differ between groups due to scale 
characteristics unrelated to the actual construct being 
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measured, thus introducing measurement bias (AERA, 
APA, & NCME, 2014). Likewise, population differences 
in factors such as culture and language necessitate an 
examination of the degree to which a scale measures 
the same construct across groups (Schmitt & Kuljanin, 
2008), which can be especially important when com-
paring constructs, such as values, attitudes, and beliefs 
across groups (Milfont & Fischer, 2010; Van De Schoot, 
2015). Thus, for the sake of simplicity and brevity, we 
only included studies conducted in the US and written 
in English. There were some exceptions, where samples 
from non-US countries were included with US samples; 
however, these papers reported examining measurement 
invariance between the US and non-US samples.

We further constrained the search to papers published 
between the years 2000 and 2021 (the present time of the 
search). Similar systematic reviews in chemistry, engi-
neering, and interdisciplinary STEM education began 
their searches in the early 2000s (Arjoon et al., 2013; Cruz 
et al., 2020; Gao et al., 2020). Likewise, in the early 2000s 
there was an increased emphasis on institutional assess-
ment of learning as well as the need for better assessment 
tools that reflect the goals and emphases of new courses 
and curricula being developed in STEM education (Hix-
son, 2013). Finally, the early 2000s is said to be when the 
term “STEM” was first used (Mohr-Schroeder et al., 2015; 
Li et al., 2020), which symbolically helps focus attention 
to STEM education efforts (Li et al., 2020, 2022). Taken 
together, we decided that the year 2000 would be a rea-
sonable starting point for the present review.

We finally constrained the search to papers published 
in peer-reviewed journals or conference proceedings by 
clicking ‘peer-reviewed only’ when searching databases. 
We also limited the search to studies that included sam-
pled college/university students that were 18  years or 
older and research settings, that are in post-secondary 
institutions (2-year college, 4-year college, or university), 
and STEM courses (based on our conceptualization and 
operationalization of STEM education above).

Search terms
The first author derived the search terms for the litera-
ture search using the thesaurus in the ERIC database and 
in consultation with a university librarian. These search 
terms were created based upon the research questions 
and constraints and limiters outlined above. Terms were 
derived from four main constructs of interest—STEM 
education, higher education, measures, and psychomet-
rics—although specific Boolean operators and searching 
strategies varied slightly depending on the database. For 
full search terms, limiters, and operators used, please see 
Tables S1, S2, S3, and S4 in Additional file 1.

Screening
After the first author obtained the initial 603 studies from 
all sources and stored and managed them using an End-
Note™ citation database, duplicates were deleted, and 
two rounds of screening and reduction against screen-
ing questions based on pre-determined inclusion and 
exclusion criteria were conducted. All screening ques-
tions could be answered with yes, no, or unsure. The 
unsure option was only used when enough information 
to answer the screening questions could not be obtained 
from the abstracts and thus had to undergo full-text 
review.

Besides the constraints and limiters outlined above, we 
had some extra considerations when developing screen-
ing questions. We did not consider observation proto-
cols, interview protocols, rubrics, or similar instruments, 
because their development adheres to a set of standards 
distinct from surveys and scales and would be outside of 
the scope of the present study. We also excluded scales 
testing content knowledge, because they have limited 
opportunity for cross-disciplinary use due to their speci-
ficity. Finally, we omitted studies that included scales or 
subscales with less than three items, because using one- 
or two-item scales has been recognized as problematic 
(Eisinga et al., 2013). For example, in factor analysis, fac-
tors defined by one or two variables are considered unsta-
ble (Tabachnick & Fidell, 2014) and it has been argued 
that more items increase the likelihood of identifying the 
construct of interest (Eisinga et al., 2013).

Abstract screening
In the first round of screening, the first author reviewed 
just the abstracts and screened them for inclusion against 
the following five screening questions:

1. Does the study report the process of examining psy-
chometric properties (i.e., evidence of validity/reli-
ability) of a measure? (yes/no/unsure)

2. Does the study examine a measure meant to be used 
in a post-secondary setting (i.e., 4-year college, uni-
versity, 2-year college)? (yes/no/unsure)

3. Does the study examine a quantitative measure (i.e., 
closed-response options such as Likert items)? (yes/
no/unsure)

4. Are the participants in the study college/university 
students? (yes/no/unsure)

5. Has the measure been developed for a STEM educa-
tion context? (yes/no/unsure)

The second round of screening included papers that 
had all screening questions marked with yes, and papers 
that had one or more screening questions marked with 
unsure. The most common reasons for exclusion in 
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this round included studies not reporting the process 
of collecting psychometric evidence (e.g., Lock et  al., 
2013; Romine et  al., 2017) and the measure not being 
developed for a STEM education context (e.g., Dixon, 
2015; Zheng & Cook, 2012). A total of 114 papers were 
marked for inclusion and seven were marked as unsure.

Full‑text screening
In the second and final round of screening, the first 
author obtained full-text manuscripts and any cor-
responding supplementary materials for the 121 stud-
ies left after abstract screening. During the full-text 
screening process, four additional papers were found 
in the references of other papers, increasing the total 
number to 125. These studies were screened against the 
following three screening questions:

1. Does the measure under study ask questions about 
specific content knowledge? (yes/no)

2. Is there evidence for both reliability and validity for 
the measure? (yes/no)

3. Do scales/subscales have at least three items in them? 
(yes/no)

To be included in coding, the first question had to be 
marked no, and the second and third questions marked 
yes. After coding, the first author further organized 
the sample by scale, because some papers reported 
developing several scales and some scales were devel-
oped across multiple papers. See the PRISMA diagram 
in Fig.  2 for further information on the screening and 
reduction process as well as final sample sizes.

Many of the articles that were excluded in this round 
appeared to meet our criteria at first glance, but ulti-
mately did not. The most common reason for this was 
because scales or subscales had less than three items 
each (e.g., Brunhaver et  al., 2018; Jackson, 2018). Fur-
thermore, although limiters were used when con-
ducting the literature search, it was not obvious that 
several studies were non-US studies and these were 
ultimately excluded upon full-text review (e.g., Brodeur 
et  al., 2015; Ibrahim et  al., 2017). A few articles were 
also excluded, because the authors did not report both 
reliability and validity evidence (e.g., Godwin et  al., 
2013; Hess et  al., 2018). It is important to note that 
just because a paper was excluded at any stage of the 
screening process does not mean that paper is of low 
quality. These papers simply did not meet our specific 
parameters. The final list of references of the articles 
included in the review can be found in Additional file 2 
and further information on the scales can be found in 
Additional file 3 and Additional file 4.

Coding
Per recommendations for conducting systematic 
reviews and meta-analyses (Cooper, 2010), the first 
author created a coding framework to pull out sam-
ple information, descriptive information, and psy-
chometric evidence for each scale. This was compiled 
into a codebook, which was shared with authors two 
and three, who served as the second and third coders, 
respectively. Each section of the coding framework is 
described below.

Sample information
The first author extracted sample sizes and character-
istics of each sample used in scale development in each 
study. If several studies were reported in a single pub-
lication, the first author extracted sample characteris-
tics for each study, when available. Specifically, for each 
scale, the first author coded the sample age (either the 
mean or age range), racial distribution (by percentile), 
and gender distribution (by percentile).

Descriptive information
The first author extracted the following descriptive 
information for each scale included in the review:

1. The number of items in the final scale.
2. The number of items in each subscale.
3. Whether the scale is a short form of a longer, previ-

ously developed scale.
4. The disciplinary context of the scale.
5. The construct or constructs the scale is measuring.
6. Scale response anchors.
7. The education level the scale is intended for.

The disciplinary context was coded in accordance 
with the predetermined definition of STEM education 
as outlined above in the theoretical framework section. 
The scale constructs were coded based upon the main 
constructs that were operationalized and defined by the 
authors of the scales. Thus, if a scale author stated that 
the scale was designed to measure chemistry attitudes, 
for example, then the construct was coded as “attitudes 
towards chemistry.” The scale constructs were further 
developed into broader categories through emergent 
codes, which is described below under checking.

Psychometric evidence
Following similar systematic reviews (e.g., Arjoon 
et al., 2013), we created a coding structure based upon 
the psychometric evidence outlined in the Standards 
(AERA, APA, & NCME, 2014) for validity and reli-
ability. Specifically, we pulled out the types of validity 
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and reliability evidence and used binary codes (yes/no) 
to mark them as either present or not present for each 
scale. Extra definitions for statistical techniques dis-
cussed below can be found in Additional file 5.

Validity
Per the Standards (AERA, APA, & NCME, 2014), validity 
evidence coded in this review included test content valid-
ity, response process validity, internal structure valid-
ity, and relationships with other variables. Test content 

validity was defined as evaluations from expert judges. 
Response process evidence was defined as evaluating 
cognitive processes engaged in by subjects through cog-
nitive interviews, documenting response times, or track-
ing eye movements. Internal structure evidence was 
defined as the extent to which the relationships among 
test items and components conform to the construct on 
which the proposed test score interpretations are based. 
This included exploratory factor analysis (EFA), con-
firmatory factor analysis (CFA), and Differential Item 

Records excluded (n = 378)

Records sought for full-text 
retrieval (n = 121)

Records screened (n = 499)

Studies included in review 
(n = 72)

Scales included in review 
(n = 82)

Studies assessed for eligibility* 
(n = 125)

Records removed before screening: 
Duplicate records removed (n = 104) 

Databases:
SCOUPUS (n = 68)
Web of Science (n = 126) 
ERIC (n = 180)
PsycInfo (n = 85)

Other Sources:
Internal Resource (n = 93)

Quality Controlled Sources: 
Conference Publications 
(n = 21)
Journal Publications 
(n = 19)
Books (n = 10) 
Registers (n = 1)
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Fig. 2 PRISMA diagram. Four additional studies were found in the second round of screening and included in the full article review
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Functioning (DIF). We also considered other statistical 
techniques not listed in The Standards such as Rasch 
Analysis, Q-sort methodology, Item Response Theory 
(IRT), and Multidimensional IRT.

Evidence based on relationships with other variables 
was defined as analyses of the relationship of test scores 
to variables external to the test. This included convergent 
validity, which examines whether scales are highly cor-
related with similar constructs, and discriminant valid-
ity, which examines whether scales are not correlated 
with dissimilar constructs. Test-criterion validity, which 
examines how accurately scores predict criterion (some 
attribute or outcome that is operationally distinct from 
the scale) performance is also included. Test criterion 
validity can come in the form of predictive validity, in 
which criterion scores are collected a later time, or con-
current validity, in which criterion scores are collected 
at the same time as scale scores. Finally, under evidence 
based on relationships, we also considered validity gener-
alization via meta-analysis.

Reliability
Per the Standards (AERA, APA, NCME, 2014), reli-
ability evidence considered in this review includes alter-
nate-form reliability, test–retest reliability, and internal 
consistency. Alternate-form reliability was defined as the 
examination of the relationship between the measure 
and a different but interchangeable form of the measure, 
usually in the form of a correlation. Test–retest reliabil-
ity is the examination of the relationship between two or 
more administrations of the same measure, also typically 
reported as a correlation. Finally, internal consistency 
includes the observed extent of agreement between dif-
ferent parts of one test that is used to estimate the reli-
ability of form-to-form variability, which encompasses 
Cronbach’s alpha and split-half coefficients. We also con-
sidered coefficients not listed in the standards, such as 
ordinal alpha and McDonald’s Omega.

Checking
To check the trustworthiness of our data, we engaged in 
interrater reliability and data categorization between the 
first three authors.

Interrater reliability
We interpreted interrater reliability as a measure of the 
percentage of identically rated constructs between the 
three raters to ensure accuracy, precision, and reliability 
of coding behavior (Belur et al., 2021). O’Connor & Joffe 
(2020) suggest that it is prudent to double-code a ran-
domly selected small amount of data (e.g., 10% of sample) 
rather than double-code a sizable quantity of data. Thus, 
due to the low number of samples (i.e., 72), we randomly 

double-coded 10% (seven) samples to estimate intercoder 
reliability. Though rules of thumb typically fall within 
10% sub-samples (O’Connor & Joffe, 2020), in relation to 
Armstrong et  al. (2020), our intercoder reliability value 
increased as we double-coded more samples but reached 
saturation by the fifth to seventh sample.

As described earlier, the first author created a priori 
rating scheme by compiling psychometric evidence for 
each scale. The first, second, and third authors applied 
the a priori coding structure to the same seven (9.72% of 
the total sample) articles and examined interrater reli-
ability. The interrater agreement between the first author 
and second author was 93.40% and 73.40% between the 
first and third author. The agreement between the sec-
ond author and third author was 74.27%. These values are 
higher than Belur et al. (2018) accepted range of 70.00% 
for systematic reviews. Again, the first three authors dis-
cussed and resolved all disagreements until a 100.00% 
agreement was achieved.

Categorization
We categorized constructs from each of the articles 
through emergent coding (see Drishko & Maschi, 2016). 
The first author organized the articles by scales to create 
initial categories of the 82 scales. The first three authors 
then engaged in an emergent coding process using the 72 
articles and categorized the codes to create 18 primary 
and 11 secondary and one tertiary categories for the 
scales. This allowed for multiple or triple categorization 
of articles. Primary categories are the main overall con-
struct the scale is measuring. When a second (or third in 
one case) clear but less prominent construct was evident, 
these were coded into the secondary and tertiary cat-
egories, respectively. For example, the article “Examin-
ing Science and Engineering Students’ Attitudes Toward 
Computer Science” which measures both student inter-
est and attitudes was multiple coded under attitudes as a 
primary category, and under interest as a secondary cat-
egory. We provide a list of the codes and their definitions 
in Table 1.

Results
Descriptive information
Out of the 82 scales in our sample, only 12 were short 
forms of longer scales. The average scale length was 
M = 29.84 (SD = 29.86), although there was a wide range 
with the shortest being four items and the longest being 
216 items. Out of the 82 scales in the sample, 62 reported 
containing subscales, with the median number of sub-
scales per scale being three. The smallest number of items 
in a subscale was three items, while the largest number of 
items in a subscale was 30 items. Full information on the 
number of items in each subscale within each scale can 
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be found in Additional file 4. We found that the major-
ity of the scales in our sample were intended for use on 
an undergraduate sample or developed with undergradu-
ate students (68.29%). Full information on education level 
can be found in Table 2. Very few scales were created for 
use with students in a 2-year setting (i.e., community col-
lege) and for graduate-level students.

The scales in our sample used response anchors that 
ranged from 3-point to 101-point response anchors, 
although the majority (42.90%) used 5-point Likert 
type response anchors, followed by 6-point (21.40), and 
7-point (14.30%). Two instruments had response anchors 

that varied within subscales. The Full Participation Sci-
ence and Engineering Accessibility (Jeannis et  al., 2019) 
instrument used response anchors that ranged from 
1 (strongly disagree) to 5 (strongly agree) for some sets 
of items, and response anchors that ranged from 1 (yes) 
to 3 (not present) for another set of items. Likewise, 
the Sustainable Engineering Survey (McCormick et  al., 
2015) used response anchors that ranged from 0 (no 
confidence) to 100 (very confident) for one subscale and 
anchors ranging from 0 (strongly disagree) to 5 (strongly 
agree) for other subscales.

The sample size used for the main statistical analyses 
(i.e., EFA, CFA, Cronbach’s alpha, etc.) amongst the stud-
ies varied. The largest sample size used was N = 15,847, 
while the smallest was N = 20. Sample sizes most fre-
quently fell between the range of 100–300 participants 
(34%), followed by 301 to 500 participants (24%). Full 
information on sample size ranges is displayed in Fig. 3.

When available, we noted participant demographic 
information. Of those that reported participant age, most 
of the scales reported age means and ranges between 18 
and 25, which is not surprising given our post-secondary 
focus. Only one scale reported a range between 18 and 
63 and another reported a range between 20 and 31. A 
total of 34 scales out of the 54 that reported a gender 

Table 1 Construct category definitions

Category Definition

Affective outcomes Students’ positive and negative emotional activations/deactivations in relation to a STEM course or activities

Anxiety Students’ self‑reported physiological reactivity, negative cognitions, and avoidance behaviors related to STEM

Attitudes A psychological tendency that is expressed by evaluating a particular entity in STEM with some degree of favor or disfavor

Belonging and Integration Students’ sense that they are a part of a STEM course, program, or community, receive support, and have the skills for suc‑
cess

Cognitive Outcomes Students’ perceptions of their conscious reasoning related to thinking about a concept and constructing knowledge in 
STEM

Community Engagement Students’ perceptions of their skills and knowledge constructed through community relationships and practices

Course Perceptions Students’ assessments and expectations of, and their experiences in a STEM course

Diversity Outcomes related to prejudice, inclusivity, stereotyping, equity, and inclusion in STEM contexts

Engagement Students’ behavioral, cognitive, and emotional involvement and investment in the learning process of a STEM course

External Climate Students’ perceptions and evaluations of the external context and/or environment that can shape their experiences in 
STEM

Identity Students’ interest in STEM and their ability to recognize themselves as someone that is aligned with STEM skills and values

Interest Students’ positive feelings towards and sense of value of STEM courses, fields, or activities

Learning Gains Students’ perceptions of the preparation and training they are receiving in a STEM course or program

Literacy Students’ perceptions, awareness, and exposure to STEM concepts knowledge and skills

Long‑term Outcomes Outcomes related to students persisting in and pursuing STEM majors and fields, pursuing further education in STEM, and/
or pursuing employment in STEM

Motivation Students’ desire to participate in an STEM‑related task that is influenced by their expectations and values

Non‑technical Skills Students’ perceptions of their transferable skills including interpersonal/societal engagement, ethics, and management

Self‑efficacy Students’ belief in their ability to achieve an STEM‑related task

Social Support Students’ willingness to work with others and seek help in STEM
courses

Table 2 Intended education level of the scales

2-year includes community college programs. Mixed refers to any scales that 
were developed with a mix of education levels (i.e., undergraduate and graduate 
students)

N %

2‑Year 3 3.66

Undergraduate 57 68.29

Graduate 2 2.44

Mixed 8 9.76

N/A 13 15.85
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distribution, had a majority female sample. Of the 34 
scales that have participant race and ethnicity avail-
able, 32 report White as either the majority or the larg-
est group in their sample. Two scales reported an African 
American or non-White majority sample, respectively, 
and one scale reported a Hispanic/Latinx majority in one 
of their samples.

Given the large timespan we were working with, we 
checked whether psychometric trends differed between 
scales created before 2010 and after 2010 to check 
whether a larger analysis across time is needed. However, 
we could not do such an analysis for discriminant validity, 
predictive validity, other internal structure validity, alter-
nate form reliability, and other internal consistencies, 
because there were so few datapoints. A series of Chi-
square analyses showed that there were no statistically 
significant differences in occurrences of psychometric 
tests before 2010 compared to after 2010, except for the 
frequency of CFA. CFA was conducted more frequently 
post-2010 (56.9%), compared to pre-2010 (29.4%), X2 (1, 
82) = 4.08, p = 0.04. We further conducted a more granu-
lar examination by comparing pre-2010, 2010–2015, and 
post-2015, which did not yield any statistically signifi-
cant results. Given that we only had one statistically sig-
nificant result, we determined further analyses across the 
full 20 years were not necessary.

Scale disciplines
In our descriptive analysis, we identified several scales 
for each of the traditional STEM disciplines, except for 
geosciences which includes environmental and space sci-
ence. Among the discipline-specific scales, most were 
designed for engineering, with biology being the least 

represented discipline. However, the largest proportion 
of scales (31.30%) were classified as unspecified STEM or 
science without specification to any discipline, and 7.20% 
of the scales were described as multidisciplinary (that is, 
more than one STEM discipline is specified). All scale 
disciplines can be found in Table 3.

Scale categories
In conversation with each other, the authors of this paper 
collaboratively assigned each instrument to a category 
denoting what the instrument was intended to measure, 
as it was not always obvious how a given measure should 
be categorized. The agreed upon categories of the instru-
ments and the percentage of the overall sample that each 
represents are listed in Tables 4 and 5. We settled on 18 
primary categories. When instruments were too com-
plex to confine into one category, we identified secondary 
and/or tertiary categories.
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Fig. 3 Frequencies of sample size ranges. When papers reported on several studies (e.g., pilot study, main study) the sample sizes reported were 
counted separately. When papers reported samples from several populations (i.e., different universities), the samples were summed up and counted 
as one. Many papers reported sample sizes for expert judge evaluations and cognitive interviews, but we did not count those in this analysis

Table 3 Scale disciplines

N %

Biology 1 1.20

Chemistry 9 11.00

Computer science 2 2.40

Engineering 21 25.60

Mathematics 9 11.00

Physics 5 6.10

Technology 4 4.90

Unspecified STEM or science 26 31.70

Multiple disciplines 5 6.10
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All primary categories can be found in Table  4. The 
most common kinds of instruments found in our lit-
erature sample were concerned with measuring atti-
tudes (17.10%), various non-technical skills (13.40%), 
motivation (11.00%), diversity (8.50%), and interest 
(7.30%). That said, there was a great deal of variation 
with no category taking on a clear and overwhelming 
majority. This is unsurprising considering the breadth 
of our sampling. The categories that occurred the least 
included affective outcomes, engagement, external cli-
mate, learning gains, and social support, all of which 
occurred only once.

Of the sampled instruments, 17 were assigned a sec-
ondary category and one was assigned both a second-
ary and tertiary category (see Table  5). We found great 
variation here too, with most occurring once. There was 
only one instance (“community engagement”) from the 
secondary and tertiary categories, where the authors felt 
the need to add a category that was not also included as a 
primary category. There was no instrument in our sample 
that focused primarily on community engagement; how-
ever, there were four surveys that focused on commu-
nity engagement as a context for the primary category of 
non-technical skills. These all came from the same paper 
reporting on the Engineering Projects in Community 
Service (EPICS) program (Tracy et al., 2005). Community 
engagement was also the most frequently occurring sec-
ondary category (4.90%), followed by cognitive outcomes, 
literacy, and motivation, all of which occurred twice.

Overall validity evidence
In our sample, the median total number of validity evi-
dence reported per scale was three, with a range of one 
to five types of validity reported per scale. Table  6 dis-
plays frequencies for validity evidence. The majority of 
the validity evidence reported in our sample was EFA 
and CFA for internal structure evidence, with 26 scales 
reporting evidence for both. A few scales reported other 

Table 4 Primary construct categories

N %

Affective outcomes 1 1.20

Anxiety 3 3.70

Attitudes 14 17.10

Belonging and integration 4 4.90

Cognitive outcomes 4 4.90

Course perceptions 4 4.90

Diversity 7 8.50

Engagement 1 1.20

External climate 1 1.20

Identity 4 4.90

Interest 6 7.30

Learning gains 1 1.20

Literacy 3 3.70

Long‑term outcomes 3 3.70

Motivation 9 11.00

Non‑technical skills 11 13.40

Self‑efficacy 5 6.10

Social support 1 1.20

Table 5 Secondary construct categories

Category level N %

Attitudes Secondary 1 1.20

Cognitive outcomes Secondary 2 2.40

Community engagement Secondary 4 4.90

Diversity Secondary 1 1.20

Engagement Secondary 1 1.20

External climate Secondary 1 1.20

Interest Secondary 1 1.20

Literacy Secondary 2 2.40

Long‑term outcomes Secondary 1 1.20

Motivation Secondary 2 2.40

Non‑technical skills Secondary 1 1.20

Self‑efficacy Tertiary 1 1.20

Table 6 Frequencies for validity evidence

N %

Judge evaluation 36 43.90

Response process 13 15.90

EFA 57 69.50

CFA 42 51.20

DIF 5 6.10

Other internal structure 9 11.00

Convergent 23 28.00

Discriminant 2 2.40

Concurrent 28 34.10

Predictive 3 3.70

Table 7 Frequencies for other types of internal consistency

N %

IRT 3 3.70

Q‑sort methodology 1 1.20

Rasch analysis 2 2.40

Structural equation modeling 1 1.20

Multi‑dimensional IRT 1 1.20

Reduced basis factor analysis 1 1.20
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types of internal structure evidence, such as IRT and 
Rasch Analysis (see Table 7). The next most frequent type 
of validity evidence in our sample was test content valid-
ity in the form of expert judge evaluations, then followed 
by concurrent test criterion validity. Validity evidence 
used to build nomological networks, such as convergent 
and discriminant validity, was reported less frequently, 
with convergent validity being the more prominent of the 
two. Although concurrent validity was used over a third 
of the time, evidence for test-criterion validity in the 
form of predicative validity was also scarce. We did not 
see generalization through meta-analysis reported in our 
sample.

We also examined the number of scales that con-
tain joint evidence for the different combinations of the 
major four types of validity that grounded our theoreti-
cal framework (test content, response process, internal 
structure, and examining relationships). Analyses were 
completed using crosstabulations in IBM SPSS (version 
28). Full information can be found in Table 8. The most 
frequent combination (45.12%) was reporting on internal 
structure validity along with the examination of relation-
ships. The second most frequent combination was exam-
ining test content validity along with internal structure. 
All other combinations were less frequent with the com-
bination of relationships and response process being the 
scarcest.

Validity evidence by construct
We further examined validity evidence by the categories 
representing the commonly measured constructs in our 
sample. For brevity, we only discuss the most frequently 
reported types of evidence, although all analyses are 
reported in Table  9. The one scale measuring affective 
outcomes, all the scales measuring engagement, learning 
gains, literacy, as well as the majority (over 50%) of the 
scales measuring motivation, course perceptions, long-
term outcomes, and non-technical skills reported obtain-
ing judge evaluations.

Scales from all categories except for the one scale on 
affective outcomes reported an EFA. This includes all 
scales measuring anxiety, engagement, external climate, 
learning gains, literacy, long-term outcomes, self-efficacy, 
and social support and at least 75% of those examining 

belonging and integration, course perceptions, and 
motivation. At least half of scales from all other catego-
ries reported on an EFA, except those measuring inter-
est, one-third of which contained an EFA. Similarly, CFA 
was reported for scales in all categories except for those 
measuring course perceptions and literacy. We found 
that all the scales measuring affective outcomes, engage-
ment, external climate, learning gains, and social sup-
port, as well as most of the anxiety, diversity, interest, 
long-term outcomes, motivation, and self-efficacy scales 
contained evidence for CFA. We observed that anywhere 
between one-quarter and half of scales in all other cat-
egories displayed evidence from CFA. Comparatively, 
DIF and other types of internal structure validity were 
scarcely reported.

Few scales reported response process, while reports 
on relationships between variables varied. Convergent 
validity evidence was found among all scales measuring 
affective outcomes, anxiety, and learning gains. We also 
observed convergent validity evidence among most of the 
self-efficacy scales, half of the course perceptions scales, 
over a third of the attitude scales, and for a third of the 
scales measuring interest. It was observed for at least a 
quarter of the scales measuring identity, belonging and 
integration, and a few of the scales for non-technical 
skills and motivation. Test-criterion validity, mostly in 
the form concurrent validity was reported for all scales 
measuring self-efficacy and social support, and most of 
the scales measuring anxiety, interest, and motivation. 
Half of the identity and belonging and integration scales, 
and one-third of the literacy scales reported concur-
rent validity. Concurrent validity evidence was found for 
one-quarter of those measuring cognitive outcomes and 
course perceptions, and less than a quarter of the time for 
all other categories. Conversely, predictive and discrimi-
nant validity were found in very few categories.

Overall reliability evidence
In our sample, the median total number of types of reli-
ability evidence reported per scale was one, with a range 
of one to three types of reliability evidence per scale. 
Table 10 displays frequencies for reliability evidence. The 
most frequently reported reliability evidence in our sam-
ple was internal consistency, with a large skew towards 

Table 8 Joint evidence reported for validity

Test content Response process Internal structure Relationships

Test content –

Response process 10 (12.20%) –

Internal structure 32 (39.02%) 11 (13.41%) –

Relationships 16 (19.51%) 4 (4.88%) 37 (45.12%) –
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Cronbach’s alpha. Out of the other types of internal con-
sistency reported, the most popular was McDonald’s 
omega, with ordinal alpha and the person separation var-
iable being reported only once each (see Table 11). Apart 

from internal consistency, the second most frequent reli-
ability evidence in our sample was test–retest reliabil-
ity, although there is a considerable drop in occurrence 
compared to Cronbach’s alpha. Likewise, only one study 
reported alternate form reliability in our sample and no 
studies in our sample reported split-half reliability.

We also examined the frequencies of joint evidence 
reported for the different combinations of reliability evi-
dence using crosstabulations in IBM SPSS (version 28). 
Split-half reliability was not included in this analysis as it 
was not present in our sample. Full information can be 
found in Table  12. Given how much Cronbach’s alpha 
dominated the reliability evidence found in our sample 
and how infrequent other sources were, it is unsurprising 
that there was not much joint evidence found. The most 
frequent combination was Cronbach’s alpha reported 
with test–retest reliability. Other combinations only 
occurred once.

Reliability evidence by construct
Just as with validity evidence, we further broke down 
analyses for reliability by categories (see Table  13). 
Given the frequency of Cronbach’s alpha in our sample, 
it is unsurprising that most of the scales across catego-
ries reported conducting Cronbach’s alpha for internal 
consistency. It is reported for all the scales measuring 

affective outcomes, anxiety, belonging and integration, 
cognitive outcomes, course perceptions, external cli-
mate, engagement, learning gains, literacy, long-term 
outcomes, motivation, and self-efficacy, respectively. 

Table 10 Frequencies for reliability evidence

N %

Alternate Form 1 1.20

Test–retest 10 12.20

Cronbach’s Alpha 77 93.90

Other internal consistency 9 11.00

Table 11 Frequencies for other types of internal consistency

N %

McDonald’s Omega 7 8.40

Ordinal Alpha 1 1.20

Person separation variable 1 1.20

Table 12 Joint evidence reported for reliability

Alternate form Cronbach’s Alpha Test–retest

Alternate Form –

Cronbach’s Alpha 1 (1.22%) –

Test–retest 1 (1.22%) 8 (9.76%) –

Table 13 Percentage of articles reporting types of reliability evidence broken down by category

Alternate form % Test–retest % Cronbach’s Alpha % Other internal 
consistency %

Affective outcomes 100.00

Anxiety 33.30 66.70 100.00

Attitudes 14.30 92.90

Belonging and integration 100.00 25.00

Cognitive outcomes 25.00 100.00

Course perceptions 100.00

Diversity 14.30 85.70

Engagement 100.00

External climate 100.00

Identity 25.00 75.00 25.00

Interest 83.30 16.70

Learning gains 100.00

Literacy 100.00 33.30

Long‑term outcomes 100.00

Motivation 22.20 100.00 11.10

Non‑technical skills 90.90 9.10

Self‑efficacy 20.00 100.00 40.00
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Likewise, the majority of the scales in all other catego-
ries reported Cronbach’s alpha for internal consistency. 
Other evidence for internal consistency was reported 
by almost half of the scales measuring self-efficacy, one 
third of the scales measuring literacy, and a quarter of 
the scales measuring belonging and integration as well 
identity. Beyond a few of the scales measuring interest, 
motivation, and non-technical skills, no other scales in 
any other categories reported examining other types of 
internal consistency.

Test–retest reliability was reported for most of the 
scales measuring anxiety and one-quarter of the scales 
measuring cognitive outcomes as well as identity. Beyond 
that, test–retest reliability was reported for a few of the 
scales measuring attitudes, diversity, motivation, and 
self-efficacy. No other scales in any other categories 
contained test–retest reliability evidence. Only scales 
measuring anxiety contained alternate form reliability 
evidence.

Discussion
The most frequently reported validity evidence in our 
sample was test content validity and internal structure 
validity. Specifically, evaluations from expert judges 
were reported for test content validity for nearly half of 
the scales and were present in most of the categories in 
our sample. Previous systematic reviews have similarly 
observed test content as a commonly reported type of 
validity evidence (Arjoon et  al., 2013; Cruz et  al., 2020; 
Decker & McGill, 2019). Although informative, schol-
ars (e.g., Reeves et  al., 2016) have argued that this type 
of validity evidence alone is not sufficient. We only had 
two scales in our sample that only have evaluations from 
expert judges as validity evidence.

For internal structure evidence, EFA and CFA were 
reported for over half and nearly half of the scales in our 
sample, respectively, and were well-represented in all but 
a few of the categories. However, other forms of internal 
structure validity, such as DIF, were much less prominent. 
Comparatively, a systematic review of chemistry educa-
tion measures found internal structure validity evidence 
was reported in about half of the sample, with EFA being 
the most common and DIF completely lacking (Arjoon 
et  al., 2013). While CFA is underutilized in chemistry 
education measures (Arjoon et  al., 2013), it is reported 
more frequently across all STEM education research 
here, although our sample follows the trend of DIF being 
underreported. Similarly, other forms of internal struc-
ture validity were rare. While EFA and CFA can provide 
essential information about a scale’s internal structure, 
other types of internal structure validity evidence can be 
valuable or even more appropriate.

Compared to test content and internal structure valid-
ity, we found that response process evidence was much 
less present, with only 13 scales reporting cognitive 
interviews. This aligns with similar work, which found a 
dearth of response process validity (Arjoon et  al., 2013; 
Cruz et al., 2020), with cognitive interviews reported for 
only four out of 20 scales in one review (Arjoon et  al., 
2013). We also observed that evidence for relationships 
between variables—convergent, discriminant, and test-
criterion validity—were far less present, with convergent 
and concurrent validity being reported on much more 
frequently than their counterparts. In contrast, previous 
work finds that all but one of the chemistry education 
scales in their sample reported some form of relationship 
with other variables (Arjoon et al., 2013). Looking across 
all STEM education disciplines, there may need to be 
more work to collect evidence based on relationships and 
build nomological networks around the constructs being 
measured.

Internal consistency, namely, Cronbach’s alpha, was the 
most dominant reliability evidence and was prominent in 
all categories. All other forms of reliability evidence were 
reported far less frequently and were less represented 
across categories. This is unsurprising as others have 
reported similar observations in their reviews (Arjoon 
et al., 2013; Cruz et al., 2020; Decker & McGill, 2019), and 
as Cronbach’s alpha is mistakenly provided as the only 
evidence for validity in many biology education research 
papers (Knekta et  al., 2019). In comparison, test–retest 
reliability was reported for less than ten percent of our 
sample, alternate form only once, and split-half reliabil-
ity was not observed at all, aligning with previous work 
(Arjoon et al., 2013; Cruz et al., 2020; Decker & McGill, 
2019).

Although several gaps were observed, several surveys 
in the sample contained more comprehensive evidence 
and drew from several sources, which gave them a higher 
chance of being robust when used in a research setting. 
For example, the Engineering Professional Responsibil-
ity Assessment Tool (Canney & Bielefeldt, 2016) reported 
the highest amount of validity sources (five) and reported 
at least one piece of evidence from each of the four main 
categories in our theoretical framework. That said, this 
survey only reported one type of reliability evidence—
ordinal alpha. The Engineering Skills Self-Efficacy Scale 
(Mamaril et  al., 2016) also provided more comprehen-
sive evidence with five sources reported and three of the 
categories in the theoretical framework represented (test 
content, internal structure, and relationships. This scale 
also reported two forms of internal constancy—Cron-
bach’s alpha and McDonald’s omega.

Surveys that reported more comprehensive reliabil-
ity evidence were rare, although the Abbreviated Math 
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Anxiety Scale (Hopko et  al., 2003) drew from the most 
sources in our sample (three)—alternate form, test–
retest, and internal consistency. This scale also reported 
four sources of validity evidence from two categories 
(internal structure and relationships to other variables).

Implications for STEM education research
Psychometric development
Although a full discussion on psychometric evidence is 
beyond the scope of this review, validity is considered a 
unitary concept in contemporary theory (APA, AERA, 
& NCME, 2014; Reeves et al., 2016). This can be viewed 
as a continuum in which one’s confidence in a measure 
grows as accumulating evidence increases support for its 
intended interpretations. There were several scales that 
did not go beyond reporting on EFA for validity evidence, 
and while this is a good starting point, EFA alone is not 
enough evidence and should ideally be corroborated with 
other sources (Knekta et  al., 2019) For example, follow-
ing up with a CFA can expand upon EFA by confirming 
the underlying factor structure found in the previous 
analytical results (DeVellis, 2017). We also echo past 
work (Arjoon et al., 2013) in encouraging scale develop-
ers in STEM education to examine DIF as it can provide 
valuable information about a scale’s multidimensionality 
and whether items function differently among distinct 
groups (APA, AERA, NCME, 2014; Arjoon et al., 2013). 
Likewise, we suggest considering other forms of inter-
nal structure validity when appropriate, such as Rasch 
Analysis, IRT, or Q-sort methodology, to name a few. For 
example, IRT can allow researchers to examine item-level 
characteristics, such as item difficulty and item discrimi-
nation, as compared to factor analyses.

Beyond internal structure, other forms of validity pro-
vide valuable information.

Specifically, response process evidence, such as cogni-
tive interviews, can provide insight as to how participants 
are interpreting and reasoning through questions (APA, 
AERA, NCME, 2014; Arjoon et al., 2013), which can pro-
vide important qualitative data missing in other forms 
of validity. Likewise, building a nomological network 
by examining a scale’s relationships (or lack thereof ) to 
other variables can illuminate how the scale fits in with a 
broader theoretical framework (Arjoon et al., 2013).

However, the median total of validity evidence sources 
amongst the scales in our sample was three. Furthermore, 
the majority of joint evidence reported was between 
internal structure and relationships and between internal 
structure and test content validity. Taken together, there 
was not a lot of breadth when it comes to the validity evi-
dence that was examined. Although there is no “optimal 
number” of sources, drawing from multiple sources of 
evidence typically creates a more robust measure (APA, 

AERA, NCME, 2014). We recommend researchers care-
fully consider the goals of a measure and seek to examine 
a breadth of validity evidence and accumulate as much 
evidence as is needed and is feasible within their specific 
research contexts.

Reliability is also a fundamental issue in measurement 
that takes several different forms (DeVellis, 2017). How-
ever, we mostly observed evidence for internal consist-
ency, which only provides evidence on the relationships 
between individual items. Alternate form evidence can 
demonstrate reliability by examining the relationship 
between the scale and an alternate scale, essentially rep-
licating the scale (APA, AERA, NCME, 2014). Split-half 
reliability follows a similar logic to alternate form reli-
ability by examining how two halves of a scale relate to 
each other (DeVellis, 2017). Test–retest reliability pro-
vides insight into a scale’s consistency over time (DeVel-
lis, 2017). Put simply, distinct types of reliability evidence 
provide different information, have various sources of 
error, and certain sources of evidence may be prefer-
able depending on the context and needs of the research 
(APA, AERA, NCME, 2014). Despite this, very few scales 
in our sample examined some combination of reliability 
evidence and the median total of reliability sources was 
one. Given that each of these techniques has strengths 
and weaknesses, we encourage researchers to diversify 
reliability evidence in STEM education research, so that 
different sources of evidence can complement each other.

Prominence of Cronbach’s alpha
Not only was Cronbach’s alpha the most prominent form 
of internal consistency, but it was also the only type of 
reliability evidence observed for 64 of 82 scales in our 
sample. This is no surprise as Cronbach’s alpha is com-
monly associated with instrument reliability in science 
education research (Taber, 2018). Although a full discus-
sion around Cronbach’s alpha is beyond the scope of the 
present review, it has been argued that Cronbach’s alpha 
is not an ideal estimate of internal consistency, because 
it is typically a lower bound for the actual reliability of a 
set of items (DeVellis, 2017; Sijtsma, 2009; Taber, 2018). 
Beyond that, Cronbach’s alpha relies on assumptions that 
are rarely met; and these assumption violations can lead 
to internal consistency estimate inflation (see DeVellis, 
2017 and Dunn et  al., 2014). It has also been critiqued, 
because the cutoffs (i.e., α = 0.70) for what constitutes 
good or acceptable internal consistency are arbitrary 
(Taber, 2018).

Cronbach’s alpha is also designed for continuous data, 
and it is argued that social science measures may not be 
continuous, thus making Cronbach’s alpha inappropri-
ate to use. The majority of the scales in our sample were 
on a 5-point scale and most scales used either Likert or 
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semantic differential response formats (see DeVellis, 
2017 for discussion on response formats). Although the 
exact number of response options to include depends 
on a myriad of factors, it is argued that these types of 
response formats are ordinal rather than continuous in 
a strict sense, because one cannot assume that the inter-
vals between response options are equal (DeVellis, 2017). 
Thus, scholars argue that this can lead to inaccuracies in 
Cronbach’s alpha and suggest ordinal alpha as an alterna-
tive (DeVellis, 2017).

We recommend that researchers critically engage with 
the use of Cronbach’s alpha and not to solely rely on it 
as evidence for internal consistency or overall reliability. 
Researchers have suggested additions and alternatives 
such as using bootstrapping to find the confidence inter-
val around Cronbach’s alpha to obtain a range of values 
for internal consistency, or using McDonald’s Omega, to 
name a few (see DeVellis, 2017 and Dunn et al., 2014 for a 
full review). We suggest examining the individual advan-
tages and disadvantages of each of these methods and 
using what is the most appropriate.

Disciplinary trends
As identified above, there were several disciplines repre-
sented in our sample with the most common disciplines 
being Unspecified STEM (31.3%), Engineering (25.3%), 
Chemistry (10.8%), and Mathematics (10.8%). Due to the 
federal push for advancing and investing in STEM edu-
cation in the US (Holdren et al., 2010; Olson & Riordan, 
2012), it is unsurprising to see unspecified STEM educa-
tion instruments being the most popular scale discipline. 
Engineering lagging only slightly behind the unspecified 
STEM category was also foreseeable due to engineering 
education being a well-established discipline focused on 
quality discipline-based education research. However, we 
observed a distinct lack of scales in geosciences, as well 
as very few scales coming out of biology, computer sci-
ence, and technology. As other disciplinary professionals 
further establish and/or expand their discipline-based 
education research efforts, we anticipate seeing more val-
idated instruments arising therefrom.

Categorical trends
We observed a breadth of constructs being measured 
by the scales in our sample. Interestingly, we found 
that several constructs were seldom measured, which 
includes but not limited to engagement, belonging and 
integration, anxiety, and self-efficacy. A review in com-
puter science education found that a sizable portion of 
their sample measured what they deemed non-cogni-
tive processes, including self-efficacy, anxiety, and sense 
of belonging, among others (Decker & McGill, 2019). 
Another similar review found 76 measures out of 197 

papers in their sample examined what they called expe-
rience measures, including motivation, self-efficacy, and 
engagement (Marguilieux et  al., 2019). Finally, a review 
on assessment in interdisciplinary STEM education 
found that “the affective domain”, which includes aware-
ness, attitudes, beliefs, motivation, interest, and percep-
tions of STEM careers was the most frequent assessment 
target in their sample of papers (Gao et al., 2020). Aside 
from motivation, which was our second largest group 
in the primary categories, we noted many of these con-
structs only a few times in our sample. Thus, we rec-
ommend doing more work to develop scales measuring 
these constructs across the entirety of STEM education 
research.

Constructs that were observed more frequently 
included non-technical skills, constructs related to 
diversity, self-efficacy, and interest. We found that the 
majority of measures for non-technical skills came out 
of engineering. This is likely due, in part, to engineer-
ing education’s significant focus on training, work-
force development, and the need for professionalism in 
industry. Given such foci, as well as the extent to which 
engineering education has been embraced as its own dis-
ciplinary field, it is unsurprising to encounter extensive 
work in engineering ethics (Hess & Fore, 2018), profes-
sionalism (Felder & Brent, 2003; Layton, 1986; Shuman, 
et  al., 2005), and interpersonal/societal engagement 
(Hess et  al., 2018, 2021). With this in mind, we recom-
mend other STEM disciplines consider examining these 
important professional skills.

Scales related to diversity, such as scales measuring 
racial/sex bias in STEM or stereotype threat suscepti-
bility, were also a larger group in our sample. Given that 
there are significant disparities that exist in STEM edu-
cation as well as calls to action to address these dispari-
ties, close achievement gaps, and diversify the STEM 
workforce (Jones et al., 2018), this was foreseeable. This 
trend also aligns with a review of high-impact empirical 
studies in STEM education, which found that the most 
frequently published topic pertained to cultural, social, 
and gender issues in STEM education (Li et  al., 2022). 
Although these scales compromise one of the larger 
groups in our sample, because of how dispersed our 
categories were, there are only seven total. Given that 
diversity issues affect all STEM fields and that being able 
to assess diverse students’ experiences is an important 
aspect in addressing disparities and gaps, there is more 
work to be done in the development of these scales.

Similarly, self-efficacy and interest were observed five 
and six times, respectively. Although these were among 
the larger groups in the sample, these are objectively not 
large numbers. Interest and self-efficacy work with each 
other as well with other factors to play an integral role 
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in student motivation, which affects students’ academic 
behaviors, achievements, and choices (Knekta et al., 2020; 
Mamaril et  al., 2016). Given these far-reaching effects, 
more measures examining these constructs across all 
domains of STEM education are needed.

Although no one category took on a clear majority, the 
construct of attitudes constituted the largest group. This 
is unsurprising as attitudes (among other non-cognitive 
constructs) are emphasized by many science educators 
as important for scientific literacy (Xu & Lewis, 2011). In 
our sample, attitudes encompassed a range of constructs. 
Some scales asked about students’ beliefs on certain top-
ics (e.g., Adams et al., 2006), others were more evaluative 
(e.g., Hoegh & Moskal, 2009), many reported generally 
examining attitudes (e.g., Cashin & Elmore, 2005), oth-
ers assessed students’ epistemologies and expectations 
(e.g., Wilcox & Lewandowski, 2016), and some focused 
on the cognitive affective components of attitudes (e.g., 
Xu & Lewis, 2011). In social psychology, which has a rich 
history in attitudes research, an attitude is defined as “a 
psychological tendency that is expressed by evaluating a 
particular entity with some degree of favor or disfavor” 
(Eagly & Chaiken, 1993). Attitudes are comprised of 
cognitive (thoughts), affective (feelings), and behavioral 
(actions) responses to an object or event. Attitudes can 
be formed primarily or exclusively based on any com-
bination of these three processes and any of these can 
serve as indicators for attitudes in measurement. Given 
the range we observed, when measuring attitudes, we 
suggest that researchers ground these scales in attitude 
theory and to specifically define which aspects are being 
measured.

Practical implications for researchers
Our goal for the present systematic review is to serve 
STEM education researchers, DBER professionals, and 
professionals that work in STEM education centers and 
institutions across the United States. Whether one is con-
ducting research themselves or collaborating with STEM 
professionals to help them conduct STEM education 
research, we hope that researchers may use this review 
as a foundation when making decisions about measure-
ment. Several practical implications are discussed below.

First, researchers and professionals may use this review 
when deciding whether to create a new scale, to use a 
pre-existing scale as is, or to adapt. In general, it is ideal 
to use a scale that already exists (DeVellis, 2017). The pre-
sent review gives an overview of what is available, allow-
ing researchers to determine whether they can use scales 
from our sample or adapt them. When multiple adequate 
pre-existing measures are available, it is important to 
consider the amount, variety, and quality of reported psy-
chometric evidence. As psychometric development is an 

ongoing process, scales with a greater variety of quality 
psychometric evidence will be more robust and trust-
worthy. Although we appreciate that there will be occa-
sions when only one scale is available, our goal is that this 
systematic review can inform research decisions about 
what scales are most trustworthy and robust. Finally, it is 
important to remember that one should use the full scale, 
and not just ‘cherry-pick’ questions when using pre-exist-
ing measures. One reason for this is because factor analy-
sis is designed to examine the relationships between sets 
of survey items and whether subsets of items relate more 
to each other rather than other subsets (Knekta et  al., 
2019). Thus, if one uses a select few items from a set, the 
validity evidence previously collected is no longer rel-
evant, and re-validating the scale is recommended before 
its use.

When using pre-existing measures, one must also con-
sider the sample that was used to develop the measure 
and the context within which it was developed. Sample 
demographics (i.e., race, gender, etc.) are an important 
factor to consider due to the potential for measurement 
bias. It is rare for measurement parameters to be per-
fectly equal across groups and measurement occasions 
(Van de Schoot, 2015) and thus there is always potential 
for measurement bias. For this reason, it is important to 
report sample demographics when developing a scale and 
to also consider demographics when using a pre-existing 
scale. If the population one is sampling from is quite dif-
ferent from the one that was used to develop the scale, 
it may not be appropriate to use that measure without 
examining measurement invariance before its use.

Due to the potential for measurement bias across dif-
ferent groups, it also may not always be appropriate to 
use pre-existing measures developed for other disci-
plines or even measures developed for an unspecified 
STEM context, especially if one’s research questions are 
discipline specific. However, one can always adapt pre-
existing measures if they do not wish to create a new one. 
Several scales in our sample were adapted and/or revali-
dated from scales designed for a different discipline or 
for all college students, such as the Academic Motivation 
Scale—Chemistry (Liu et  al., 2017), the Civic-Minded 
Graduate Scale in Science and Engineering (Hess et  al., 
2021), and the Colorado Learning Attitudes about Sci-
ence Survey (Adams et  al., 2006). Researchers can look 
to these as examples when adapting or revalidating scales 
within their own disciplines. Depending on what is being 
measured, significant adaptations to measures from other 
disciplines may not be needed. To illustrate, when adapt-
ing an academic motivation scale, one may only need to 
change the discipline referenced in scale items. However, 
if one seeks to examine non-technical skills (often also 
referred to as soft skills) specific to a single discipline, 
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then significant changes may be necessary, thus requiring 
more involved adaptations and psychometric evaluations.

Similarly, older scales may sometimes need to be re-
examined for use in today’s context and society. One 
should carefully examine scale items and consider 
whether they fit in the context in which they are trying 
to use them. Sometimes items or words pertain to some-
thing that is no longer relevant or is obsolete in today’s 
context. However, this does not mean the scale or meas-
ure itself is of poor quality. One can change items or 
make updates and re-examine psychometric evidence 
accordingly.

Finally, the present review aims to give researchers and 
professionals a sense of where there are gaps and allow 
them to make more informed decisions about when to 
create a new scale in a developing field, such as STEM 
education research. As we have emphasized the complex 
and ongoing process that is psychometric development, 
researchers may look to this review to get a broad sense 
of what kind of psychometric evidence can be exam-
ined and the purposes they serve. However, we encour-
age corroborating this review with the resources we cite 
such as the Standards (APA, AERA, NCME, 2014), DeV-
ellis (2017) and Knekta et  al. (2019) and other quality 
resources available.

Limitations and future directions
Several significant limitations of this study are inherent 
in the inclusion criteria and sampling strategy, which 
examined only higher education STEM research in the 
United States. Although sampled literature consisted 
of diverse STEM fields, a single country and a concen-
tration on only undergraduate and graduate education 
limits the possibilities of generalization to a broader 
population. We also excluded literature from disserta-
tions, thesis, and non-peer-reviewed articles which have 
the possibility to limit our findings. We suggest further 
studies should examine the measurement trends in sur-
vey instruments utilized in STEM education research 
among a wider population of samples from other coun-
tries and education levels, such as K-12, and to include 
dissertations and theses, and non-peer-reviewed papers 
to extend our findings. Although we did not find it nec-
essary to conduct analyses across time in our sample, as 
STEM education research grows and measurement fur-
ther develops, especially as more disciplines get involved 
and more constructs are added, future research may 
examine trends across time once more datapoints exist. 
Finally, our samples contained uneven group sizes in cat-
egories and disciplines which made comparative analysis 
of the samples difficult for the researchers.

Summary of recommendations
The following recommendations were developed through 
a synthesis of the patterns we observed in our analyses as 
well as information from the Standards—the theoretical 
framework that informed this review. Although we hope 
that these recommendations may serve our readers well 
in their own pursuits, it is important to note that they do 
not cover the full scope of psychometric development. 
Discussing the full nuance of the process is beyond the 
scope of this work and we strongly encourage readers to 
engage with the Standards and other resources we cite 
(i.e., DeVellis, 2017), which have the space to provide 
more detailed discussion on these topics.

1. Measurement is fully dependent on the context of 
one’s research and decisions will be unique to each 
researcher. Before making any decisions, carefully 
consider the research context, questions, goals, and 
population.

2. It is typically preferable to use a pre-existing measure 
whenever possible (DeVellis, 2017). If one has found 
a scale that might be a good fit for their research, we 
recommend:

a. Comparing the population and context that the 
scale was developed with and within to one’s 
own. Are they similar? This will help determine 
how suitable the scale may be or if adaptations 
will be needed.

b. Using scales in full, the way that they were 
intended to be used when they were developed. 
You cannot ‘cherry-pick’ items. If items need to 
be removed, because they are not relevant, then 
collecting psychometric evidence again would be 
needed.

3. If one has determined they need to create their own 
scale, there are many ways to begin.

We recommend looking at the relevant theories, past 
research, similar scales, or using qualitative data to cre-
ate scales. All of these are good starting points, but it 
is up to the researcher to decide which one is the most 
appropriate.

4. When collecting psychometric evidence, consider 
what is needed as well as what is most feasible. This 
includes considering the size of the sample one is 
working with, timeframe, the structure of the scale 
itself, and its intended use. Given the relationship 
between validity and reliability, we recommend col-
lecting some form of validity evidence and some 
form of reliability evidence.
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5. Because measurement invariance can arise with 
many group variables, we recommend collecting 
demographic data from the sample the scale was 
developed on. This includes (but is not limited to) 
variables, such as race, gender, class standing, and 
age.

6. Many of the scales in our sample rely solely on 
exploratory factor analysis and/or confirmatory 
factor analysis for validity evidence. Validity is the 
degree to which accumulating evidence supports the 
interpretation of a scale for an intended use (AERA, 
APA, and NCME, 2014). Adequate support typi-
cally involves multiple sources of evidence but does 
not always require all sources of evidence outlined in 
this review. We recommend considering what inter-
pretations and intended uses one has for a scale and 
then deciding which sources will be most appropri-
ate. For example, if one wishes to use a scale to pre-
dict student GPA, then they would need to collect 
predictive validity evidence. If one wishes to propose 
that a scale is suitable for a specific content domain, 
it would be prudent to collect test content validity 
evidence. It is prudent to collect evidence that sup-
ports all intended propositions that underly a scale’s 
intended interpretations.

7. When collecting reliability evidence, consider what 
kinds of decisions will be informed by the scale’s use. 
Consider how reversible these decisions would be 
and whether they can be corroborated with other 
information sources (AERA, APA, and NCME, 
2014). Although reliable and precise measurement 
is always important, these considerations will inform 
how modest or high that degree of precision should 
be.

8. Most scales in our sample collected information on 
internal consistency only, even though it typically 
takes multiple sources of evidence. Just as with valid-
ity evidence, we recommend collecting from as many 
sources of evidence as possible while taking into con-
sideration the intended purposes of the scale. For 
example, if one is proposing that a scale’s items are 
interrelated, then internal consistency is important to 
measure. If one is measuring an attribute that is not 
expected to change across an extended time period, 
test–retest reliability with scores collected across 
2 days would be appropriate. Which sources of evi-
dence and how many one wishes to draw upon will 
look different for each researcher.

9. When choosing statistical tests for validity and relia-
bility evidence collection, we recommend not simply 
relying on what is most typically used. For example, 
there are many options that exist for examining inter-
nal structure validity and internal consistency, yet 

many of the scales in this review rely on exploratory 
factor analysis and Cronbach’s alpha, respectively. 
We recommend considering a broader spectrum of 
statistical analyses when collecting psychometric evi-
dence.

Conclusion
Through this systematic literature review, we have 
found that there is a great deal of quantitative instru-
mentation being used by STEM education researchers 
and evaluators to measure the outcomes of STEM edu-
cation activities and courses. That said, there are many 
published instruments that lack thorough assessments 
of their validity and reliability. Of those instruments 
that have been held up to rigorous testing of validity 
and reliability, there is still more work that can be done, 
particularly regarding the use of different approaches—
other than Cronbach’s alpha—to examine reliability. As 
STEM education researchers build up a canon of vali-
dated and reliable instruments measuring a variety of 
different learning outcomes, we approach the potential 
for creating a repository for STEM education surveys.

Moving forward, there is a need for more instru-
ments to be created for a greater diversity of learning 
outcomes and STEM fields, as well as a need for more 
rigorous and diversified psychometric development 
of these instruments. STEM education researchers, 
as mentioned above, may benefit from having more 
scales that measure engagement, sense of belonging, 
perceived fit, anxiety, and self-efficacy. It may also be 
worthwhile for STEM education researchers to exam-
ine the education psychology literature (and related 
fields) to identify additional instruments that may have 
never been or that have rarely been used in STEM set-
tings. Such an approach could open STEM education 
researchers up to a variety of new kinds of validated 
and reliable instruments, allowing for more complex, 
sophisticated, and insightful studies, and analyses.
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