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Abstract

Background: Many students solving quantitative problems in science struggle to apply mathematical instruction
they have received to novel problems. The few students who succeed often draw on both their mathematical
understanding of the equation and their scientific understanding of the phenomenon. Understanding the
sensemaking opportunities provided during instruction is necessary to develop strategies for improving student
outcomes. However, few studies have examined the types of sensemaking opportunities provided during
instruction of mathematical equations in science classrooms and whether they are organized in ways that facilitate
integration of mathematical and scientific understanding. This study uses a multiple case study approach to
examine the sensemaking opportunities provided by four different instructors when teaching the same biological
phenomenon, population growth. Two questions are addressed: (1) What types of sensemaking opportunities are
provided by instructors, and (2) How are those sensemaking opportunities organized? The Sci-Math Sensemaking
Framework, previously developed by the authors, was used to identify the types of sensemaking. Types and
organization of sensemaking opportunities were compared across the four instructors.

Results: The instructors provided different opportunities for sensemaking of equations, even though they were
covering the same scientific phenomenon. Sensemaking opportunities were organized in three ways, blended
(previously described in studies of student problem solving as integration of mathematics and science resources),
and two novel patterns, coordinated and adjacent. In coordinated sensemaking, two types of sensemaking in the
same dimension (either mathematics or science) are explicitly connected. In adjacent sensemaking, two different
sensemaking opportunities are provided within the same activity but not explicitly connected. Adjacent
sensemaking was observed in three instructors’ lessons, but only two instructors provided opportunities for
students to engage in blended sensemaking.
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Conclusions: Instructors provide different types of sensemaking opportunities when teaching the same biological
phenomenon, making different resources available to students. The organization of sensemaking also differed with
only two instructors providing blended sensemaking opportunities. This result may explain why few students
engage in the successful strategy of integrating mathematics and science resources when solving quantitative
problems. Documentation of these instructional differences in types and organization of sensemaking provides
guidance for future studies investigating the effect of instruction on student sensemaking.

Keywords: Instruction; Blended sensemaking; Mathematical equations; Sensemaking; Population growth

Introduction
Mathematical equations are routinely used in science to
represent scientific phenomena (Bialek & Botstein, 2004;
Brush, 2015; Lazenby & Becker, 2019). Thus, policy docu-
ments in science education advocate that students should
use quantitative reasoning and mathematical modeling to
study complex physical systems with mathematical equa-
tions (American Association for the Advancement of
Science, 2011; NGSS Lead States, 2013). However,
students struggle with using equations in solving quantita-
tive problems in science and fail to make connections be-
tween the equation and the scientific phenomenon
(Becker & Towns, 2012; Bing & Redish, 2009; Stewart,
1983; Taasoobshirazi & Glynn, 2009; Tuminaro & Redish,
2007). These difficulties have been attributed to a lack of
opportunities provided for sensemaking of mathematical
equations in science during instruction (Bing & Redish,
2008; Lythcott, 1990; Schuchardt & Schunn, 2016). How-
ever, little research exists on sensemaking related to math-
ematical equations in science classes and whether there
are differences in the sensemaking opportunities instruc-
tors provide to students. Characterization of these differ-
ences allows for informed design of studies that address
the effect of different sensemaking opportunities during
instruction on student problem-solving and learning. This
study examines the sensemaking opportunities provided
by college biology instructors when teaching mathematical
equations on the same biology phenomenon.

Literature review
Mathematics plays a critical role in scientific research
and science education. Although students have been
exposed to mathematics before they entered college,
they still struggle with making sense of mathematical
equations learned in science class. Mathematics in math-
ematics classes are different than the mathematics in
science classes (Redish & Kuo, 2015), and the sensemak-
ing of mathematical equations in science needs to con-
nect to both disciplines, the science and the
mathematics. Research on science sensemaking and
mathematics sensemaking has been limited to its own
disciplinary community. The science education commu-
nity refers to scientific sensemaking as constructing

explanations for scientific phenomena (Kapon, 2016;
Odden & Russ, 2019), while the mathematics education
community refers to mathematics sensemaking as devel-
oping a sense of mathematical practice in the process of
learning different types of mathematical knowledge
(Rittle-Johnson & Schneider, 2015; Schoenfeld, 1992).
In both science and mathematics education, there are

calls to move practices away from memorization of ter-
minology and facts and repetitive application of proced-
ural algorithms for solving problems. Instead, the
emphasis is on providing opportunities for students to
engage in sensemaking and authentic disciplinary prac-
tices (Li & Schoenfeld, 2019; NGSS Lead States, 2013).
The space instructors provide for students during in-
struction affects what knowledge students can make
sense of and how students construct their knowledge
during classes (Marton, Runesson, & Tsui, 2004). Ac-
cording to Li and Schoenfeld (2019), instruction needs
to shift toward providing students experiences that fos-
ter their sensemaking of mathematics and science and
away from the memorization of facts or procedures.
However, instruction of mathematical equations in sci-
ence, particularly in biology, has generally not been sys-
tematically characterized.
Multiple types of scientific knowledge and mathemat-

ical knowledge are embodied in mathematical equations
in science. The scientific knowledge includes the entities
and processes relevant to the scientific phenomenon
represented by the equations, while the mathematical
knowledge includes the syntax and semantics used to ex-
press meaning (Zhao & Schuchardt, 2021). Sensemaking
of equations can occur using either scientific or math-
ematical resources or the scientific and mathematical
knowledge may be merged to generate a blended sense-
making (Bain, Rodriguez, Moon, & Towns, 2019;
Eichenlaub & Redish, 2019; Fauconnier & Turner, 1998;
Zhao & Schuchardt, 2021).
The idea of blended sensemaking originates from the

field of cognitive science where it has been defined as a
cognitive operation that draws upon two separate mental
resources/spaces to create a third mental resource/space
which is greater than the sum of its parts (Fauconnier &
Turner, 1998). Blended sensemaking has been adopted
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as a lens for analyzing student problem solving while
using equations in science (Bain, Rodriguez, Moon, &
Towns, 2018; Bing & Redish, 2007; Eichenlaub & Redish,
2019; Kuo, Hull, Gupta, & Elby, 2013). In this context,
blended sensemaking has come to mean that students
are drawing on both their knowledge of mathematics
and their knowledge of science when solving mathemat-
ical equations in science. For example, when solving a
physics problem, a student first interprets the mathemat-
ical structure of an equation to indicate that the final
velocity will be equal to the initial velocity plus the
change due to acceleration. She is then able to accurately
reason that if one ball has a velocity of 2 m/s when a
second ball is dropped, then 5 s later the first ball will be
faster than the second ball by 2 m/s because there is no
additional force other than gravity after the balls are
dropped and gravity is acting on both balls equally. This
process of connecting the mathematical meaning with
the events occurring in the physical phenomenon is
referred to as blended sensemaking (Kuo et al., 2013).
Currently, in the study of mathematical equations in

science, blended sensemaking has generally been treated
as a singular entity. However, hints have occurred that
blended sensemaking may be more complex (e.g., Bain
et al., 2018; Bing & Redish, 2007). Bain et al. (2018)
described the blended sensemaking of two students as
low quality and high quality. The student who engaged
in “low-quality” blended sensemaking discussed ideas
about how the concentration of reactants in a reaction
would change over time and stated that it is based on
the dissociation equation. However, he did not make
explicit connections between the mathematical meaning
of the equation and the events in the chemical
phenomenon. In contrast, another student, who was de-
scribed as engaged in “high-quality” blended sensemak-
ing, explicitly related the mathematical meaning
embedded in the equation to events happening in the
chemical phenomenon. He explicitly related the chemis-
try phenomenon that reactants are consumed to pro-
duce products to first the mathematical meaning of a
negative slope and then the meaning of rate in the equa-
tion. In our prior work, we developed a framework for
categorizing sensemaking of mathematical equations in
science along two dimensions (mathematical and scien-
tific) (Zhao & Schuchardt, 2021). According to this
framework, the low-quality sensemaking described by
Bain et al. (2018) is occurring solely in the science di-
mension, because after a reference to an equation, the
sensemaking is only in the science space. The science
sensemaking is likely cued by some features of the math-
ematical equation, but it is not clear what these features
are or if the student has consciously made sense math-
ematically of the equation as opposed to just perceiving
a general form. Based on our framework, the second

student described above as engaging in “high-quality”
sensemaking by Bain et al. (2018) is engaging in sense-
making of the equation separately in the mathematical
dimension and in the science dimension as well as a
third level of sensemaking where he combines the math-
ematical sensemaking and science sensemaking of the
equation. In this paper, we reserve the term “blended
sensemaking” of equations for this combined sensemak-
ing along both dimensions.
Students who tend to blend mathematical and chem-

ical resources when solving equations in chemistry are
more likely to identify multiple problem-solving ap-
proaches (Bain et al., 2018). In physics and biology, stu-
dents who spontaneously blend resources when solving
mathematical equations are often able to make progress
solving complex and novel problems (Redish & Kuo,
2015; Schuchardt, 2016). However, many students even
when they have the appropriate mathematical and scien-
tific knowledge fail to blend these resources when solv-
ing mathematical problems (Becker & Towns, 2012;
Bing & Redish, 2009; Schuchardt, 2016; Stewart, 1983;
Taasoobshirazi & Glynn, 2009; Tuminaro & Redish,
2007). Instead, students often use a plug-and-chug ap-
proach and get stuck (Bing & Redish, 2007; Eichenlaub
& Redish, 2019; Kuo et al., 2013; Schuchardt, 2016). One
hypothesis for students’ failure to integrate mathematics
and science resources is that during instruction, they are
not provided with opportunities to simultaneously en-
gage in both mathematical and scientific sensemaking of
mathematical equations in science (Eichenlaub & Redish,
2019; Schuchardt & Schunn, 2016). Instruction that is
designed to create opportunities for blended sensemak-
ing is related to improved student quantitative problem-
solving skills and conceptual understanding (Schuchardt
& Schunn, 2016). Therefore, instructors have been en-
couraged to create more opportunities for students to
engage in blended sensemaking (Bain et al., 2018;
Eichenlaub & Redish, 2019). However, there are too few
studies of instruction of mathematical equations in sci-
ence to determine whether no sensemaking opportun-
ities are provided, whether sensemaking opportunities
are only provided in one dimension (science or mathem-
atics), or whether both types of sensemaking are pro-
vided, but not integrated with one another. The failure
to organize integrated mathematics and science sense-
making opportunities during instruction might explain
students’ tendency not to engage in blended sensemak-
ing when problem solving (Eichenlaub & Redish, 2019;
Schuchardt, 2016).

Conceptual framework
This study describes the different sensemaking oppor-
tunities provided by four undergraduate instructors dur-
ing their lessons on mathematical equations in biology.
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During instruction, an instructor can focus on different
types of knowledge embodied in an equation, either sep-
arately as scientific knowledge or as mathematical know-
ledge, or as blended sensemaking if sensemaking from
both science and mathematics dimensions are merged
during the instruction (Bain et al., 2018; Bing & Redish,
2007; Kuo et al., 2013). The sensemaking opportunities
created by instructors around a mathematical equation
in biology will be identified separately in the mathemat-
ics and science space using the Sci-Math Sensemaking
Framework (Zhao & Schuchardt, 2021). Then, instances
where instructors provide opportunities for blending
both types of sensemaking of the equation will be
discussed.
The Sci-Math Sensemaking Framework was developed

based on an extensive literature review of published
work from both science education and mathematics edu-
cation fields on sensemaking of equations (Table 1, Zhao
& Schuchardt, 2021). The Sci-Math Sensemaking Frame-
work includes nine categories for different types of sen-
semaking, four in the science dimension and five in the
mathematics dimension (Table 1, Zhao & Schuchardt,
2021). Sensemaking opportunities in science include def-
inition of variables (Sci-Label), understanding an equa-
tion as a definition of a parameter of an object or a
system that cannot be directly measured (Sci-Descrip-
tion), understanding qualitative trends in the represented
phenomenon (Sci-Pattern), and understanding the
mechanism causing the phenomenon to occur (Sci-
Mechanism). Sensemaking opportunities in mathematics
include application of a step-by-step algorithm (Math-
Procedure), knowledge of generalizable statements guid-
ing calculation (Math-rule), understanding the

implications of different arrangements of symbols and
operations (Math-Structure), identification of quantita-
tive relationships (Math-Relation), and understanding
the mathematical ideas embedded in the equation
(Math-Concept).
Identification of the different types of sensemaking op-

portunities in the science and mathematics dimensions
allows for characterization of how sensemaking oppor-
tunities are organized. Co-occurrence of science math-
ematics sensemaking that is taught so that one type of
sensemaking is used to support or explain the other
(blended sensemaking) presents an integrated approach
to teaching and learning in STEM (Li & Schoenfeld,
2019). In contrast, if mathematics sensemaking and sci-
ence sensemaking is provided separately in adjacent in-
structional segments, then instruction presents
mathematics and science as separate disciplines without
connections. (Li & Schoenfeld, 2019). Distinguishing be-
tween the different approaches to organizing sensemak-
ing, not just characterizing the types that are present,
provides insight into whether instruction provides op-
portunities for students to make sense of connections
between the two disciplines, which may inform their
problem-solving.

Current study
The research goal is to identify different types of sense-
making opportunities provided by different instructors
teaching the same biological phenomenon with mathem-
atical equations. According to Yin (2017), a case study
method is appropriate when the goal is to provide an in-
depth description of how a social phenomenon occurs.
A multiple case study design was used to illustrate the

Table 1 Categories in the Sci-Math Sensemaking Framework (Zhao & Schuchardt, 2021)

Dimension Category Short definition

Science
sensemaking

Sci-Label Connects variables or operators in mathematical equations to quantifiable characteristics of objects or processes
in the scientific phenomenon, i.e., the definition or scientific meaning of the variable (e.g., m = mass)

Sci-
Description

Uses a mathematical equation to provide a quantifiable measure of a parameter of a scientific phenomenon or
an object within the phenomenon (e.g., equations for diversity index, the equation for density)

Sci-Pattern Emphasizes the qualitive trend or pattern among variables in the mathematical equation situated within the
scientific phenomenon (e.g., in the equation F =ma, acceleration is proportional to the force on an object)

Sci-
Mechanism

Emphasizes connections to a mechanism that explains how or why a scientific phenomenon occurs (e.g., for the
equation a!¼ F

!
net=m , the net force distributed over mass causes the acceleration of an object in the same

direction)

Mathematics
sensemaking

Math-
Procedure

Emphasizes the predetermined steps or algorithms for problem solving

Math-Rule Focuses on generalizable statements that guide calculation (e.g., the probability of two events occurring
simultaneously is equal to the product of the individual probabilities)

Math-
Structure

Focuses on the form of the equation, the numbers and arrangement of symbols and operations (e.g., + as
two components adding together)

Math-
Relation

Emphasizes quantitative relationships between variables in the equations (e.g., v = 9.8m/s2 ∗ t + v0 says that if v0 is
0, v will be 9.8 times bigger for every unit increase in t

Math-
Concept

Refers to a network of knowledge that enables explanation of the what, how and why of a mathematical idea
(e.g., conceptually, probability is the proportion of desired events out of all possible events)
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range of sensemaking that can occur in science class-
rooms. A case was defined as all the lessons taught by
one instructor that involved equations in population
growth. Cases were bounded by including only instruc-
tion that included mathematical equations. Instruction
covering only biological concepts without mentioning
equations was excluded from the analysis. A rich de-
scription was generated for each instructor’s lessons on
equations after an iterative writing and revising process
among the authors. Specifically, this study aims to pro-
vide in-depth understanding of the current instructional
approaches to equations in science from the sensemak-
ing perspective. The research questions guiding this
study are:

1. What sensemaking opportunities about
mathematical equations do instructors provide
when teaching population growth?

2. How are the sensemaking opportunities about
mathematical equations organized during the
lesson?

Methods
Participants and instructional context
This study draws on previously collected classroom data
from 41 undergraduate biology classrooms taught by 21
instructors. The purpose of the larger study was to
understand the instruction of mathematical equations in
undergraduate biology classes across the nation. The in-
structors chosen for this study were purposefully se-
lected because they all taught the same biological
phenomenon (population growth) using mathematical
equations. Therefore, this study focuses on describing
the different opportunities each instructor provided for
sensemaking of mathematical equations when teaching
the same biological topic.
Four instructors (two female and two male) were in-

cluded in this study (see Table 2). They have all been
teaching for more than 5 years and have doctorates in
biology. Amanda and John taught an introductory biol-
ogy class to biology majors in a large Midwestern uni-
versity, albeit in different semesters (class size 100–150
students). Dory taught a group of 12 students in a pre-
college orientation experience for incoming biology ma-
jors at the same university as Amanda and John. Miguel

taught an upper-level course for biology majors at a
Western Hispanic serving university (class size approxi-
mately 90 students). One of the authors was also one of
the instructors.

Data collection and analysis
For each instructor, the lesson was audio recorded.
Slides used in the class, and worksheets designed for stu-
dents were collected. For two instructors (Amanda and
John), the second author made notes about the instruc-
tion while the class was being recorded. The primary
data sources for the study were the transcripts and slides
from the population growth lessons. Observation field
notes served as a secondary data source to provide
additional details about the nature of class activities and
non-verbal interactions.
The data were analyzed in two steps. First, a rich

description of the instruction was produced by the first
author based on the transcripts and available slides and
worksheets. The third author read the descriptions along
with the transcripts and noted areas of disagreement
which were resolved with discussion. Second, the Sci-
Math Sensemaking Framework was used to identify the
mathematical and scientific sensemaking opportunities
around mathematical equations within the rich case de-
scription. Based on the rich description, sensemaking
opportunities were only identified when made available
to all students either through verbal statements made by
instructors or by students in large group discussions and
presentations or on slides presented to the class. When
the sensemaking was not made explicit to all students in
the class, it was not identified. The purpose is not to
provide an exhaustive list of all instances of sensemaking
in the rich descriptions, rather to understand how in-
structors set up and afford sensemaking opportunities.
The same two authors and a colleague with expertise in
science education discussed the identification of sense-
making opportunities, and a consensus was reached. The
identified sensemaking opportunities were added to the
rich description in parentheses. Patterns in the types and
the order of sensemaking opportunities were identified.
A cross-case analysis was performed based on compar-
ing and contrasting the sensemaking opportunities in
the four instructors’ lessons. The four instructors agreed

Table 2 Participants and instructional context for each instructor

Instructor University Class size Course level

Amanda R1 Midwestern university 100–150 Introductory biology major

John R1 Midwestern university 100–150 Introductory biology major

Miguel R2 Hispanic serving university ~ 90 Upper-level biology major

Dorya R1 Midwestern university 12 Pre-college orientation for biology majors
aIndicates that the instructor is one of the authors
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with the presentation of their lessons as described in this
manuscript.

Results
The results are first presented by individual case. The
rich description of each instructor’s implemented lesson
on equations about population growth is presented,
followed by an analysis of each case guided by the nine
categories in the Sci-Math Sensemaking Framework
(Table 1). A summary of the specific equations used by
each instructor is provided in Table 3. Within the case
descriptions, the equations are referred to by number.

The description of Amanda’s instruction
Amanda spent 97 min teaching equations on population
growth, 63 min in the first class, and 34 min in the sec-
ond class. Amanda started her instruction in population
growth by stating, “So we're going to start looking at not
just life tables now, but actually have you look at the
growth of populations. How is it changing over time?”
She shared a life table of the population of northern
water snakes (Fig. 1). After naming the variables (Sci-
Label), lx and mx as survivorship and fertility respect-
ively, Amanda showed students how to calculate R0

(Equation 1, Table 3). She presented the calculation as a
series of steps, first explaining, “we multiply a survivor-
ship to each age class by the fertility, we get net off-
spring produced at each age” and then, “If you take the
sum of that column, lx times mx, you get the net repro-
ductive rate per generation” (Math-Procedure). Amanda
concluded this example by describing R0 (which is calcu-
lated by Equation 1) as “a population growth parameter”
(Sci-Description) and explaining how to interpret the
parameter, because “It [R0] is 0.79, meaning each female
produces 0.79 offspring, so not even reproducing them-
selves. So, this population is in decline.” She introduced
a second equation (Equation 2, Table 3) to calculate
generation time for the snake population in the same

way, first defining generation time as “the average time
between the mother and the daughter's first offspring”
(Sci-Description) and then working step by step to show
how to calculate generation time (Math-Procedure).
Following her presentation of the steps to calculate R0

and generation time, Amanda went over the logistics of
the weekly project, which asked students to calculate
population growth parameters including generation time
using data tables formatted identically to the snake
example. Amanda offered step-by-step instructions,

What you eventually want to calculate is g, the gen-
eration time there (Sci-Label) And the other thing
you're going to do is to calculate current age distri-
bution, given a stable population. So, read through
the directions carefully. I carefully typed it out step
by step to help you work through this. (Math-
Procedure).

After students worked in groups for about 30 min,
Amanda described how to estimate growth rates in
the population. This presentation followed the same
structure as the previous instruction with Amanda
presenting Equation 3 and steps of calculation for a
new variable λ (Math-Procedure). Then Amanda pre-
sented Equation 4, the geometric growth equation, by
naming each variable (Sci-Label) and then described
the biological meaning of the parameter λ (defined by
Equation 3) by “You have this finite rate of increase
that’s greater than one, population is increasing. This
last one is decreasing. If it equals one, the population
is constant” (Sci-Description). Amanda then intro-
duced the differential equations for continuous
growth (Eqs. 5 and 6) by naming the equations, geo-
metric growth equation and continuous growth
equation, and then named the variable rmax as “the
intrinsic rate of increase” (Sci-Label). At the end of
the first class, she expressed her expectations to the
students by saying “What I want you to know are
the terms in the equations. What is λ, what is R0,
what do these terms mean? (Sci-Label) What is each
equation used for?”
At the beginning of the second class, Amanda

reviewed the definition of rmax in Equation 6 (Sci-
Label). She showed the logistic growth equation with
a new variable, carrying capacity (K in Equation 6,
Table 3). Amanda defined K as “how many individ-
uals the environment can support” and said that the

entire term rmaxð1 − N
KÞ is called “the realized growth

rate” (Sci-Label) when resources are limited for the
population. Amanda went on to explain the pattern
among carrying capacity (K), initial population size
(N), and the realized growth rate. She said, “realized

Table 3 Mathematical equations used by instructors

Equation label Equation Amanda John Miguel Dory

Equation 1 R0 = ∑ lxmx ✓

Equation 2 g = ∑ xlxmx/R0 ✓

Equation 3 λ = R0
1/g ✓

Equation 4 Nt = N0λt ✓

Equation 5 dN=dt ¼ rN ✓ ✓

Equation 6 dN
dt ¼ NrmaxðK − N

K Þ ✓ ✓

Equation 7 Nt = N02
n ✓ ✓

Equation 8 n ¼ 3:3 logðNt
.
N0

Þ ✓

Equation 9 g = t/n ✓

Equation 10 k = n/t ✓
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growth rate is going to go down depending on how
close the population is to K” (Sci-Pattern).
After her presentation of Equation 6, Amanda spent

17 min implementing an activity, presenting students
with three plots for different forms of Equation 6.
Amanda asked students to identify where on the plots
the population growth rate is zero, positive, and negative
based on the labels on the x-axis and y-axis. After stu-
dents worked in groups, Amanda asked students to
share their answers and checked students’ answers in
the whole class discussion, focusing students’ attention
on the names of each variable in the equations shown
on the axes (Sci-Label) and the quantitative relationship
between the variables on the x-axis and y-axis as shown
in the equations (Math-Relation). Amanda closed the
lesson on population growth by reviewing the names of
the parameters, λ (finite rate of increase), and R0

(reproduction rate), and two of the variables located in
Eqs. 6 and 5, Rmax (intrinsic rate of increase) and r (per
capita growth rate) (Sci-Label).

Sensemaking opportunities presented in Amanda’s lesson
Amanda introduced her students to six equations in the
span of 97 min. For the first three equations, she began
with defining variables (Sci-Label) or describing the
parameters (Sci-Description) and then demonstrated
how to use these equations step by step (Math-Proced-
ure). Amanda reinforced her focus on Math-Procedure
sensemaking, directing students to complete the tasks
for the weekly project by following her step-by-step in-
structions. The importance of Sci-Label sensemaking

during this lesson was made explicit when Amanda, at
the end of the first class, stated that she expected stu-
dents to know the terms in the equations.
Amanda focused on Sci-Label and Sci-Description

when teaching Eqs. 4 and 5. During instruction of Equa-
tion 6, opportunities for Sci-Pattern and Math-Relation
sensemaking were provided. Amanda first presented a
description of changes in population growth as they
relate to changes of population size with respect to
carrying capacity. This portion of the lesson provided an
opportunity for Sci-Pattern sensemaking because the
presentation focused on describing the qualitative rela-
tionship between aspects of the biological phenomenon
represented as variables in the mathematical equation.
Using the same equation, Amanda engaged students in
making sense of the abstract mathematical relationship
between the variables (Math-Relation) by having them
examine graphs and describe how the magnitude of the
variables varied with respect to one another independ-
ently of the biological phenomenon. At the end of the
instruction of equations, Amanda reinforced Sci-Label.
In general, Amanda’s instruction of mathematical

equations often started in the science sensemaking di-
mension, then moved to the mathematics sensemaking
space and ended in the science space (i.e., Sci-Label to
Math-Procedure for Eqs. 1–3, and Sci-Pattern to Math-
Relation for Equation 6). Science sensemaking was sepa-
rated from the sensemaking of mathematics.

The description of John’s instruction
John’s instruction of the equations on population
growth totaled 15 min. John started the instruction of

Fig. 1 Slide presented during Amanda’s instruction. The data table of the snake population and the equation for calculating R0 on a slide
presented during instruction
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mathematical equations on population growth by say-
ing, “Related to the [population] density is this idea
of growth rate, which is really what we're going to be
talking about.” John used the growth of a fish popula-
tion as an example for the exponential growth of
populations, then he used an analogy from a non-
scientific context, an interest-bearing bank account to
focus on the mathematical relationship in exponential
growth (Math-Relation). He said, “you put money
into a savings account then you expect that to grow.
Given some parameters about how much money you
got, your principal, and the interest rate, you can pre-
dict over time how that money is going to grow.”
John presented a slide which showed the step-by-step
procedures for calculating the increase in money be-
tween years. Using this slide, he explained the math-
ematical relationship among these variables with a
step-by-step calculation (Math-Relation/Math-
Procedure),

So, what that means is if you put a thousand dollars
into that account, 5% rate means, on average each
one of those thousand dollars is contributing a
nickel to the growth of that, of your money. Right.
That's what that interest rate means. So, after one
year, you can predict how much money you're going
to have. You're going to have a thousand fifty dol-
lars. So, your money is growing. Let that money sit
more. What you see is at year 2, you start with a
thousand fifty dollars. That’s how much you have in
the year 1. You let it sit there. It continues to grow.
And so, between year 1 and year 2, you add fifty-
two dollars and fifty cents. How much do you add
the first year? Fifty. Right? And so, we do this for
another year. What we see is between year 2 and
year 3, you add fifty-five dollars and twelve cents.

John then related the quantitative relationship
among the principal and interest rate and the yearly
growth of money to the mathematical relationship in
the population growth phenomenon and stated,
“money growing is really no different than population
growth that we start out with a starting population
size analogous to our principal and it's going to grow
because each individual on average can contribute
some average amount to that” (Math-Relation). After
addressing the similarity in the mathematical relation-
ship of exponential growth between money growing
and population growth, John introduced Equation 5
with an emphasis on the ever-increasing rate of popu-
lation growth. He provided definitions for the vari-
ables in Equation 5, “the N is their population size
and the r value is the intrinsic rate for the popula-
tion” (Sci-Label).

After John presented an explanation of the biological
factors that can limit population growth without refer-
ring to equations, he introduced the logistic population
growth equation (Equation 6, Table 3). He defined the
variable K as carrying capacity, “the equilibrium popula-
tion size for a habitat” and labeled K − N

K as “the dampen-
ing term” (Sci-Label). He then described the numerical
relationships among mathematical variables in this term,
stating that if “N is small relative to the K, this entire
term becomes a big number minus a small number di-
vided by a big number” (Math-Relation). Next, he situ-
ated the equation in the biological phenomenon of
population growth, presenting the relationship among
the biological meaning of these variables, “which says
populations are essentially going to grow exponentially
with population size that are far away from the carrying
capacity” (Sci-Pattern). John followed up by presenting
the patterns for when the population size is close to K,
first introducing the mathematical relationship among
the variables (Math-Relation) and then situating the re-
lationship in the biological phenomenon of population
growth (Sci-Pattern).
At the end of the lesson on population growth, John

directed students to begin working on their weekly pro-
ject which presented Eqs. 1, 2, and 4 that were not dis-
cussed in class.

Sensemaking opportunities presented in John’s lesson
John presented two equations (Eqs. 5 and 6) during
the 15-min lecture. During the analogy of exponential
growth in a non-biological context, John used Math-
Procedure by presenting a step-by-step procedure for
calculating the growth in principal to support Math-
Relation sensemaking in the context of money
growth. He reinforced the mathematical relationships
between principal, interest rate and the increase in
money, Math-Relation. After establishing the math-
ematical procedures and presenting the similarity of
the relationship in money growth to the relationship
in population growth represented by Equation 5, John
provided biological definitions for each variable in
Equation 5, Sci-Label.
During instruction of Equation 6, John began with Sci-

Label, naming the variables and terms. He continued by
creating sensemaking opportunities of Math-Relation
closely followed by Sci-Pattern. Because the initial focus
is on the quantitative relationship between variables in
the mathematical equation without referring to the bio-
logical context, the first sensemaking opportunity is con-
sidered Math-Relation. Having established the relevant
mathematical relationship, John described the qualitative
relationship between the biological phenomena repre-
sented in the equation, Sci-Pattern.
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John’s instructional pattern changed with each of
the equations included during the class. With
Equation 5, he started in the mathematics sensemak-
ing space, then moved to and ended in the science
sensemaking space (Math-Relation and Math-Proced-
ure to Sci-Label). Whereas with Equation 6, he
started in the science sensemaking space, moved to
mathematics sensemaking space, and ended in the
science sensemaking space (Sci-Label to Math-Rela-
tion to Sci-Pattern). Math-Relation and Math-Pro-
cedure occurred simultaneously in the mathematics
sensemaking space, while science sensemaking was
always separated from the sensemaking of
mathematics.

The description of Miguel’s instruction
Miguel spent 43 min teaching equations on population
growth. He started his instruction of population growth
in bacteria by directing students to work on a “thought
exercise” (Fig. 2) which asked students to draw a picture
of population growth and then represent that growth
mathematically. Students worked by themselves first,
and then worked in small groups.
After 6 min of group work, Miguel interrupted to pose

questions to the entire class, focusing their attention on
the relationship between the number of progeny and the
number of generations by stating,

So now, class, look at the numbers that you put
there. How is that number of cells related to the
generation that you're looking at? So, look, how
many cells are in the first generation? How

many cells are in the second generation? How
many cells in the fourth generation? (Math-
Relation)

After students worked for four additional minutes,
Miguel had each group write the equations they had
developed on their whiteboards and started his presenta-
tion to the whole class. Miguel drew the number of cells
after multiple cell divisions and explained his drawing.
On the drawing, he labeled the number of generations
and highlighted the relationship between the number of
cells and the number of generations by stating,

OK, we have one cell. That cell is going to divide
and have two progeny (Sci-Mechanism). Of course,
this cell is going to divide and also have two pro-
geny as well as this one [Miguel continues drawing
cells and progeny]….Which gives us the numbers
that you came up. Before there was any division,
there was only one cell. After the first generation,
now there are two cells. After the second gener-
ation, now we have four cells. Eight cells after the
third and 16 cells after the fourth. So put the gener-
ation here. Generation 2 to the 1, as you guys con-
cluded very nicely. 2 to the 2, 2 to the 3, 2 to the 4.
That is the sequential relationship (Math-Relation).

Based on the quantitative relationship, Miguel pre-
sented the mathematical expression that he expected
students to come up with, “2 to the n” (Equation 7,
Table 3). He asked the whole class after presenting the
equation, “the cells will be two to the n where n is the

Fig. 2 Slide presented in Miguel’s instruction. Directions for building mathematical equation of the population growth of bacteria presented on a
slide during instruction
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number of generations or cell divisions. (Sci-Label)
Right? OK. Now, I have a quick question for you. Do we
always start with one cell? How would you accommo-
date now if you don't start with one cell? (Sci-Pattern)
What would you do?” Miguel followed up on a student’s
answer by saying, “Everybody heard Emily? Then you
will know. Multiply it by the number of cells that you
had at the beginning.” (Math-Structure) Miguel added
the variable N0, resulting in the canonical equation, Nt =
N02

n, which he defined as “the number of cells at time T
is going to be equal to the number of cells initially N0

times two to the n, where little n is the number of gener-
ations” (Sci-Label).
Miguel switched to calculations using this canonical

equation by asking the whole class how the equation
could be manipulated to solve for n. He said, “That’s an
equation that you guys came up with. We have an expo-
nent. You remember what needs to happen if you want
to calculate little n when you have a number to the n
power, what will you need to do?” After one student
volunteered the answer, Miguel showed the class the
steps of manipulating the canonical equation of popula-
tion growth of bacteria to get the equation for calculat-
ing the number of generations (Math-Procedure,
Equation 8, Table 3). He brought up some mathematical
rules when presenting the procedures of manipulating
the equation. For example, he said, “From any kind of
addition, you can move this value of logN0 to the other
side by subtracting it” (Math-Rule).
After presenting the equation for calculating the num-

ber of generations, Miguel asked students to solve an ap-
plication question, calculating the final population size
for bacteria (Application question 1, Table 4). After stu-
dents briefly worked in groups, Miguel asked the stu-
dents to share their answers, and confirmed with
students the correct answer. Miguel concluded with his
expectation for students to plug numbers into the equa-
tion, saying “All right, everybody gets the same number.
Good job! So, you know, you're getting used to getting
into the equation, how to plug the numbers in and use
it” (Math-Procedure).
Before moving on to application question 2, Miguel

introduced a new population growth parameter, gener-
ation time, described by Equation 9 (Table 3) (Sci-De-
scription) and then asked students to solve application
question 2. Application question 2 (Table 4) asked

students to calculate the final population size for
bacteria that had different generation times. Students
worked in small groups to solve application question 2.
After students had worked on application question 2

in small groups for 9 min, Miguel moved on to present a
new variable described as “How many generations can
we get in an amount of time” (Equation 10, Table 3, Sci-
Description). He presented this variable by focusing on
the structure of the equation by stating “It's the inverse
of the generation time. Generation time is the time
divided by the number of generations. The specific
growth rate (k) is the opposite, the number of genera-
tions divided by a particular unit of time” (Math-Struc-
ture). Then he presented the steps of calculating the
growth rate, stating,

So, you can calculate this easily because you know
that you have one generation. One generation hap-
pens in how much time? [One student answered]
Six hours since the growth rate is the number of the
time divided by the number of generations. That is
six divided by one, which is six. (Math-Procedure)

Miguel ended the class after he directed students to
calculate the growth rate (k) for application question 3
(Table 4).

Sensemaking opportunities presented in Miguel’s lesson
Miguel introduced four equations (Equations 7–10)
during the 43 min of class on population growth.
Miguel began with a focus on Math-Relation by
engaging students in developing an equation to show
the relationship among numbers of cells for different
numbers of generations. During his presentation to
the whole class after students finished their work,
Miguel introduced the mechanism of cell division to
explain how the mathematical relationships were gen-
erated (Sci-Mechanism/Math-Relation). A suggestion
that modifying the initial starting number of cells
might lead to changes briefly touched on Sci-Pattern
which led to the incorporation of this variable into
the equation using multiplication (Math-Structure).
To wrap up this portion of the lesson, Miguel
shifted to Sci-Label sensemaking when he presented
the canonical form of the equation and defined the
variables.

Table 4 The application questions presented to students during Miguel’s instruction

ID Content

1 You made jam with 0.5 lb of blueberries. These berries were contaminated with 500 endospores of Clostridium botulinum. After 100 cell
divisions, how many bacteria would you have in your jam?

2 Suppose 1000 bacteria are inoculated in a tube containing a minimal salts medium, where they double once an hour, and 10 bacteria are
inoculated into a rich medium, where they double every 20 min. Which tube will have more bacteria after 2 h? After 4 h?

3 For Application question 2, determine and compare the specific growth rate (k) for these two cultures.
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In showing students how to transform Equation 7 into
Equation 8, Miguel focused on the steps for manipulat-
ing the equation including explicit discussion of relevant
mathematical rules, thus providing opportunities for
Math-Rule to support Math-Procedure. With Equations
9 and 10, Miguel explicitly stated that these were factors
or parameters that affect population growth and that
they were calculated using an equation (Sci-Description).
When introducing Equation 10, Miguel provided oppor-
tunities for Math-Structure and Math-Procedure when
he noted that the structure of Equations 9 and 10 were
the inverse of each other and demonstrated the steps for
calculation using Equation 10.
The majority of Miguel’s instruction was spent in the

mathematical sensemaking space (Math-Relation, Math-
Rule, Math-Procedure). During the first portion of the
lesson, science sensemaking and mathematical sense-
making co-occurred (Sci-Mechanism/Math-Relation),
and Math-Rule co-occurred with Math-Procedure in the
same mathematics sensemaking space, but during the
second half of the lesson, science sensemaking and
mathematical sensemaking were separated.

The description of Dory’s instruction
Dory’s instruction of mathematical equations in popula-
tion growth lasted for 111 min, with 35 min of instruc-
tion for the first part of the lesson, and 76 min for the
second part of the lesson. Dory started with an equation
building activity where students were asked to represent
mathematically how a bacteria colony forms from a
single bacterium (Fig. 3). Students worked individually
for 3 min, then Dory directed them to work in pairs by
saying,

Go ahead and put [your initial ideas] on the chart
paper. If you’re using symbols or numbers, say what
the symbols or numbers mean (Sci-Label). For ex-
ample, X is just X, but if the X means how often the
bacteria divide, we need to know that, or how many
bacteria are produced. Because X’s and Y’s don’t
help us if they don’t communicate that…And I’m
asking you to do both a picture, a math expression,
and a verbal description. And put your names on it,
and we’re going to post them up and share them.

While students discussed with their partner and drew
on their chart paper, Dory moved around to interact
with different groups.
After 15 min, Dory guided students to put the chart

paper on the wall and students took turns presenting
their work. Dory asked students to present their equa-
tion and to explain the meaning of the symbols or num-
bers they had in their equation (Sci-Label). During the
group discussion after each group’s presentation, Dory
posed questions on how their equations connected to
the biology of the phenomenon of population growth,
and she encouraged the other students to ask questions.
For example, after one group presented their equation
and the meaning of each variable in their equation, Dory
asked them to explain the difference in their equation
compared to the equation presented earlier, =2x.
Students explained to the whole class that they used
x=n as the exponent rather than x (Math-Structure) be-
cause they tried to represent how long an individual cell
takes to divide by using n (Sci-Mechanism). A student
brought up the idea of how to account in the equation
for different factors that might affect cell division (Sci-
Mechanism) and the class discussed how this would

Fig. 3 Dory’s instructions for building a mathematical equation on the worksheet provided to students
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affect the x=n term (Math-Structure). Dory affirmed that
“there are things that just basically stop [cells] divi-
ding...So I think [this equation] does allow you to do that
because if the n was really long, really large, then you,
basically, would not get to this” (Sci-Mechanism, Math-
Structure).
The last group that presented included a variable repre-

senting the initial number of bacteria (equivalent to N0 in
Equation 7). The presenters explained their rationale for
including this variable and a multiplication function
(Math-Structure) by connecting to the biological idea that
the population does not always start at one and providing
a biological pattern which would necessitate multiplica-
tion (Sci-Pattern). Dory affirmed the students’ ideas and
shared additional scenarios when the initial population
size needs to be included. She prompted students to con-
sider the effect of those changes on the predicted popula-
tion size (Sci-Pattern) and connected to the variable under
discussion by saying “So, x in this case is the number of
bacteria that you start your culture with” (Sci-Label).
After all groups had presented, Dory started writing

on her chart paper (Fig. 4) and said, “So we are going to
put together maybe an amalgamation of equations.” She

wrote the equation as number of bacteria ¼ N0 � 2
t
�
F ,

and labeled each variable by stating, “t equals time
elapsed, and F equals the time for binary fission to
occur. But sometimes we call that generation time” (Sci-

Label). Based on this equation, she asked students “Why
is that two there? What does it mean?” After a student
volunteered that it was a constant, Dory prompted, “It’s
a constant, but it’s a two. Why is it two and not four?”
Dory confirmed the next student’s response, “Yeah. It’s
the number of bacteria produced by each bacterium”
(Sci-Mechanism).
Dory started the second part of the lesson by stating

that she had heard students say that the equation they
had developed was not a good representation of the
population growth in a different condition, where two
types of bacteria grew in the same space. She asked stu-
dents to modify their equation to fit the new condition.
Students worked independently for 2 min and then in
pairs for 37 min, writing their new equations on poster
paper. After the small group work, Dory asked students
to look at other groups’ posters and to share their post-
ers as they did previously. During the whole class discus-
sions, multiple ideas surfaced about the connections of
the equation to the biological phenomenon of popula-
tion growth and how the mathematical structure could
be used to depict ideas and observations about the
phenomenon. For example, one group presented their
equation and explained that they noticed a pattern in
the data that Smooth bacteria grew slower than the
Wrinkly bacteria (Sci-Pattern) and that they used multi-
plication (Math-Structure) to represent this pattern. The
whole class discussed which bacteria grew faster (Sci-
Pattern) and how to match the multiplication (Math-
Structure) correctly to the pattern. Dory summarized
students’ conversations about using the mathematical
structure of multiplication to indicate that it took the
Smooth bacteria a longer time to reproduce than the
Wrinkly bacteria. “Yes. You’re saying that it takes a
longer amount of time for the Smooth to reproduce, and
therefore you have to multiply it by two, compared to
the Wrinkly to indicate that” (Sci-Pattern and Math-
Structure). In another example, the student group pre-
sented the difference in growth rates of these types of
bacteria by adding a subtraction. Guided by Dory’s ques-
tions, such as “what are you proposing biologically hap-
pens when you do a subtraction” (Math-Structure), this
group explained that during population growth, Smooth
and Wrinkly bacteria competed for resources, and
Smooth bacteria were being killed by the Wrinkly as
Wrinkly were better (Sci-Mechanism), thus a subtraction
was used to better represent the population growth
phenomenon (Math-Structure).
Dory also pointed out to the whole class that

equations had boundaries and limitations (Math-Con-
cept). After one group presented their equation that con-
sidered the time when the Wrinkly Spreader started
reproduction and the idea of carrying capacity, Dory
stated, “You actually put some boundaries on this

Fig. 4 Artifact from Dory’s instruction. The equation presented to
students at the end of the activity on building a mathematical
equation for growth of a single type of bacteria in the shaken
culture (Note: Dory changed the exponent x to t to make the
connection to the biological phenomenon more explicit)
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equation…T can’t be less than 12, otherwise we get a
negative time”, and “the other limitation you put it on,
this only applies in certain circumstances. Good. It’s nice
to have limitations on equations” (Math-Concept). Dory
wrapped up this activity by pointing to students that
there was not a right equation and the choice of which
equation to use depended on “the ideas you’re trying to
express”.

Sensemaking opportunities presented in Dory’s lessons
Dory engaged students in building two equations to rep-
resent population growth in 111 min. Both parts of the
lesson followed the same format, students worked on
building equations in small groups writing their ideas on
poster paper. Then students presented their equation to
the class.
During the presentation of equation ideas in the first

whole class discussion, Dory consistently asked students
to explain how the variables or the mathematical opera-
tions in their equation were connected to aspects of the
biological phenomenon. In response to these prompts,
students discussed how structural aspects of the equa-
tion such as including a divisor in the exponent or using
multiplication (Math-Structure) related to the biological
mechanism of cell division that causes population
growth (Sci-Mechanism). At the end of the discussion,
Dory synthesized students’ ideas into a single equation
and labeled the variables (Sci-Label). She paused at one
point in the labeling to ask students to relate the con-
stant in the equation to the biological mechanism of cell
division (Sci-Mechanism).
During the second part of the lesson, the focus in the

discussion was on using equations to describe the differ-
ences in population growth in two kinds of bacteria.
During this discussion, ideas about patterns of growth
(Wrinkly bacteria grew slower than Smooth bacteria)
(Sci-Pattern) surfaced along with biological mechanisms
to explain this difference in growth (Sci-Mechanism).
Students described how these ideas were represented in
their equation by functions such as multiplication or
subtraction (Math-Structure). The first set of presenters
spontaneously explained how the pattern of growth was
described by multiplication in their equation. Dory
prompted the second set of presenters to explain how
subtraction was used to indicate that one bacteria type
grew slower than another, eliciting a description of how
subtraction represented the biological mechanism of
competition. During this discussion, in Dory’s summar-
ies of students’ comments, she drew attention to how
the choice of mathematical functions connected to stu-
dents’ ideas about the biological phenomenon, connect-
ing Math-Structure with Sci-Pattern or Sci-Mechanism.
Toward the end of the discussion, Dory highlighted the

Math-Concept of limits of equations that one student
group had depicted on their poster.
Dory’s lesson started with providing the Sci-Label

space for all students. Dory engaged students in using
science sensemaking (Sci-Pattern or Sci-Mechanism) to
support their Math-Structure during the sharing of ideas
in whole class discussions. Dory often wrapped up each
group’s presentation and discussion with summary state-
ments that integrated the mathematical sensemaking
and science sensemaking spaces.

Discussion
A cross-case analysis revealed that the instructors all
covered mathematical equations that represented aspects
of the same biological phenomenon, population growth.
However, the sensemaking opportunities that were pro-
vided with respect to these equations differed from
instructor to instructor (Table 5) even though all were
teaching the same biological phenomenon. The
organization of the types of sensemaking also varied in
interesting ways. After a brief description of the different
types of sensemaking presented by different instructors,
the organization of sensemaking opportunities will be
discussed in greater depth.

The types of sensemaking provided by the four
instructors differ
All instructors provide opportunities for multiple
types of sensemaking of equations in the lessons
(Table 5). Even though all instructors are teaching
equations associated with population growth, there
are differences in the number of types of sensemak-
ing and what sensemaking opportunities instructors
chose to provide in their classes. Amanda and John
provide the same subset of sensemaking opportun-
ities with the exception that Amanda also includes
Sci-Description. Dory’s instruction is the most differ-
ent from the others, with Sci-Mechanism, Math-
Structure, and Math-Concept present in Dory’s class
but not in Amanda or John’s. The Math-Procedure
sensemaking that is present in Amanda and John’s
class is absent from Dory’s class. Miguel is a com-
bination of these two types of instructional ap-
proaches, with eight types of sensemaking that are
present in the other three instructors’ classes. The
one type of sensemaking that is missing is Math-
Concept, and Miguel is the only one that has Math-
Rule. Describing the types of sensemaking included
in a lesson has the potential to make instructors
aware of what is included and what is excluded so
that they can determine if the instructional oppor-
tunities provided for sensemaking match their learn-
ing objectives for students.
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By providing opportunities for multiple types of sense-
making, instructors expose students to different re-
sources that students can use to develop their
understanding of equations and the scientific
phenomenon. However, it may be possible to try to
include too much in a single lesson leading to super-
ficial coverage of some types of sensemaking and im-
peding development of in-depth understanding.
Miguel who covers eight types of sensemaking only

touches on Sci-Mechanism briefly, while Dory returns
to this type of sensemaking repeatedly through the
lesson. It is likely that a balance is needed between
in-depth coverage and presentation of multiple types
of sensemaking. Future studies are needed to
characterize the affordances and constraints for stu-
dents’ sensemaking and problem solving of these two
approaches to covering types of sensemaking of math-
ematical equations in science instruction.

Table 5 Sensemaking opportunities during four instructors’ lessons on equations in population growth

Sensemaking dimension Sensemaking category Amanda John Miguel Dory

Science sensemaking Sci-Label ✓ ✓ ✓ ✓

Sci-Description ✓ ✓

Sci-Pattern ✓ ✓ ✓ ✓

Sci-Mechanism ✓ ✓

Mathematics sensemaking Math-Procedure ✓ ✓ ✓

Math-Rule ✓

Math-Structure ✓ ✓

Math-Relation ✓ ✓ ✓

Math-Concept ✓

Fig. 5 The organization of sensemaking opportunities identified during each instructor’s lesson on equations about population growth. The types
of sensemaking opportunities are presented in sequential order. Mathematics sensemaking is placed in a white box, and science sensemaking is
placed in a gray box. Sensemaking opportunities that co-occurred are placed in a single box. A gradient background indicates a co-occurrence of
sensemaking from both mathematics and science dimensions. Each sensemaking type corresponds to a single activity except where a dotted
box indicates that different types of sensemaking opportunities occur in the same activity. E = Equation. Amanda has several periods of
sensemaking that are not associated with a specific equation. During these times she was summarizing the lesson, either as students transitioned
to a new activity or to wrap up the class. Instructional time is not represented in the figure
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Sensemaking opportunities were organized differently
Instructors presented the types of sensemaking oppor-
tunities in different sequences (Fig. 5). For example, John
and Miguel started with sensemaking in the mathemat-
ics dimension and then moved on to sensemaking in the
science dimension while Amanda and Dory started with
sensemaking in the science dimension and progressed to
sensemaking in the mathematics dimension. One of the
key differences between instructors was whether differ-
ent types of sensemaking occurred within the same
activity and whether or not those different types of sen-
semaking were used to support one another. (An activity
is defined as a classroom-based episode whose purpose
is to focus students’ attention on a particular equation,
scientific or mathematical idea, or a practice.) These dif-
ferences in the organization of sensemaking have impli-
cations for whether or not students were provided with
the opportunity to engage in blended sensemaking syn-
ergistically to achieve a novel outcome (Fauconnier &
Turner, 1998). Three types of co-occurrence of sense-
making within the same activity were observed, Blended
(which has been described by other researchers during
student problem-solving) (Bain et al., 2018; Bing &
Redish, 2007; Kuo et al., 2013), and two novel types, co-
ordinated and adjacent. These three different ways of or-
ganizing sensemaking during instruction and potential
implications for students’ sensemaking will be described
in more detail below.

Blended sensemaking
Blended sensemaking has been used to analyze students’
problem-solving process (Bain et al., 2018; Bing &
Redish, 2007, 2008; Eichenlaub & Redish, 2019; Kuo
et al., 2013). This study provides evidence for blended
sensemaking during instruction. Miguel and Dory both
have instances where science sensemaking and mathem-
atics sensemaking co-occur (gradient boxes in Fig. 5).
Moreover, in these instances, one type of sensemaking is
used to support or explain the other type of sensemak-
ing. This is the blended sensemaking that Bain et al.
(2018) refer to as high-quality sensemaking in students’
problem solving. For example, Dory uses mathematics
sensemaking of the equation to support science sense-
making of the equation as she prompts students to rea-
son about how the mathematical structures depict the
scientific ideas. Miguel also has students engage in
blended sensemaking when he references the scientific
mechanism for population growth (cell division) to
explain the mathematical exponent function in the
equation.
While Dory spends a considerable portion of the

whole-class discussion on blended sensemaking,
Miguel’s references to blended sensemaking tend to be
brief, occupying no more than a few minutes. By

providing blended sensemaking opportunities to stu-
dents, these instructors gave students the opportunity to
grapple with connections between the mathematical
equation and the scientific aspects of the biological
phenomenon. Thus, students were given the opportunity
to move beyond the idea of mathematics and science as
fragmented and disconnected disciplines (Li & Schoen-
feld, 2019). Students’ struggles with solving quantitative
problems in science has been attributed to students iso-
lating their scientific knowledge from the calculation
process (Eichenlaub & Redish, 2019). The few students
who spontaneously engage in blended sensemaking dur-
ing quantitative problem-solving experience greater suc-
cess (Bain et al., 2018; Eichenlaub & Redish, 2019; Kuo
et al., 2013; Schuchardt, 2016). Providing explicit con-
nections between mathematics and science sensemaking
during instruction may allow more students to develop
blended sensemaking and thus have improved facility
with solving novel and more complex problems (Schu-
chardt, 2016; Schuchardt & Schunn, 2016).

Coordinated sensemaking
Sensemaking from the same dimension co-occurs in
John, Miguel, and Dory’s lessons (Fig. 5). Because the
sensemaking involves coordination of two types of sen-
semaking within the same dimension, we refer to this as
“coordinated sensemaking.” In Miguel’s lesson, two types
of mathematical sensemaking (Math-Procedure and
Math-Rule) co-occur and one is used to support the
other one. Miguel cues the mathematical rules to explain
the steps of manipulating the equation. John presents
steps of calculation (Math-Procedure) to support the un-
derstanding of the mathematical relationship of expo-
nential growth (Math-Relation). In contrast to John and
Miguel, Dory provided an opportunity for coordinating
two types of sensemaking within the science dimension.
She asked students to consider the changes in popula-
tion growth that would results from changing the initial
population size (Sci-Pattern) and based on their answers
suggested that in the equation, a specific variable would
be the initial population size (Sci-Label). This coordi-
nated sensemaking within the science dimension may
serve to make the labels of the variables more meaning-
ful for students, and thus more memorable. Coordinated
sensemaking differs from the blended sensemaking that
has been described in the literature of making sense of
equations because connections between types of sense-
making is occuring within one dimension (mathematics
or science) instead of across two dimensions (e.g., Bain
et al., 2018; Bing & Redish, 2007).
Coordinated sensemaking shares similarities with the

definitions of sensemaking in mathematics which focus
on generating coherence within the discipline (Li &
Schoenfeld, 2019). Instruction that connects different
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aspects of mathematical ideas can develop students’
mathematical thinking, and foster students’ beliefs that
mathematical ideas are coherent and connected (Li &
Schoenfeld, 2019). Future research needs to be done to
determine if coordinated sensemaking within the math-
ematics dimension supports students’ understanding of
the mathematics behind an equation and whether that
impacts problem-solving. Providing opportunities for
students to make connections between types of sense-
making within the science dimension may help students
generate a better conceptual understanding of the bio-
logical phenomenon. This pattern of organization of
sensemaking has not been identified until now. There-
fore, studies exploring the effect of providing coordi-
nated versus blended sensemaking during instruction
have not yet been performed, even with curriculum that
might prompt instructors to include both types of sense-
making opportunities (Schuchardt & Schunn, 2016).

Adjacent sensemaking
All instructors, except Dory, have instructional episodes
where different types of sensemaking, either within the
same dimension or across dimensions, are presented se-
quentially within the same activity but are not explicitly
connected to one another. We are labeling these in-
stances as “adjacent sensemaking.” One example of adja-
cent sensemaking across dimensions occurs when
Amanda and Miguel both connect the variables in the
equations to quantifiable characteristics in the scientific
phenomenon (Sci-Label), and then immediately show
the steps of how to solve the equations to calculate an
answer (Math-Procedure). However, the Sci-Label is not
used to explain or support the way the mathematical
procedures are performed. This type of instruction
seems to capture an often-described process for instruc-
tion of equations in science which focuses on learning
the terminology and doing calculations (Hansson, Hans-
son, Juter, & Redfors, 2015). In another example, John
presents the mathematical relationships between vari-
ables in a mathematical equation (Math-Relation), then
situates the equation in biology and explains how one
factor represented by the equation, carrying capacity, af-
fects population growth (Sci-Pattern). He does not dis-
cuss, or provide opportunities for students to discuss,
how the pattern in population growth is related to the
quantitative relationship as represented by the equation.
It is important to distinguish adjacent sensemaking

from blended sensemaking. The proximity of mathemat-
ical and science sensemaking within a lesson using adja-
cent sensemaking gives students the opportunity to
independently make connections across the dimensions.
However, because the connection is not made explicit,
many students might not engage in blending across the
mathematics and science sensemaking dimensions. In

STEM education, teaching disciplines side-by-side within
the same course is sometimes labeled (incorrectly) as in-
tegrated STEM. One example is when mathematics is
used as a tool to perform a calculation after learning
about the scientific phenomenon (Schuchardt, 2016).
We would label this type of STEM instruction as adja-
cent sensemaking to distinguish it from blended sense-
making which features the use of one discipline to
support or explain the other in an integrated manner.
Failing to make this distinction may cause instructors to
inaccurately assess the opportunities they are providing
for students to develop an integrated, or blended, under-
standing of the mathematics and science. If future re-
search reveals that adjacent sensemaking occurs more
commonly than blended sensemaking in instruction of
equations in science classes, this may explain why very
few students use blended sensemaking when solving
problems (Bain et al., 2018; Bing & Redish, 2009).

Limitations and future directions
The intent of this study is to determine whether the
types of sensemaking opportunities and the ways in
which they are organized differ when instructors are
teaching mathematical equations in the same biological
phenomenon. Therefore, students’ sensemaking was not
characterized. The finding that the types of sensemaking
and the ways in which they are organized in instruction
differs between instructors supports the need for future
studies on the effect of these differences on student sen-
semaking. The characterization of three different ways of
organizing sensemaking during instruction permits
informed design of future observational and quasi-
experimental studies on the impact of instruction on
student sensemaking.
We note that the pedagogical strategies chosen by the

four instructors do differ. The different pedagogical
strategies used by the instructors were not discussed
because the focus of this paper was on identifying sense-
making opportunities during instruction, Future analyses
with a larger sample of teachers will examine these strat-
egies and the co-occurrence with sensemaking to deter-
mine if different pedagogical strategies are associated
with the availability of different sensemaking opportun-
ities for students.

Conclusions
By showing that instances of sensemaking can be identi-
fied using the Sci-Math Sensemaking Framework and by
providing new ways of describing the organization of
sensemaking opportunities, this study offers a new and
valuable way to explore the nuances of sensemaking in
enacted lessons of equations in science. In this study,
four instructors provide different types of sensemaking
opportunities in their classes even when teaching
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equations related to the same biological phenomenon.
By emphasizing different sensemaking aspects of the
equations, instructors make available different resources
to students that have the potential to affect students’
science and mathematics knowledge. This study also
identifies different ways instructors organize the differ-
ent sensemaking opportunities, as distinct events con-
tained within separate activities or as co-occurring
events within the same activity. In addition to the previ-
ously described blended sensemaking (Bain et al., 2018;
Bing & Redish, 2007), this study identified two other
types of co-occurrence of sensemaking, adjacent and
coordinated. Coordinated and blended sensemaking
makes explicit connections between two types of sense-
making where one type of sensemaking is used to sup-
port or explain another type of sensemaking. However,
adjacent sensemaking events are not explicitly con-
nected. Explicitly addressing the links between different
type of knowledge embodied in equations makes these
connections available to all students. Based on prior
work, the ability to move back and forth between con-
nected sensemaking resources has the potential to
improve students’ ability to solve more complex and
novel quantitative problems in science (Eichenlaub &
Redish, 2019; Kuo et al., 2013; Schuchardt & Schunn,
2016). These findings can be used to inform future re-
search on the effect on students’ quantitative problem-
solving of instruction that presents adjacent, coordi-
nated, and blended sensemaking.

Abbreviation
STEM: Science, Technology, Engineering and Mathematics
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