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Abstract

Rate of change concepts from calculus are presented and applied rather differently in college mathematics, physics,
biology, and chemistry classes. This is not simply a matter of pedagogical style but reflects real cultural differences
between these disciplines. We describe the efforts of our interdisciplinary collaboration to understand and reconcile
these differences as we designed and discussed instructional videos for students. We summarize our conversations
about terminology, notation, functions, rates, units, and sign conventions across the disciplines. We present some
strategies that enabled us to communicate effectively, resolve confusions, and reach shared understandings. Our
work has implications for others involved in collaborative interdisciplinary projects and for STEM educators.

In theory, there’s no difference between theory and practice. But in practice, there is.
– Benjamin Brewster. Also attributed to Yogi Berra.

Keywords: Interdisciplinarity, STEM education, Rate of change, Communication, Scientific collaboration

Introduction
In this paper, we describe the discussions of our inter-
disciplinary group of scientists and mathematicians dur-
ing a multi-year curriculum project collaboration. Our
goal is to highlight subtle differences between concepts
that are nominally “the same” across multiple disciplines,
the confusions that both students and experts can en-
counter about them, and the importance of STEM in-
structors being aware of them. Science instructors may
expect that the mathematics their students learn in pre-
requisite math courses will be in a ready-to-use format
adapted to its applications in science, but this may not
be the case. Likewise, mathematics instructors may in-
correctly assume that scientific applications of calculus
will use the same conceptual structures, notation, and

terminology presented in calculus texts. The more
STEM educators know about such disciplinary cultural
differences, the more they can help their students to an-
ticipate confusions and make connections.
Since 2016, the authors have been engaged in an NSF-

funded project to create a series of short instructional
videos for college students of biology, chemistry, math-
ematics, and physics dealing with rate of change con-
cepts from calculus. The videos, each about 7 min in
length, deal with four core concepts (meaning of terms
in differential equations, average versus instantaneous
rate of change, moving among graphical representations,
relationship between rates and accumulation) in the
context of each of the four disciplines. We assume that
students have already seen the topics in their courses, so
the videos do not introduce them from scratch, but ad-
dress important conceptual issues and common miscon-
ceptions across the four subject areas. The treatment of
the examples in each discipline is faithful to that
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discipline, but the cross-cutting nature of the concepts
should also be evident to students. The primary purpose
is to help students connect the mathematics they learn
in their mathematics classes with the same mathematics
as applied in science.
Typically, one member of our team drafts a script (in-

cluding visuals) for a particular video, the entire team
reads it, and a critical discussion ensues. This is followed
by script revision and iteration of the process. When the
entire team is satisfied, filming and animation take place.
A broad range of issues arise in the discussions. The sit-
uations, notation, terminology, and reasoning in the
script should be faithful to the discipline, yet consistent
or at least understandable across disciplines. Explana-
tions should be scientifically accurate yet not so tech-
nical as to obscure the key ideas, and should build on
students’ existing knowledge. Emphasis should be on the
rate of change concepts as they are actually used in each
discipline.

Many design decisions relate to other aspects of peda-
gogy, including affective considerations. For example,
student characters in the videos should be both believ-
able and empowered, not simply confused and deferen-
tially asking authority figures for information. While the
present paper focuses on our discussions of specific
mathematical content, another publication by our team
(Seethaler et al., 2020) synthesizes a wide body of educa-
tional research relevant to informing video development
more generally.
As we engaged in these discussions, we repeatedly

found that each of our disciplines has its own conven-
tions, implicit assumptions, representations, notations,
canonical examples, and terminology. Distinctions that
are considered important in one discipline may not be
emphasized or even recognized in others. Concepts that
are nominally “the same” may appear quite different
across disciplines; we often found ourselves asking each
other, “why would you do it that way?” It was surpris-
ingly challenging for us to reconcile these differences for
ourselves, let alone decide what sort of synthesis to
present to students. Because our own interdisciplinary
communication was more challenging than we expected,
we added to our meetings an explicit focus on under-
standing the viewpoints of other disciplines and critically
assessing our own disciplinary perspectives. We came to
value this aspect of our discussions as much as the end
goal of producing the videos. It broadened our own ap-
preciation and understanding of these issues, suggested
alternate pedagogical approaches, and gave us new re-
spect and empathy for students struggling to connect
what they learn in their mathematics and science classes.
An essential feature of our discussions was our willing-

ness to ask and pursue “elementary” questions without
(too much) embarrassment. Due to our comfort level

with one another, and respect for our colleagues’ discip-
linary expertise, we were able to express confusions
about even basic ideas in one another’s fields and talk
through them until we achieved some common
understanding.
The content of our videos was informed by the exten-

sive literature on the teaching and learning of rate of
change concepts in both mathematics and science edu-
cation. In particular, Thompson and collaborators have
developed a coherent treatment of the measurement and
representation of quantities, the mathematical descrip-
tion of covariation by functions, average and instantan-
eous rates of change as quantities, and the integral
viewed as an accumulation function (Thompson, 1994a;
Thompson, 1994b; Thompson, Byerley, & Hatfield, 2013;
Thompson & Carlson, 2017; Thompson & Silverman,
2008). Bain and coworkers have discussed student think-
ing about rate of change in the context of chemical kin-
etics (Bain & Towns, 2016; Rodriguez, Bain, Towns,
Elmgren, & Ho, 2018). Seethaler, Czworkowski, and
Wynn (2018) have investigated chemistry textbook treat-
ments of rates of change. Jones has explored students’
understanding of derivatives in real-world contexts
(Jones, 2017) and has drawn implications from calculus
education research for chemistry instruction (Jones,
2019). Other useful discussions of rates of change in ap-
plied contexts are Dray, Gire, Kustusch, Manogue, and
Roundy (2019) and Herbert and Pierce (2011).
The limited literature we are aware of about interdis-

ciplinary communication among STEM fields is split be-
tween collaborations having scientific research goals and
those like ours having educational goals. Duncker (2001)
describes a research collaboration between departments
of chemical physics, materials science, philosophy of sci-
ence, organic chemistry, and applied physics with the
goal of producing two specific optical devices. Of rele-
vance to our work, she points out that mathematics can
serve as a communication channel between disparate
scientific fields. A particular equation or formula may
have at least some shared meaning across many disci-
plines, and scientists can set up “dictionaries” relating
the terminologies of their fields around this formula. She
distinguishes a “speaker’s dictionary” from a “listener’s
dictionary” in this regard. Bracken and Oughton (2006)
are outside the canonical STEM disciplines but highlight
the useful concepts of dialect and articulation, which be-
came central to our work: “Dialects represent the differ-
ence between the everyday use of a word and expert use
and the ways in which different disciplines use the same
word to mean different things” (p. 376), whereas articu-
lation “involves deconstructing one’s own disciplinary
knowledge in conjunction with those of other disciplines
in order to understand the building blocks and thereby
reconstruct a common understanding” (pp. 377–378). In
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the realm of educational collaborations, Donaldson, Fel-
zian, Marvin, Cielocha, and Shapiro (2019) developed a
common instructional treatment of energy conservation
across the disciplines of physics, biology, chemistry, and
biochemistry via a shared “Energy Diagram” representa-
tion. They note that they “meet regularly and visit each
other’s classes in order to best integrate our disciplines”
(p. 533). Like our own group, they “discover our own
misconceptions as they apply to other disciplines and
work together to correct them” (p. 533). Redish and
Cooke (2013), a physicist and biologist, respectively, de-
scribe their collaboration focused on developing an
introductory physics course for biology students. For
such a purpose, they observe that physicists and biolo-
gists need to “develop an understanding of the other’s
discipline, not just the content but also the epistemo-
logical style and goals” (p. 185). There are also collabora-
tive efforts between biology and mathematics aimed at
incorporating more biology examples in mathematics
courses and more quantitative reasoning in biology
courses (Marsteller, 2010). Finally, Diaz Eaton et al.
(2019) discuss the various meanings of model and mod-
eling in educational contexts across mathematics, statis-
tics, and biology. They suggest that “if both
mathematicians and biologists appreciate that the same
model given with formulas by the mathematician can be
thought of in terms of graphs, data, or experiences by
the biologist, then it is much easier to achieve a com-
mon understanding that is more nuanced than the indi-
vidual understandings of the members of each
discipline” (p. 803).
The concept of trading zones introduced to science

studies by Galison (2010) describes a shared language
that develops at the interface between scientific fields to
facilitate collaboration between their practitioners on a
joint project. Often this involves a simplification of the
language of both fields to a common (or new) core that
is sufficiently well understood by both for the practical
purposes at hand. This construct seems a better fit for
scientific than educational collaborations, however. Our
group did learn to communicate across disciplinary
boundaries, but we also critically examined the assump-
tions behind our various languages and the challenges
they raise for student learning. The goal was to share
deep features of our own languages rather than to create
a new one.
In writing this paper, we began by summarizing both

individually and collectively the most salient cross-
disciplinary issues from our earlier discussions: those
that we returned to multiple times, those that we found
most difficult to communicate clearly about, those that
led us to unexpected views about our own discipline or
others, and those that gave us insight into our students’
struggles or our own teaching. We held additional

conversations about these to explore how (and if) we
had resolved them, how our thinking may have changed
in retrospect, and what lessons they might provide for
other instructors or cross-disciplinary collaborations.
We sought out discussions of similar issues in the re-
search literature and their treatment in textbooks. Ul-
timately, the conclusions we present are based on our
own opinions and experiences during this collaboration.
Unsourced statements herein that sound dogmatic
(“Chemists think…”, “Mathematicians are…”) should be
interpreted as our own views.
Four main themes emerged from our discussions and

will be illustrated in the examples that follow.

1. People in different disciplines use the same words to
mean different things. This is the meaning of dialect
as introduced above, and we spent a lot of time
engaged in translation. It may be obvious that a
solution is not the same thing for a chemist as for a
mathematician, but as we found, a function is not
the same thing either.

2. People in different disciplines may use different
words to express the same thing. This and the
previous point can be counterintuitive in view of
the fact that technical terminology is usually
introduced to avoid ambiguity. However, its ability
to do this depends on what range of alternative
meanings needs to be avoided, and that can vary
from one discipline to another. Our efforts to
understand one another’s terminology and explain
our own exemplified articulation as defined above.

3. Much implicit information underlies our
disciplinary understanding. Scientists know from
experience when particular approximations are
reasonable and when particular mathematical
models apply. They know what terminology is
applicable and standard in their field even when it
is ambiguous or not literally accurate.

4. Scientists intuitively think about mathematics in the
context of real-world applications. They begin with
data, and for them, mathematics is a tool, not the
main object of attention. Mathematical abstraction
is often irrelevant to scientists, for whom the use of
this tool is grounded in concrete experimental data
in a specific applied context. The tool just needs to
function reliably in that context.

We will follow these themes through a series of topics
that arose in our discussions.

Topics of Discussion
Functions
Functions are of central importance in mathematics.
They are the main tools for representing and analyzing
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covariation of quantities in the real world as well as
structural relationships within mathematics itself. Co-
variation of quantities in the real world is at the heart of
science, but in contrast to mathematics, in science it is
the quantities themselves (population, energy, chemical
concentration, etc.) that tend to be emphasized. Many of
our conversations revolved around this difference in
viewpoint.
The differential equations video scripted by a mathem-

atician in our group presents a differential equation as
analogous to an algebraic equation: the problem is to
find an unknown object given some information about
it. The notation emphasizes that the unknown object is
a function rather than a number. Solving the equation
means finding that function (if initial conditions are
given) or all possible such functions more generally.
Mathematicians tend to use the Lagrange notation for
derivatives to convey this, as in f′(x) = rf (x), where f is
the name of the function being sought. The scientists in
our group were more comfortable with Leibniz notation,
such as dN

dt ¼ rN , reflecting the viewpoint that it is the
value of the quantity N at time t that is sought. The dis-
ciplinary difference makes sense given that quantities in
science such as energy are tangible and measurable,
whereas the generic variables x and y connected by a
function in mathematics have no fixed meanings and
only their covariation is of interest. Thus, a scientist will
denote energy as E regardless of what other quantities it
may depend on, whereas a mathematician is likely to
give distinct names to the various functions that express
energy in terms of different possible independent vari-
ables. Scientists name quantities, mathematicians name
functions. Perhaps the ultimate expression of this differ-
ence is in thermodynamics, much of which consists of
relating the partial derivatives of such quantities with re-
spect to one another, using Leibniz notation.
The mathematicians in our group conceptualized a

chemical “rate law” as a differential equation, and the
corresponding “integrated rate law” as a solution to that
differential equation, specified by a particular initial con-
dition. This viewpoint was understood by, but did not
resonate with, the chemists. To a chemist, a rate law
connects concentration to reaction rate, while an inte-
grated rate law connects concentration to time. The
former provides information about an underlying reac-
tion mechanism (first order, second order, etc.), while
the latter describes a particular realization of that mech-
anism over time in a specific experiment. Both are useful
ways to summarize experimental data. Neither one is a
“problem” to which the other is a “solution”. The chem-
ists would not use the term solution in this way, but ra-
ther for a numerical solution to an algebraic equation
(or for a liquid chemical mixture!). The mathematicians

viewed the initial concentration as an unknown or arbi-
trary constant C, whereas for the chemists this is known
and part of a specific experimental protocol. The distinc-
tion may seem minor but we can attest that it did im-
pede our communication.
We found it challenging to agree on what function

means in a scientific context. Is a table or graph of
discrete data points a function? Is a smooth curve fit to
that data a function? Or is it a specific functional form,
say exponential, that satisfies a differential equation
coming from a plausible model for the data? The mathe-
maticians tended to say that these were all functions, but
then which is the “real one” that actually represents the
quantity or relationship under study? This is a question
of mathematical modeling whose subtlety is often con-
cealed from students. In physics, it might be natural to
claim that a thrown ball has a real trajectory given by
some true function (quadratic in the absence of drag
forces), which our measurements would reveal if not for
small effects of “noise,” but is there a similar “true” func-
tion giving the growing population of seals on an island,
as distinct from one of many functions we might fit to
that data? The scientists were most likely to apply the
term function to an analytic formula resulting from ex-
plicitly solving a differential equation or fitting a curve
to data. For them, data are primary, a function is part of
a model.
The use of continuous variables and functions to

model processes that are fundamentally discrete (such as
population growth over time) does occur in our videos,
but we do not discuss any formal justification for this
practice. This is partly due to time constraints, partly to
this issue being peripheral to those we wanted to ad-
dress, but also to the practical attitude of the scientists
that one knows when this is a sufficiently good approxi-
mation for the purposes at hand. Our biologist made the
point that real data are always sampled at discrete times,
and measurement and modeling errors are likely to be
more significant than those introduced by smoothing
the data to look continuous.
The mathematicians often spoke of differentiation or

integration as operations performed on functions, pro-
ducing other functions as their results. The scientists
might think of performing operations on graphs, but
usually thought of the results in terms of quantities such
as the slope at a point or the area under the graph,
which might have concrete meanings in any specific
context, perhaps the velocity of an object or a count of
biological molecules.

Rate constants
A frequently recurring issue in our discussions was the
meaning of rate constants characterizing exponential
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growth or decay processes. We discussed this in the con-
texts of elementary differential equations (mathematics),
population growth (biology), and chemical kinetics
(chemistry). It also arises in radioactive decay (physics),
but this was not a subject of our videos. The differential
equation for exponential growth is

dN
dt

¼ rN ;

where r > 0 for growth and r < 0 for decay. Here, N may
be a number of organisms or atoms, or a chemical con-
centration. The solution is N(t) =N0e

rt, where N0 is the
amount at time zero. The differential equation is often
derived from the change during a finite time interval,
expressed as ΔN = rNΔt, by taking the limit as Δt→ 0.
The doubling time (or half-life, in the case of decay) is
(ln 2)/∣r∣. The underlying modeling assumption that
the growth rate is proportional to the amount present
would be called a first-order reaction in chemistry, or an
exponential population growth model in biology.
The questions began with the proper description of

the rate constant r, which has units of 1/time. Is it the
fraction of N that is added/removed per unit time, as its
units and the finite-time equation would suggest? If so,
then in the case r = 1, the amount should double in a
unit time, since 100% is added, but this contradicts both
the formula for doubling time and the explicit solution,
the latter predicting growth by the larger factor of e ≈
2.718. Similarly, if r = − 1, then the full amount should
be gone at t = 1, but this does not occur for any finite
time in the explicit solution. As a less dramatic example,
suppose we measure N(0) = 100 and N(1) = 120, so that
the growth in unit time is 20%. If we conclude that r =
0.2 and N0 = 100 , then the explicit solution predicts
N(1) = 122, contradicting our original measurement!
Our experience is that textbooks rarely point out these

potential discrepancies or give students opportunities to
think through them. The mathematicians in our group
saw this as a quintessential example of the crucial dis-
tinction between an average and an instantaneous rate
of change. The 20% growth measured between times 0
and 1 is an average rate of change that must be distin-
guished from the instantaneous rate of change at any
given time, which according to the differential equation
is equal to the value of rN at that time. Thus, the value
of r in the differential equation cannot be (immediately)
determined from such a measurement. The two con-
stants denoted r in the differential equation and in the
finite-time equation are in fact not the same and should
not be confused. The finite-time equation cannot be
used to determine the constant in the differential equa-
tion except approximately in the case that Δt is very

small, Δt≪ 1. Sometimes textbooks recognize this, as in
Urry et al. (2014), where the finite-time parameter is
called r while the differential equation parameter is
called rinst , but with no explanation of how these might
be related. However, in Campbell and Reece (2005),
which is a primary source for Urry et al., they are both
simply r. Neither textbook provides the explicit solution
to the differential equation, so that students cannot ex-
plore its numerical predictions as above.
Interestingly, in more recent editions of both text-

books (Urry, Cain, Wasserman, Minorsky, & Reece,
2017; Urry, Wasserman, Minorsky, Jackson, & Reece,
2016), the distinction between the two rate constants is
clearly made. The constant in the finite-time equation,
now called rΔt, is accurately described as the per capita
growth rate during the time interval Δt and is distin-
guished from the constant r in the differential equation.
It is explained that they become more nearly equal as
the interval Δt gets smaller. However, the description of
r as “the per capita change in population size that occurs
at each instant in time” (Urry et al., 2016, p. 858) will
still leave students puzzled as to how a continuously
growing population can change at a single instant.
Describing r (the constant in the differential equation)

as the fractional change per unit time is thus misleading
(although standard) unless it is emphasized that this is
an instantaneous rate of change that cannot literally be
applied to a “unit time” but only to much smaller time
intervals. A helpful analogy from everyday life is the dif-
ference between simple and compound interest. A 20%
annual simple interest rate (unrealistic as it may be)
means that your money grows by 20% over 1 year: it is
an average rate of change. An annual interest rate of
20% that is compounded daily (or ideally, continuously)
means your money grows by 0.2Δt in each short time
interval Δt = 1/365 years. This is (much closer to) an in-
stantaneous rate of change and is equivalent to the lar-
ger simple interest rate of about 22% per year as pointed
out above.
Initially, the group members with chemistry and biol-

ogy backgrounds were confused by the mathematicians’
concerns about confounding the two rate constants, per-
haps because average rates of change are all one can
measure, or because relevant growth rates are usually
small enough that the difference is unimportant. Implicit
disciplinary knowledge tells them which type of rate is
meaningful. The compound interest example was readily
understood by the whole group and served as a concep-
tual stepping stone that, with further conversation,
helped the mathematicians come up with an alternative
example that made the case in a discipline-relevant way
(because it resembles the integrated rate law for a first-
order chemical reaction). Taking the logarithm of the
explicit solution gives ln N = lnN0 + rt. This shows that a
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semilog plot of N versus time will be a straight line of
slope r, so r is correctly described as the change in ln N
per unit time. Indeed, the differential equation itself can
be rewritten in the form d lnN

dt ¼ r , confirming that ln N
changes at a constant rate. We think that students would
derive a more solid understanding of rates of change
and of exponential growth from working through such a
sequence of puzzles and explanations. One moral of our
discussion is that the canonical explanations provided in
one discipline may not mesh with the typical viewpoints
of another. For example, semilog plots are more familiar
tools in science than they are in mathematics. A second
lesson is that it is helpful to have more than one repre-
sentative of each discipline in the discussion. Different
mathematicians in our group generated the various ex-
amples discussed in this section. “Two people can bring
different perspectives and if one explanation flounders,
then the second person can draw on alternative language
and examples to assist cross-disciplinary understanding”
(Bracken & Oughton, 2006, p. 380). For the same reason,
individual participants with cross-disciplinary back-
grounds can facilitate understanding. One mathemat-
ician in our group had a physics background and was
able to help the mathematicians and scientists translate
for one another.

Units
Scientists work with quantities that are actually mea-
sured and typically have associated units, e.g., meters per
second, or calories. These units are included in the
stated values of the quantities, e.g., E = 10 Joules. Equa-
tions expressing scientific laws are required to be dimen-
sionally consistent, and the units are included when
quantities are substituted into them. The units of an un-
familiar quantity often provide insight into its meaning.
Mathematicians typically work with pure numbers, how-
ever. In modeling, they may agree that all lengths will be
expressed in meters, but then simply write l = 6. Indeed,
it was considered a great advance in mathematical nota-
tion when it became possible to write, for example, y =
x2 + x + 1 without worry that this is meaningless because
x must represent a length and x2 an area, which cannot
be added together. In one of our physics videos, the
similar kinematic equation x = at2 + bt + c is analyzed di-
mensionally to show that b has units of velocity and a
has units of acceleration, an important clue to their
physical meanings. We think that explicit cross-
disciplinary comparisons of this type would be very help-
ful for students.
The area under a curve (graph) plays a role in some of

our videos, and the scientific meaning of this area can
often be guessed from its units (the product of the units
on the separate axes). For example, the area under a

graph of force versus distance represents work or energy.
The scientists tended to reach an interpretation of such
an area based primarily on its units, while the mathema-
ticians preferred to base such an interpretation on the
meaning of the individual terms in a Riemann sum ap-
proximation. We were all puzzled by an example from
pharmacokinetics, where the area under a graph of the
bloodstream concentration of some drug versus time is
assumed to represent the amount of the drug absorbed
by the body and biochemically active there (Urso, Blardi,
& Giorgi, 2002). Although this is plausible, we could not
justify it in either fashion. The units of gram-second/
milliliter do not immediately translate into a total
amount (grams?), and Riemann-sum explanations are
also elusive in the literature we examined. Sometimes
“arbitrary units” or a.u. appear on the axes of graphs
(Beal et al., 2018), which still allows one to compare the
relative areas of two regions if not their absolute magni-
tudes. In some cases, the quantities measured and plot-
ted are proxies for the quantities of actual interest and
may not share their units at all. Implicit disciplinary
knowledge tells practitioners in the field that such prox-
ies are adequate for the purpose at hand, while those in
other disciplines expressed confusion. For example, in
one of our biology videos, the measured fluorescence of
a fluorescent dye is a proxy for the amount of dye bound
to DNA, which is a proxy for the amount of DNA itself.
The relative areas under portions of the corresponding
graph indicate relative numbers of distinct cell popula-
tions. This kind of proportional reasoning is likely to be
unfamiliar to students. Of course, without explicit in-
struction, students are unlikely to appreciate when quan-
tities are serving as proxies for others, and especially
that such proxies are only adequate under certain ex-
perimental conditions (Beal et al., 2018).
Since it is rare to have an explicit algebraic equation

for an experimentally measured graph, scientists often
resort to numerical methods to estimate areas under
such curves (or, in the old days, cutting out and weigh-
ing the region from graph paper). This has led to amus-
ing results when the scientific literature has reinvented
the wheel in the form of methods like the trapezoidal
rule that are standard in calculus courses (Tai, 1994).
This points to another benefit of increasing the cross-
disciplinary knowledge of STEM faculty.

Sign conventions
The sign of a rate of change is important, conveying the
information as to whether the changing quantity is in-
creasing or decreasing. The sign may be an arbitrary
convention, or result from a deliberate choice of coordi-
nates, for example, when the positive z axis is chosen to
point upward from the Earth’s surface, so that an object
moving upward will have a positive velocity, rather than
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the reverse. When a convention becomes universal
within a discipline, it may be viewed as necessary rather
than conventional by students and teachers alike. Some
of our discussions concerned chemical reaction rates,
which are conventionally positive in chemistry even
though they may be measured by the rate of appearance
of one chemical or the rate of disappearance of another.
This means that an explicit minus sign might appear in
a formula relating a reaction rate to some derivative of
concentration. This can be problematic for students
(Lamb et al., 2012), who may assume that an explicit
minus sign as in −x always denotes a negative number
rather than one having the opposite sign to that of x. A
similar convention occurs in physics when speed, always
positive, is defined as the absolute value of velocity,
which may have either sign. In chemistry, the concept of
absolute value is not usually invoked to explain the rate
convention. Our discussions suggested that the explicit
use of absolute value to define reaction rate might be
pedagogically beneficial.
Potentially confusing sign conventions are ubiquitous

in the STEM curriculum. Examples include heat flow in
thermodynamics (Is it positive when flowing into or out
of the system? Does positive heat flow raise or lower
temperature?), acceleration (Is it the rate of change of
velocity, as usual in physics, or of speed, as usual in
everyday life, where deceleration means slowing down?),
velocities of stars and galaxies (Does positive redshift in-
dicate motion toward or away from the observer?), and
electric current (Thanks to Ben Franklin, a positive
current is carried by negatively charged electrons flowing
in the opposite direction). In mathematics, −10 is a
smaller number than −3 despite having a larger magni-
tude. Chemical pH is defined with an explicit minus sign
to ensure that it is positive and hopefully avoid such
confusion.

Terminology
We encountered many examples of different disciplines
using the same words to mean different things, or differ-
ent words to express the same meaning, including the
following.
In calculus courses, the distinction between the shapes

of the parabolas y = x2 and y = − x2 is always expressed
by saying that the former is concave up and the latter
concave down (that is, the concave side of the curve is
facing up or down). In more advanced mathematics, the
term convex is often used in place of “concave up,” but
never at first-year level. Indeed, convex has other mean-
ings as in a convex polygon, or lens. The scientists in
our group were familiar with concave and convex lenses
and shapes, but did not use “concave up” or “concave
down” to describe graphs, and found the mathemati-
cians’ use of these terms unintuitive. One referred

instead to positive or negative curvature, which would
be understood differently in mathematics. One described
the second graph as an “upside-down parabola” although
in mathematics a parabola may have any orientation in a
plane.
The scientists sometimes described a functional rela-

tionship y = ax + b by saying that y is linearly dependent
on x. The mathematicians were reluctant to use this
term outside the subject area of linear algebra, although
both groups were happy to call the relationship propor-
tional if b = 0.
The mathematicians sometimes spoke of the input to

a function, whereas the scientists would think of the in-
dependent variable, the one being experimentally
controlled.
Scientists sometimes used the phrase “change over time”

to describe an instantaneous rate of change (derivative).
Mathematicians preferred “rate of change with respect to
time” on the grounds that “change over time” is ambigu-
ous between average and instantaneous rates, or could
even mean the total amount of change; and that “over” is
ambiguous between “during (a time interval)” and “divided
by (the duration of the interval)”. Similarly, some of us
have encountered students who interpret the “over” in “in-
tegral of a quantity over time” as indicating division.
The scientists observed that mathematicians some-

times used the terms “integral” and “antiderivative”
interchangeably, and sometimes as quite distinct. “Anti-
derivative” was not commonly used by the scientists, at
least since their own first-year calculus courses, and in-
deed may be rare outside calculus textbooks. An antide-
rivative of a function g(x) is any function whose
derivative is g; the indefinite integral ∫g(x)dx denotes all
such functions, which is why it includes an arbitrary
constant C. However, “integral” more often means the

definite integral,
R b
a gðxÞdx, which is defined as the limit

of a Riemann sum and gives the area under the graph of
g between specific vertical lines x = a and x = b. There is
no a priori relationship between this and an antideriva-
tive; the importance of the Fundamental Theorem of
Calculus (FTC) is precisely that it establishes such a rela-
tionship and allows areas to be computed from antide-
rivatives. Students who conflate the two types of
integral—and many do—often do not appreciate the sig-
nificance of the FTC (Wagner, 2018).

Notation
The notation used in a discipline is a part of its lan-
guage, raising the same issues of dialect and articulation
as does terminology. Notations adopted within a field
often reflect compromises between making the meaning
as unambiguous as possible (prevalent in mathematics)
and making computations as easy as possible (prevalent
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in science). Notational differences we tried to reconcile
in our discussions included the following.
In chemistry and biology texts, it is not uncommon for

the notations dx and Δx to be used interchangeably,
which risks confusion between average and instantan-
eous rates of change (Seethaler et al., 2018).
Physicists often omit the limits of integration from a

definite integral when these are thought to be clear from
the context, for example, ∫F dt may mean

R∞
− ∞ F dt ,

R∞
0

F dt; or even
R t
0 F dt: In a calculus text, the absence of

limits would indicate an indefinite integral.
In addition to the forms already mentioned for the

differential equation of exponential growth, some
chemistry/biology sources give a differential form such
as Nt + dt −Nt = rNtdt. This would not be standard in
mathematics at calculus level.

Is physics different?
Thus far, we have included the physicist in our group
along with the chemists and biologist as “scientists,” in
contrast to the mathematicians among us. One might
surmise, though, that he had fewer communication is-
sues with the mathematicians than did the other scien-
tists, and to some extent, this was true. Calculus, after
all, arose in conjunction with Newtonian physics and
shares some concepts, notation, and paradigmatic exam-
ples (such as the instantaneous velocities and accelera-
tions of particles moving under the influence of forces
like gravity) with it. Still, much has been written about
the cultural and pedagogical differences between abstract
mathematics and its more concrete applications in phys-
ics (Dray et al., 2019; Redish & Kuo, 2015). Examples
that came up in our discussions included the use of in-
finitesimal differentials such as dx, which is encouraged
for physics students but discouraged for mathematics
students (Dray et al., 2019; Lopez-Gay, Martinez Saez, &
Martinez Torregrosa, 2015); the focus on quantities as
opposed to functions; and the reliance on units and di-
mensional analysis for checking equations as well as gen-
erating possible relationships between quantities. We
also noted the reversal of the meanings of the two angu-
lar spherical coordinates θ and φ between the physics lit-
erature and many calculus textbooks (Dray & Manogue,
2003), and the frequent absence from calculus syllabi of

the spherical coordinate unit vectors ρ̂; θ̂; φ̂ commonly
used in physics.

Is mathematics different?
The “practical” mathematics used by scientists differs in
significant ways from the “abstract” or “structural” math-
ematics taught by mathematicians. Scientists in our
group said that they had actually learned this practical
mathematics from their disciplinary science teachers and

not connected it to prior mathematics courses. The sci-
entists were often impatient with the mathematicians’
obsession with technical correctness and with extreme
or pathological cases that would never arise in practice.
They sometimes found mathematicians’ thinking too ab-
stract, context-free, or ungrounded in reality. One of our
videos discussed a problem about the rate of change of
the volume of fluid in a tank, and we debated how much
context a student viewer might need for the type of tank
in question. The mathematicians were quite content
with an abstract container having no particular shape or
function. They were also willing to picture it as a hot
water tank or toilet tank. In contrast, the scientists were
not satisfied with a generic example or one that would
not realistically empty and fill in the erratic manner de-
scribed in the problem context. We ultimately decided
to ground this in the relatable context of a rain barrel,
which might plausibly fill and empty in roughly the
manner modeled in the video.
The foundations and justifications of mathematical

techniques, which are given center stage in mathematics
courses, may be taken for granted in science, where
practical knowledge determines what is reasonable to do
and to assume. The scientists in our group came to
value these foundational issues (to some extent), and the
mathematicians gained an understanding of the other re-
sources scientists can draw on. For example, proof is the
standard of correctness in mathematics, but in science,
experimental data have the final word. Mathematics is
merely a tool for many scientists, who may see the
mathematician’s role as maintaining the tool and certify-
ing that it is in working order.

Conclusions
Designing videos that present a concept from multiple
disciplinary viewpoints, to be viewed by students in mul-
tiple disciplinary programs, was challenging. In writing
and revising the scripts, we needed to be aware of
discipline-specific terminology and notation that might
be misunderstood and implicit assumptions that needed
to be spelled out. We realized that students in different
fields might attend to different aspects of the videos than
we intended or indeed focus on features we considered
irrelevant and had overlooked. It took time (far more
than we anticipated) to explain and appreciate our vari-
ous disciplinary cultures and expectations for students
and to agree on syntheses faithful to each discipline but
understandable across them. Learning multiple lan-
guages for cross-disciplinary communication increased
our empathy and respect for our students, who have the
same experience as they move from one STEM class-
room to another in the course of their studies.
Most of the issues we discussed arose multiple times

in multiple contexts. This allowed us to revisit them
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from different perspectives and extend and deepen earl-
ier discussions. We shared our disciplinary perspectives
and tried to make our implicit knowledge as explicit as
possible. It was important that we created a climate of
mutual respect that allowed us to ask even very elemen-
tary questions comfortably. One technique that facili-
tated cross-disciplinary understanding for us was to
instantiate the calculus concepts in contexts that were
broadly shared and not discipline-specific. Compound
interest was one such context, and the motion of vehi-
cles or projectiles was another. We could communicate
and reconcile our ideas using that shared framing and
subsequently translate our understanding into situations
specific to our own disciplines.
The in-depth discussions we engaged in were neces-

sary to the success of our project, but we found them
surprisingly valuable for their own sake. Recalling the
four themes laid out in the “Introduction” section, we
have described multiple examples of the varied meanings
of terminology and notation across fields, the use of im-
plicit disciplinary knowledge, and tensions between pure
and applied mathematics. Basic concepts such as func-
tions, rates, and units are understood differently across
disciplines, and there is a gap between what is empha-
sized in mathematics and in the sciences. Many STEM
instructors have not had opportunities to reflect on
these differences themselves, a precondition for commu-
nicating them to their students. We strongly recommend
that faculty take the time to engage in similar cross-
disciplinary discussions and apply the resulting insights
to their own teaching.
Our advice to other educationally focused STEM col-

laborations overlaps that of Diaz Eaton et al. (2019).
Have a shared goal, and a concrete deliverable (the vid-
eos in our case). Be willing to act as both a student and
a teacher, that is, both an expert in your own field and a
novice in others. Be explicit about language, anticipating
that familiar terminology may have another meaning in
another discipline and may be understood within a dif-
ferent conceptual context. Seek out common concepts
that are expressed differently across disciplines. Be open
to appreciating why another discipline might do familiar
things differently and look critically at your own. Redish
and Cooke (2013) recommend “respect for each other’s
discipline and insights; a willingness to reconsider one’s
own discipline from a different point of view; and finally,
patience, persistence, and humor” (p. 185).
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