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Abstract

Scientific ideas are often expressed as mathematical equations. Understanding the ideas contained within these
equations requires making sense of both the embedded mathematics knowledge and scientific knowledge.
Students who can engage in this type of blended sensemaking are more successful at solving novel or more
complex problems with these equations. However, students often tend to rely on algorithmic/procedural
approaches and struggle to make sense of the underlying science. This deficit may partly be the fault of instruction
that focuses on superficial connections with the science and mathematics knowledge such as defining variables in
the equation and demonstrating step-by-step procedures for solving problems. Research into the types of
sensemaking of mathematical equations in science contexts is hindered by the absence of a shared framework.
Therefore, a review of the literature was completed to identify themes addressing sensemaking of mathematical
equations in science. These themes were compiled into nine categories, four in the science sensemaking dimension
and five in the mathematics sensemaking dimension. This framework will allow for comparison across studies on
the teaching and learning of mathematical equations in science and thus help to advance our understanding of
how students engage in sensemaking when solving quantitative problems as well as how instruction influences
this sensemaking.
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Introduction
Mathematical equations are used to represent scientific
phenomenon and communicate scientific ideas (Bialek &
Botstein, 2004; Brush, 2015; Gingras, 2001; Lazenby &
Becker, 2019; Steen, 2005). Students are expected to be
able to engage in sensemaking with these equations to
interpret the mathematical and scientific meaning repre-
sented by the equation (Bialek & Botstein, 2004; Heister-
kamp & Talanquer, 2015; Kuo, Hull, Gupta, & Elby,
2013; Sevian & Talanquer, 2014). However, studies on
students solving quantitative problems show that they
often solve problems by relying on algorithmic

procedures without making connections between the
mathematical equation and the scientific phenomenon
(Bing & Redish, 2009; Stewart, 1983; Taasoobshirazi &
Glynn, 2009; Tuminaro & Redish, 2007). This tendency
to solve problems algorithmically has been associated
with a failure to transfer problem-solving techniques to
novel contexts or more complex problems (Becker &
Towns, 2012; Nakhleh, 1993; Ralph & Lewis, 2018;
Schuchardt & Schunn, 2016; Stamovlasis, Tsaparlis,
Kamilatos, Papaoikonomou, & Zarotiadou, 2005). The
reliance on algorithmic problem-solving strategies has
been attributed to the different opportunities provided
for sensemaking of mathematical equations in science
during instruction (Bing & Redish, 2008; Lythcott, 1990;
Schuchardt & Schunn, 2016). To successfully develop
and understand the impact of providing different
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sensemaking opportunities, it is first necessary to under-
stand the types of sensemaking that can occur. However,
a consistent and coherent framework of sensemaking of
mathematical equations in science has not yet been de-
veloped. This paper presents such a framework based on
a review of the literature on instruction of mathematical
equations in science and on students’ problem-solving
using mathematical equations in a science context.

Scientists use mathematical knowledge to represent ideas
about scientific phenomenon
Canonical mathematical equations in science have been
developed based on understanding of both scientific
phenomena and mathematical concepts represented in
the equations (Ghosh, 2009; Quale, 2011). Scientists use
mathematical equations to formulate theories deduced
from observations or experimentation or to represent
patterns they observe (Brush, 2015; de Ataíde & Greca,
2013; De Berg, 1992; Ghosh, 2009; Pospiech, 2019;
Steen, 2005; Wigner, 1960). For example, Newton’s sec-

ond law of motion is often represented as F
!

net ¼ m a!.

The development of F
!

net ¼ m a! was based on observa-
tions from multiple scientists, as well as many experi-
ments in making sense of the scientific phenomenon
(Ghosh, 2009). The equation represents a “central
principle of classical mechanics” (Gierer, 2004), a theory
that has been used to explain the motions of objects. In
biology, the mathematical expression for the population
growth of bacteria in optimal growth conditions Nt =
N02

x is based on scientists’ biological knowledge of the
relationship among the initial population size (N0), the
number of generations (x), and the final population size
(Nt) after a specific time period. This biological under-
standing was combined with knowledge of how to ar-
range the mathematical variables and mathematical
operations (i.e., multiplication, exponents) to match the
quantitative relationships to the patterns found in the
phenomenon. Whether equations are developed to rep-
resent a theory or a pattern, both scientific knowledge
and mathematical knowledge are embedded in these
equations.
Mathematical equations are often referred to as

models of scientific phenomena, “a representation of
structure in a physical system or process” (Hestenes,
2010, p. 18). The development of mathematical models
of scientific phenomena as engaged in by scientists is a
multi-faceted, multi-step process known as the modeling
cycle (Diaz Eaton et al., 2019; Gouvea & Passmore,
2017; Halloun, 2007; Hestenes, 2010). The steps in the
modeling cycle include identifying the task or relations
to be represented, mathematizing the physical entities,
structuring the equation to express the pattern, inter-
preting the equation with reference to the scientific

process, and validating the equation (Borromeo Ferri,
2006; Dukerich, 2015; Gouvea & Passmore, 2017; Redish,
2017). If the mathematical model is validated in one
situation, the process is repeated in other situations. If
the model is not found to match the data, either the idea
is rejected or the model is modified (Halloun, 2007; Hes-
tenes, 2010). The modeling process as engaged in by sci-
entists provides multiple opportunities for making sense
of the connections between the mathematical equation,
the phenomenon, and the mathematical ideas.
Three theoretical perspectives have been widely used

when investigating students’ ability to solve quantitative
problems in science; the resources framework (diSessa,
1993; Hammer, 2000; Redish & Kuo, 2015; Rodriguez,
Bain, Hux, & Towns, 2019), epistemological framing
(Bing & Redish, 2012; Chen, Irving, & Sayre, 2013; Ham-
mer, Elby, Scherr, & Redish, 2005; Hutchison & Ham-
mer, 2009; Redish, 2004; Tuminaro & Redish, 2007), and
sensemaking (Becker & Towns, 2012; Bing & Redish,
2007; Dreyfus, Elby, Gupta, & Sohr, 2017; Eichenlaub &
Redish, 2019; Kuo et al., 2013; Sherin, 2001). The re-
source perspective examines how and what cognitive re-
sources are activated in the problem-solving process
(Hammer, 2000; Redish & Kuo, 2015). Studies guided by
epistemological framing focus on how students perceive
mathematics in science and solving quantitative prob-
lems in science classrooms as well as how students’
framing affects problem-solving (Chen et al., 2013;
Tuminaro & Redish, 2007). Sensemaking is broadly de-
fined as using prior resources and knowledge to under-
stand new concepts or representations or to solve
problems (Kapon, 2016; Martin & Kasmer, 2009;
Schoenfeld, 1992). With respect to mathematical equa-
tions in science, students need to make sense of both
the mathematical structure of the equation (Sherin,
2001) and the connections to the scientific phenomenon
(Redish, 2017; Schuchardt & Schunn, 2016). These three
perspectives are not mutually exclusive. The resources
that a student activates are likely influenced by their
epistemological framing (Hammer et al., 2005; Redish &
Kuo, 2015). The resources that are activated are likely to
affect sensemaking (Dreyfus et al., 2017).

Blended sensemaking as a lens for investigating students’
quantitative problem-solving
Blended sensemaking is described as the process of com-
bining separate cognitive resources to generate a new
merged, blended understanding (Fauconnier & Turner,
1998). Scientific knowledge and mathematical knowledge
are two cognitive resources that can be activated during
sensemaking of mathematical equations that describe
scientific phenomena. The sensemaking of these equa-
tions can occur with respect to only scientific ideas or
only mathematical ideas if only one of these resources is
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activated, or sensemaking can be blended, making use of
both cognitive resources (Bain, Rodriguez, Moon, &
Towns, 2019; Eichenlaub & Redish, 2019). For example,

in the sensemaking of F
!

net ¼ m a! , the resources from
mathematics (e.g., procedures of doing calculation,
knowledge of multiplication, knowledge of the mathem-
atics notation) can be blended with resources from sci-
ence (e.g. the net force causes the acceleration) and
together form a blended mental space that enables
proper interpretation and application of this equation.
Experts’ understanding of physics equations includes the
blending of mathematical forms and physical intuition,
but novices tend to treat mathematical equations as a
calculation tool without connection to the physics know-
ledge (Eichenlaub & Redish, 2019). In the above equa-
tion, the vector notation above the “F” and the “a” has
mathematical meaning indicating that those quantities
have direction. This mathematical understanding can be
combined with the physics knowledge that acceleration will
occur in the same direction as the net force. After receiving
instruction in Newton’s second law, undergraduate physics
students were asked to solve two problems related to this
topic. Many students failed to access their scientific and
mathematics resources and showed difficulty in understand-
ing the directionality embedded in the equation (Flores-Gar-
cía, Terrazas, González-Quezada, Pierce, & Soto, 2008).
Students often fail to access both of these resources and thus
often do not pay attention to the directionality embedded in
the equation (Flores-García et al., 2008).
Categorization of blended sensemaking has been used

to describe students’ quantitative problem-solving (Bain,
Rodriguez, Moon, & Towns, 2018; Bain, Rodriguez,
Moon, & Towns, 2019; Bing & Redish, 2007, 2009; Brah-
mia, Boudreaux, & Kanim, 2016; Greca & Moreira, 2002;
Hu & Rebello, 2013; Kuo et al., 2013; Tuminaro &
Redish, 2007). Bing and Redish (2007) identified two
types of blending in students’ problem-solving processes,
single-scope blend (a one-way mapping) and double-
scope blend (a back-and-forth integration). The differ-
ence between these two types of blending lies in whether
the sensemaking uses only one cognitive resource or
moves back and forth between the science and mathem-
atics cognitive resources. In one study (Bing & Redish,
2007), when students were reasoning about the direction
of air drag for falling objects using the equation Fv = −
bv, they started their sensemaking of the equation in the
physics space, mapping the variables onto aspects of the
scientific phenomenon, and then used their physics
knowledge to reason that friction (Fv) operates in the op-
posite direction of velocity (v). They then discussed the
mathematical rule that multiplying two negatives to-
gether yields a positive outcome. Finally, they showed a
blending of the knowledge from physics and

mathematics when they reasoned that positive is up, and
therefore, the direction of friction for falling objects is
up (Bing & Redish, 2007). In chemistry, students were
found to make sense of equations starting from either a
chemistry or mathematics space and then pull in con-
cepts from the other discipline to complete the
problem-solving process (Bain, Rodriguez, Moon, &
Towns, 2019). These authors proposed that the quality
of blended sensemaking was dependent on whether stu-
dents applied a superficial or sophisticated conceptual
understanding in chemistry space. However, details were
not provided on what kind of conceptual understanding
should be considered as superficial or sophisticated, or
on the difference between low and high quality blended
sensemaking. This study aims to provide a less-
evaluative framework for examining sensemaking that
provides rich descriptions of the types of sensemaking
that are occurring in both the mathematics and science
dimensions. The definition and examples used to explain
each type of sensemaking will enable consistent descrip-
tions for sensemaking that can then be evaluated based
on additional criteria.
Students’ difficulties with quantitative problem-solving

have been attributed to difficulties with making sense of
the conceptual knowledge embedded in the mathemat-
ical equations (Bing & Redish, 2007, 2009; Schuchardt &
Schunn, 2016; Tuminaro & Redish, 2007). In physics,
chemistry, and biology, students struggle to apply math-
ematical equations they have learned in class to novel or
more complex scenarios (Becker & Towns, 2012; Nakh-
leh, 1993; Ralph & Lewis, 2018; Schuchardt & Schunn,
2016; Stamovlasis et al., 2005). This difficulty has been
attributed to students’ tendency to apply memorized al-
gorithmic procedures instead of making sense of con-
nections between the mathematical equations and the
modeled scientific phenomenon (Bing & Redish, 2009;
Stewart, 1983; Taasoobshirazi & Glynn, 2009; Tuminaro
& Redish, 2007). When students spontaneously apply
blended sensemaking, they are able to overcome being
stuck and solve more complex problems (Bing & Redish,
2007; Kuo et al., 2013). One instructional approach that
provides opportunities for students to connect the scien-
tific phenomenon to the mathematics is model-based in-
struction (Blum & Borromeo, 2009). If instruction
encourages engagement in mathematical modeling and
sensemaking, students show improved quantitative
problem-solving for novel and more complex problems
(Becker, Rupp, & Brandriet, 2017; Lazenby & Becker,
2019; Schuchardt & Schunn, 2016).

Viewing instruction of mathematics in science through
the lens of blended sensemaking
Sensemaking opportunities provided by the instructors
in the classroom serve a critical role in students’ learning
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(Koretsky, Keeler, Ivanovitch, & Cao, 2018; Li & Schoen-
feld, 2019; Lo, Marton, Pang, & Pong, 2004; Marton,
Runesson, & Tsui, 2004). What the instructor does and
says create the opportunities or the environment for stu-
dents to make sense of something, i.e., the conditions for
students to learn specific content or skills (Marton et al.,
2004). Mathematics instruction in the USA has been
criticized as “broad and shallow” (Polikoff, 2012), focus-
ing on procedures without connection to mathematical
concepts (Litke, 2020). Teachers in countries whose stu-
dents do well on mathematical assessments tend to
focus more on conceptual understanding than proce-
dures (Hill, Rowan, & Ball, 2005). Science instruction
that focuses on high-level thinking (e.g., doing scientific
inquiry) as compared to low-level thinking (e.g., rote
memorization) is also associated with better learning
outcomes for students (Tekkumru-Kisa, Stein, &
Schunn, 2015). Besides the effect on students’ learning
outcomes, instruction also affects students’ perception of
what is valued in science learning and their understand-
ing of the nature of scientific knowledge (Bing & Redish,
2009; Eichenlaub & Redish, 2019; Hutchison & Hammer,
2009; Kang, Windschitl, Stroupe, & Thompson, 2016;
Russ, 2018; Russ, Coffey, Hammer, & Hutchison, 2009;
Tuminaro & Redish, 2007). For example, evaluation in
introductory physics courses tends to focus on students’
correct calculation rather than their understanding of
the meaning of the equations (Eichenlaub & Redish,
2019). In this instructional environment, students can
develop the belief that mathematics is merely a tool to
do calculation in physics, and they may devalue concep-
tual understanding of mathematical equations.
Instructional opportunities for student sensemaking of

equations are not necessarily synonymous with specific
teaching practices. For example, although making sense
of mathematical rules often occurs through instructors
delivering explanations via lecture (Njini, 2012), Baig
and Halai (2006) presented a student-centered learning
activity to make sense of four rules for working with
fractions. Marton et al. (2004) argued that the under-
standing of what learners are expected to learn needs to
occur before an effective teaching method can be identi-
fied. However, attention is rarely paid to the sensemak-
ing opportunities created by what the instructor is doing
or saying.
Many frameworks or protocols have been proposed to

describe or measure instructional practice or discourse
in mathematics or science classrooms, e.g., Classroom
Observation Protocol for Undergraduate STEM (Smith,
Jones, Gilbert, & Wieman, 2013), Classroom Discourse
Observation Protocol (Kranzfelder et al., 2019), Instruc-
tional Quality Assessment (Boston, 2012), Mathematical
Quality of Instruction (Learning Mathematics for Teach-
ing Project, 2011), and Reformed-Oriented Teaching

Observation Protocol (Sawada et al., 2002). Very few
frameworks specifically discuss instruction of mathemat-
ics in science classrooms. One framework that has been
developed is the Mathematics Integrated into Science:
Classroom Observation Protocol, MISCOP (Judson,
2013). This framework seeks to characterize the extent
of integration of mathematics and science and the over-
all quality of instruction to evaluate the quality of inte-
gration of mathematics in science. The opportunities for
student sensemaking of mathematical equations in sci-
ence provided by instructors are not addressed.
This paper establishes the Sci-Math Sensemaking

Framework for categorizing sensemaking of mathemat-
ical equations in science on the science and mathematics
dimensions. Categories within the framework are identi-
fied based on a literature review using manuscripts from
both the science education and mathematics education
communities. This framework supplies researchers with
a common language for discussing opportunities instruc-
tors provide for sensemaking of mathematical equations
in science as well as student use of sensemaking when
working with these equations.

Methods
The objective for this literature review is to identify ideas
expressed in the literature about the different types of
mathematics sensemaking and science sensemaking of
mathematical equations in science. A snowballing ap-
proach that began with recent reviews of the literature
was used (Wohlin, 2014). The procedure is shown in
Fig. 1 and includes identification of an initial set of man-
uscripts, a backward screening on the reference lists of
the starting set of manuscripts, a forward screening on
the publications citing the starting set of manuscripts,
and iteration of backward and forward screening on the
included publications (Wohlin, 2014).

Identifying the starting set of manuscripts
Guided by the theory of blended sensemaking of math-
ematical equations in science, five topics from the field
of education research were chosen to search for the
starting set of manuscripts (Table 1). Three of the topics
covered mathematics in three science fields commonly
taught in schools: chemistry, biology, and physics. Math-
ematics sensemaking and science sensemaking were the
other two topics to provide publications that discussed
sensemaking in each discipline. Within each topic, the
starting set of manuscripts was identified using a key
word search in Google Scholar or based on recommen-
dations from experts. When more than one reference
was identified through these methods, the publications
that contained the greatest number of citations were
retained to provide breadth and depth of literature in
the initial backward snowballing. Out of these, the most
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recent manuscript was chosen in each topic area to un-
cover the most recent publications in the field. Five
manuscripts published during 2015–2019 were identified
that cover the following topics: (a) mathematics in phys-
ics, (b) mathematics in chemistry, (c) mathematics in
biology, (d) science sensemaking, and (e) mathematics
sensemaking (Table 1).

Iteration 1
Backward snowballing
For each of the five starting manuscripts, the publica-
tions listed in the references were screened based on the
following inclusion and exclusion criteria. The inclusion
criteria were: published between 1986 and 2019; written
in English; included components of mathematical

knowledge of equations or scientific knowledge with re-
spect to equations; and published papers, conference
proceedings, book chapters, or dissertations. The exclu-
sion criteria were: published earlier than 1986, a whole
book, written in a non-English language, not about
mathematical equations, provided only a broad descrip-
tion of teaching strategies or student problem-solving
abilities or student epistemologies, not focused on math-
ematical equations, and from the same research group
referring to the same theories and findings as other ref-
erences. The foundational research symposium on math-
ematical sensemaking (Hiebert & Lefevre, 1986) was
published in 1986, and research in mathematics in sci-
ence emerged after research in mathematics education.
Therefore, the criterion for publication year was set as

Fig. 1 Summary of the snowballing approach

Table 1 Initial set manuscripts and number of publications retained after Iteration 1(I-1) and 2(I-2) snowballing

Topic Initial set of manuscripts Summary Number of
references
cited

Publications
retained

I-1 I-2

Mathematics
in physics

Pospiech, G. (2019). Framework of mathematization
in physics from a teaching perspective. In G.
Pospiech, M. Michelini, & B. Eylon (Eds.),
Mathematics in physics education (pp. 1-33).

The chapter summarizes the roles of mathematics
in physics and reviews mathematical modeling
and mathematics as a language of physics.

124 13 3

Mathematics
in chemistry

Bain, K., Rodriguez, J. M. G., & Towns, M. H. (2019).
Chemistry and mathematics: Research and
frameworks to explore student reasoning. Journal of
Chemical Education, 96(10), 2086-2096.

The paper reviews frameworks that can guide
research of mathematics in chemical contexts.

104 13 1

Mathematics
in biology

Schuchardt, A. M. (2016). Learning biology through
connecting mathematics to scientific mechanisms:
Student outcomes and teacher supports (Order No.
10298845). Available from ProQuest Dissertations &
Theses A&I; ProQuest Dissertations & Theses Global.
(1847567134).

The dissertation introduces a framework
developed from a literature review categorizing
the ways mathematics is included in science
classrooms. Studies are presented on students’
learning of mathematics in biology.

163 10 0

Science
sensemaking

Odden, T. O. B., & Russ, R. S. (2019). Defining
sensemaking: Bringing clarity to a fragmented
theoretical construct. Science Education, 103(1), 187-
205.

The paper summarizes existing approaches to
describing sensemaking in science education,
defines science sensemaking and distinguishes
sensemaking from other activities in science
education.

79 2 0

Mathematics
sensemaking

Rittle-Johnson, B., & Schneider, M. (2015).
Developing conceptual and procedural knowledge
of mathematics. In Kadosh, R. C., & Dowker, A. (Eds.)
Oxford Handbook of Numerical Cognition (pp.1118-
1134). Oxford, United Kingdom: Oxford University
Press.

The chapter reviews studies on the definitions of
and relations between two types of mathematical
knowledge, procedural and conceptual.

100 12 4

Total 50 8
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no earlier than 1986. References were initially screened
by title and then abstract. References which remained
were read in their entirety to reach the final decision
about inclusion. Forty-six references were identified
through backwards snowballing.

Forward snowballing
Forward snowballing was performed on the five manu-
scripts in the starting set. Citations of each of these
manuscripts were located through the “cite” function
under Google Scholar. Google Scholar was chosen be-
cause of the power of the forward cite function, even
though the algorithms for this search tool are not publi-
cized. The multiple iterations of backwards snowballing
(screening references listed in identified papers), as well
as the use of recent reviews of the literature in five fields
to initiate the literature review, mitigate against the dan-
ger that some articles may not be included in the review
due to bias in the database. The inclusion criteria for
forward snowballing were the same as for backward
snowballing. Of the five starting manuscripts, the book
chapter for mathematics sensemaking (Rittle-Johnson &
Schneider, 2015) has been cited 222 times, the paper of
science sensemaking (Odden & Russ, 2019) has been
cited 20 times, the dissertation of mathematics in biol-
ogy (Schuchardt, 2016) has been cited once, while the
book chapter for mathematics in physics (Pospiech,
2019) and the paper of math in chemistry (Bain, Rodri-
guez, & Towns, 2019a) have not been cited yet. Because
of the recent publication dates for the starting manu-
scripts, the forward snowballing was not expected to
produce many citations. The book chapter for mathem-
atics sensemaking was the most cited but most of the ci-
tations are not about knowledge of mathematical
equations and thus only four publications were retained
from these citations. A total of fifty manuscripts were
retained from iteration 1 snowballing (46 from backward
snowballing and 4 from forward snowballing).

Iteration 2
A second iteration of backward and forward snowballing
was performed on all 50 publications retained from iter-
ation 1 (see Table S1).

Backward snowballing
The inclusion criteria for backward snowballing during
iteration 2 was the same as during iteration 1 but an
additional criterion was added: references had to use a
new theoretical framework about mathematical equa-
tions to guide their research or analysis. Six publications
were identified from the backward snowballing.

Forward snowballing
Publications that cited any of the 50 manuscripts
retained from iteration 1 were identified using Google
Scholar. If the citation list for the publication identified
in the first iteration contained fewer than 30 cites, all
publications were screened by title and abstract and then
by reading the whole reference. If the citation list con-
tained more than 30 cites, an initial filtering step was
performed using the key words “equation” or “sensemak-
ing,” or “blend”, or “model.” If references contained
these keywords, they were then screened one by one
using the same criteria as for the backward snowballing.
Two additional references were identified from the for-
ward snowballing in iteration 2.

Criteria for saturation
One criterion for determining when a literature review is
complete is whether new meaningful information arises
by including more references (vom Brocke et al., 2015).
Saturation was considered to be reached if the ratio be-
tween the total number of included references to the
total number of references examined is very low in iter-
ation 2 compared to that of iteration 1. In iteration 1,
fifty references were included after screening 813 refer-
ences. In iteration 2, eight references were included after
screening 11,118 references. Because the ratio fell from
6.2 to 0.07% and no new themes on sensemaking of
equations arose in retained publications from iteration 2,
we concluded that the review identified most of the arti-
cles related to the field of sensemaking of mathematics
in science and therefore was saturated.

Themes developed from the retained publications
The retained references were read and themes on sense-
making of mathematical equations in science were noted
as they arose, and short descriptions were generated.
These themes and descriptions were presented to and
discussed over several iterations with members of an
educational research group resulting in the retention of
nine themes. These themes formed the nine categories
of the Sci-Math Sensemaking Framework. Distinctions
between categories are provided in the results section
where descriptions and examples are used to specify the
similarities and differences between categories.

Results
Mathematical equations in science contain conceptual
knowledge about mathematics based on the arrangement
of the symbols and the operations contained within the
equations. These equations also contain connections to
a scientific phenomenon. To enable characterization of
the sensemaking that is occurring in a science classroom
along both of these dimensions, the nine themes identi-
fied from the literature review were classified as either
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science sensemaking (referring to making sense of con-
nections to the scientific phenomenon) or mathematics
sensemaking (referring to making sense of mathematics).
The science sensemaking dimension of the Sci-Math
Sensemaking Framework contains four categories while
the mathematics sensemaking dimension contains five
categories (Table 2).

Categories within the science sensemaking dimension
There is a rich history of studying how students make
sense of science (Berland et al., 2016; diSessa, 1993;
Ford, 2012; Kapon, 2016; Odden & Russ, 2019; Russ,
Scherr, Hammer, & Mikeska, 2008). Science sensemak-
ing is defined as “the process of building an explanation
to resolve a perceived gap or conflict in knowledge”
(Odden & Russ, 2019, p. 187). Therefore, science sense-
making of mathematical equations used in science aims
at understanding the scientific knowledge represented by
the equations. Sensemaking of mathematical equations
in science can occur during classroom instruction of
equations or during the process of students interpreting
or developing or applying equations (Etkina, Warren, &
Gentile, 2006; Hestenes, 2010; Lazenby & Becker, 2019;

Redish & Kuo, 2015; Schuchardt & Schunn, 2016). The
four categories describing science sensemaking through
mathematical equations in science are Sci-Label, Sci-
Description, Sci-Pattern, and Sci-Mechanism (Table 2).
The four categories are ordered theoretically to repre-
sent an increasingly sophisticated understanding of the
scientific phenomenon.

Sci-Label sensemaking
Sci-Label sensemaking refers to connecting variables in
mathematical equations with characteristics of objects or
processes within the scientific phenomena. These char-
acteristics could refer to quantifiable aspects of specific
objects in the phenomenon (e.g., number of sperm types,
mass) or they could refer to a quantity that characterizes
a process within the phenomenon (e.g., time,
temperature, force) (Becker et al., 2017; Becker &
Towns, 2012; Bing & Redish, 2007; Geyer & Kuske-
Janßen, 2019; Hansson, Hansson, Juter, & Redfors, 2015;
Hu & Rebello, 2013; Izsák, 2004; Kuo et al., 2013; Lehavi
et al., 2017; Pietrocola, 2009; Quale, 2011; Redish, 2017;
Redish & Kuo, 2015; Rodriguez et al., 2019; Schuchardt,
2016; Schuchardt & Schunn, 2016; Svoboda & Passmore,

Table 2 Categories synthesized from literature to capture the sensemaking opportunities of mathematical equations in science
classrooms

Dimension Category Short definition Selected references

Science
sensemaking

Sci-Label Connects variables or operators in mathematical equations to
quantifiable characteristics of objects or processes in the scientific
phenomenon, i.e., the definition or scientific meaning of the
variable (e.g., m = mass)

Hansson et al., 2015; Hestenes, 2010; Izsák, 2004; Kuo
et al., 2013; Quale, 2011; Redish & Kuo, 2015

Sci-
Description

Uses a mathematical equation to provide a quantifiable measure
of a scientific phenomenon or object within the phenomenon.
(e.g., equations for diversity index, the equation for speed)

Bain, Rodriguez, & Towns, 2019b; Brahmia et al.,
2016; Lehavi et al., 2017; Lehrer & Schauble, 2010

Sci-Pattern Emphasizes the trend or pattern among variables in the
mathematical equation situated within the scientific phenomenon
(e.g., in the equation F =ma, acceleration is proportional to the
force on an object)

Baxter, Ruzicka, Beghetto, & Livelybrooks, 2014;
Michelsen, 2015; Redish, 2017; Rodriguez et al., 2019

Sci-
Mechanism

Emphasizes connections to a mechanism that explains how or
why a scientific phenomenon occurs (e.g., for the equation a!
¼ F

!
net=m, the net force distributed over mass causes the

acceleration of an object in the same direction)

Etkina et al., 2006; Hestenes, 2010; Redish, 2017;
Schuchardt & Schunn, 2016

Mathematics
sensemaking

Math-
Procedure

Emphasizes the predetermined steps or algorithms for problem-
solving

Hiebert & Lefevre, 1986; Hansson et al., 2015; Peled
& Segalis, 2005

Math-Rule Focuses on generalizable statements that guide calculation (e.g.,
the probability of two events occurring simultaneously is equal to
the product of the individual probabilities)

Bing & Redish, 2007; Hansson et al., 2015; Potgieter
& Blignaut, 2017; Schuchardt & Schunn, 2016

Math-
Structure

Focuses on the form of the equation, the numbers and
arrangement of symbols and operations (e.g., □ + □ as two
components added together)

Bain, Rodriguez, Moon, & Towns, 2019; McNeil &
Alibali, 2004; Pospiech, 2019; Redish, 2017; Sherin,
2001

Math-
Relation

Emphasizes quantitative relationships between variables in the
equations (e.g., v = 9.8m/sec2 ∗ t + v0 says that if v0 is 0, v will be
9.8 times bigger for every unit increase in t)

Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Lehavi
et al., 2017; Rodriguez, Santos-Diaz, Bain, & Towns,
2018; Sherin, 2001

Math-
Concept

Refers to a network of knowledge that enables explanation of the
what, how, and why of a mathematical idea (e.g., conceptually,
probability is the proportion of desired events out of all possible
events)

Even, 1990; Hiebert & Lefevre, 1986; Peled & Segalis,
2005; Rittle-Johnson & Schneider, 2015
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2013; Tuminaro & Redish, 2007; Wink & Ryan, 2019).
For example, in the equation Fnet ¼ ma, the variables F,
m, and a are defined as the net force applied to an ob-
ject, the mass of the object, and the net acceleration of
the object, respectively. It should be noted that operators
(e.g., division or addition symbols) could also receive la-
bels. For example, the division symbol in a = F/m could
be labeled as “distributed over” or simply as “divided by”
(Redish, 2017). However, explicit labeling of operators in
a manner parallel to variables was not present as a sen-
semaking process used by students or instructors in any
of the papers reviewed.
The first step in students’ interpretation of equations

or their application of equations to solve problems is
often labeling the variables. For example, when students
were asked how they would explain the equation v =
v0 + at to their friends, one student answered that “I
think the first thing you’d need to go over would be the
definitions of each variable and what each one means”
(Kuo et al., 2013, p. 46). Labeling variables in the math-
ematical equation has been identified in multiple studies
on students’ interpretation of equations when solving
quantitative problems in science (Becker & Towns, 2012;
Bing & Redish, 2007; Hu & Rebello, 2013; Redish &
Gupta, 2010; Rodriguez et al., 2019; Tuminaro & Redish,
2007). Literature on students’ development of mathemat-
ical equations also shows that one of the first steps is
selecting and quantifying characteristics of the scientific
phenomenon as variables (Izsák, 2004; Quale, 2011; Schu-
chardt & Schunn, 2016; Svoboda & Passmore, 2013).
Similarly, during instruction of mathematical equa-

tions in science, the first step is often defining the vari-
ables in the equation (Hansson et al., 2015; Lehavi et al.,
2017; Schuchardt, 2016; Schuchardt & Schunn, 2016). In
their study on the role of mathematics in physics lessons
in upper-secondary school, Hansson et al. (2015) pre-
sented a description of a lecture on electric fields. The
physics teacher introduced the equation F = EQ with “F
is the force that the electron senses in the electric field”
before proceeding to manipulate the equation (Hansson
et al., 2015, p. 628). It has been proposed that this map-
ping of variables in the equation to objects in the
phenomenon sets the foundation for problem-solving
(Kuo et al., 2013; Redish & Kuo, 2015; Rodriguez et al.,
2019; Schuchardt, 2016). Because defining important
variables relevant to the scientific phenomena is an es-
sential step during the sensemaking of the mathematical
equations, but does not go beyond making label connec-
tions, this category is placed on the first level of sense-
making in the Sci-Math Sensemaking Framework.

Sci-Description sensemaking
The Sci-Description sensemaking category captures the
use of mathematics to provide a measure of properties

of physical objects, or of scientific phenomena or sys-
tems (Bain, Rodriguez, & Towns, 2019b; Brahmia et al.,
2016; Geyer & Kuske-Janßen, 2019; Lehavi et al., 2017;
Lehrer & Schauble, 2010; Pospiech, 2019; Wink & Ryan,
2019). For example, density is a measure of the property
of a substance. The density equation ρ =m/V is an
invented quantifiable characteristic derived from the two
direct measures, mass and volume (Pospiech, 2019). This
category differs from Sci-Label because in Sci-Label the
focus is on establishing only the connection between a
variable and the name of a characteristic of a scientific
phenomenon, e.g., ρ is density, m is mass, and V is vol-
ume, while in Sci-Description the entire equation de-
scribes how a measure such as density is calculated.
Descriptive equations are found across scientific disci-
plines. In biology, the Shannon index equation is a de-
scription of the biodiversity of a biological system. In
chemistry, the equation for the equilibrium constant is a
measure of the state of a reaction at equilibrium (Bain,
Rodriguez, & Towns, 2019b). Many statistical equations
are descriptions of features of a system, e.g., mean,
standard deviation (Lehrer & Schauble, 2010).
Few studies address Sci-Description sensemaking

(Brahmia et al., 2016; Lehavi et al., 2017; Lehrer &
Schauble, 2010). Lehavi et al. (2017) describe a class dis-
cussion on the definition of speed, “the change in dis-
tance versus time” (p. 99), where the instructor tried to
focus students’ attention on the definition of speed as a
derived measure. However, students had difficulty with
the idea that speed is a variable described by the equa-
tion while time and distance are direct measurements.
Several other studies discussed instances where students
derived descriptive equations from data. In biology,
Lehrer & Schauble (2010) provide examples of students
inventing mathematical equations to describe character-
istics of a population of organisms (e.g., variation, aver-
age growth, measure of a healthy aquatic system). In
physics, Brahmia et al. (2016) listed several examples of
students’ inventing equations to describe the features of
the motion of cars, such as how fast cars move and how
rapidly cars speed up.

Sci-Pattern sensemaking
The category of Sci-Pattern sensemaking emerged from
multiple studies suggesting mathematical equations in
science represent patterns in scientific phenomena (Bain,
Rodriguez, & Towns, 2019b; Baxter et al., 2014; Becker
et al., 2017; Becker & Towns, 2012; Etkina et al., 2006;
Geyer & Kuske-Janßen, 2019; Gupta & Elby, 2011; Hes-
tenes, 2010; Hu & Rebello, 2013; Karam & Krey, 2015;
Kuo et al., 2013; Michelsen, 2015; Pospiech, 2019; Quale,
2011; Redish, 2017; Rodriguez et al., 2019; Sherin, 2006;
Svoboda & Passmore, 2013). The Sci-Pattern category
captures sensemaking of the trend or pattern among
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variables in the mathematical expression, how properties
of a system vary with respect to one another. For ex-
ample, possible sensemaking opportunities for science
patterns in the equation ρ =m/V are (1) for the same
substance, the larger its volume, the larger its mass or
(2) for objects with the same volume, the larger its dens-
ity, the larger its mass. This type of sensemaking differs
from Sci-Description because the emphasis is on under-
standing the relationships among variables in the equa-
tion as opposed to understanding that the equation is
providing a descriptive measurement of a specific char-
acteristic of an object or system.
The idea of sensemaking of scientific patterns em-

bodied within a mathematical expression in science is
presented in both theoretical and empirical literature
about mathematics in science. For example, in chemis-
try, mathematical equations are often used to describe
features of stable and dynamic chemical systems (Bain,
Rodriguez, Moon, & Towns, 2019; Bain, Rodriguez, &
Towns, 2019b; Rodriguez et al., 2019). The Gibbs free
energy equation, ΔG =ΔH − TΔS, describes the relation-
ship among change in entropy, change in enthalpy, and
the change in free energy in a chemical reaction. One
student referred to how the change in enthalpy (ΔH)
and the change in entropy (ΔS) lead to a negative change
in the Gibbs free energy (ΔG) when explaining the for-
mation of lipid membranes (Redish, 2017). Sci-Pattern
sensemaking is a common focus in learning activities de-
signed by teachers to integrate mathematics into science
(Baxter et al., 2014; Michelsen, 2015). For example, one
group developed a learning module for students to in-
vestigate the relationship between the coefficient of fric-
tion and braking distance for cars (Michelsen, 2015). In
this curriculum, the learning objective was for students
to develop an understanding of the pattern that for cars
with the same initial speed, the wetter the road, the lon-
ger the breaking distance.

Sci-Mechanism sensemaking
Mathematical equations can be used to describe a causal
relationship among objects within the phenomenon
(Etkina et al., 2006; Hestenes, 2010; Lazenby, Rupp,
Brandriet, Mauger-Sonnek, & Becker, 2019; Redish,
2017; Redish & Kuo, 2015; Schuchardt, 2016; Schuchardt
& Schunn, 2016). The causal relationship that can be de-
scribed by an equation is the scientific mechanism that
explains how or why a scientific phenomenon occurs
(Machamer, Darden, & Craver, 2000). A pattern only
provides information on which scientific entities are re-
lated, but a mechanism shows why the relationship
among entities behaves in that way. A single equation
can be interpreted or taught as describing a causal
mechanism and/or describing a pattern. For example,
the equation for Ohm’s law I = U/R, can be interpreted

or taught by an individual using Sci-Mechanism sense-
making as describing the causal mechanism for the
current: the current (I) in a conductor is caused by (rep-
resented by the equals sign) the voltage difference be-
tween two points (U) applied across (represented by the
division symbol) the resistance (R) (Sci-Mechanism). Al-
ternatively, individuals engaged in Sci-Pattern sensemak-
ing of this equation would focus on the relationship
among current, voltage, and resistance (e.g., as resistance
increases, current decreases) without describing the
cause for this pattern. Often in scientific research, the
pattern in a phenomenon is discovered and studied be-
fore the mechanism responsible for the pattern. There-
fore, Sci-Mechanism is placed at the fourth level of the
Science Sensemaking dimension.
Discussion of Sci-Mechanism sensemaking is not com-

mon in the literature (Etkina et al., 2006; Hestenes,
2010; Redish, 2017; Schuchardt, 2016; Schuchardt &
Schunn, 2016). Causal relationships among variables in
equations is often not explicit in canonical forms be-
cause the form of the equation hides the causal relation-
ship. For example, Newton’s second law is often
structured as Fnet ¼ ma , and interpreted as a pattern,
the total force on a system in a specific direction is pro-
portional to the acceleration in that direction. If, how-

ever, the equation is structured as a!¼ F
!

net=m , the
arrangement of the variables fosters a mechanistic inter-
pretation, the net force distributed over the mass of an
object results in acceleration of the object, while the vec-
tor indicates the direction of the net force (Redish,
2017). In biology, one curriculum restructured a math-
ematical equation used to predict offspring outcomes
from an expression of probability rules to “number of
different offspring outcomes = (number of egg types) *
(number of sperm types)” (Schuchardt & Schunn, 2016).
This restructuring shifts the sensemaking focus to the
mechanism for inheritance: any egg type can randomly
join with any sperm type to produce offspring. Students
who were instructed in this curriculum showed im-
proved quantitative skills and conceptual understanding
compared to students who were instructed in the use of
mathematical algorithms or rules (Schuchardt & Schunn,
2016).

Categories within the mathematics sensemaking
dimension
Mathematical equations in science do not just contain sci-
entific meaning, they also contain mathematical meaning
that can be accessed independently (Bain, Rodriguez,
Moon, & Towns, 2019; Kuo et al., 2013; Sherin, 2001).
Therefore, the Sci-Math Sensemaking Framework in-
cludes a separate mathematics sensemaking dimension.
Categories of sensemaking of mathematics were derived
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from literature on mathematics education and the use of
mathematics in science. Five categories emerged from the
literature review that captured opportunities for sense-
making of mathematical knowledge. The definitions of
these categories are provided in Table 2, and each cat-
egory will be illustrated below.

Math-Procedure sensemaking
The Math-Procedure category captures sensemaking that
focuses on the procedural knowledge or algorithms for
using mathematical equations to solve problems (Bain,
Rodriguez, & Towns, 2019b; Baroody, Feil, & Johnson,
2007; Becker et al., 2017; Bing & Redish, 2007; Case &
Gunstone, 2003; Fan & Bokhove, 2014; Gupta & Elby,
2011; Haapasalo & Kadijevich, 2000; Hiebert & Lefevre,
1986; Hu & Rebello, 2013; Jacobs, Franke, Carpenter, Levi,
& Battey, 2007; Karam, 2014; Kuo et al., 2013; Lehavi
et al., 2017; Peled & Segalis, 2005; Pietrocola, 2009;
Pospiech, 2019; Radmehr & Drake, 2019; Redish, 2017;
Redish & Kuo, 2015; Rittle-Johnson & Schneider, 2015;
Schuchardt, 2016; Schuchardt & Schunn, 2016; Star, 2005;
Tsaparlis, 2007; Tuminaro & Redish, 2007; Uhden, Karam,
Pietrocola, & Pospiech, 2012; Wells, Hestenes, &
Swackhamer, 1995; Wink & Ryan, 2019). Procedural
knowledge was first defined by Hiebert and Lefevre (1986)
and has come to mean knowing the sequential steps in
solving problems without having conceptual understand-
ing (Baroody et al., 2007; Haapasalo & Kadijevich, 2000;
Jacobs et al., 2007; Star, 2005). Peled and Segalis (2005)
presented the subtraction procedure that students can en-
gage in when solving the equation 310 − 164 ¼ ? in a
mathematics classroom. These steps included (1) borrow-
ing from the tens column, (2) subtracting 4 from the ones
column, (3) borrowing from the hundreds column, (4)
taking away 6 from the tens column, and (5) taking away
1 from the hundreds column. The focus on procedural
knowledge in mathematics classes has been criticized as
one reason for students’ difficulty in understanding the
meaning of equations or adopting efficient problem-
solving strategies for new or complex problems (Cañadas,
Molina, & del Río, 2018; Jacobs et al., 2007; Peled &
Segalis, 2005). Similarly, in science classrooms, researchers
have found that students tend to rely on algorithms with-
out conceptual understanding of the science in solving
problems and teachers tend to focus instruction on using
mathematical procedures to do calculation (Bain,
Rodriguez, & Towns, 2019b; Bing & Redish, 2007;
Hansson et al., 2015; Hu & Rebello, 2013; Kuo et al., 2013;
Lehavi et al., 2017; Redish, 2017; Redish & Gupta, 2010;
Redish & Kuo, 2015; Schuchardt, 2016; Schuchardt &
Schunn, 2016; Tuminaro & Redish, 2007; Wink & Ryan,
2019). One description captured a high school physics
instructor teaching the equation F = EQ. After linking the
variables in the equation to science entities, the teacher

presented the steps of how to solve the problem mathem-
atically and asked students to work on similar textbook
problems (Hansson et al., 2015). The focus on mathemat-
ical procedures during instruction might be one reason
why many students do not engage in sensemaking of
mathematical concepts or make connections to the scien-
tific phenomenon when problem-solving. This category
has been placed at the first level in the math sensemaking
dimension.

Math-Rule sensemaking
The Math-Rule sensemaking category identifies sense-
making of generalizable statements derived from fun-
damental mathematics principles which are used to
guide calculation or decision-making (Baroody et al.,
2007; Bing & Redish, 2007; Dixon, Deets, & Bangert,
2001; Haapasalo & Kadijevich, 2000; Hansson et al.,
2015; Hiebert & Lefevre, 1986; Moss & Case, 1999;
Njini, 2012; Radmehr & Drake, 2019). For example,
the knowledge of divisibility rules such as a dividend
is divisible by 5 if the last digit is 0 or 5 enables
quick decision-making of whether a dividend is
divisible (Potgieter & Blignaut, 2017). Rules can be
used to guide the step-by-step calculation; however,
compared to procedural knowledge, mathematical
rules are more generalizable. For example, the rule
pertaining to the order of mathematical operations
applies to all types of calculation in all problem-
solving processes, while the step-by-step procedure
for different problems may vary depending on prob-
lem type. Because mathematical rules have greater
generalizability than mathematical procedures but can
still be employed without understanding the other
levels, they are placed at the second level of the
mathematics sensemaking dimension.
In the literature, references to using mathematical

rules to make sense of mathematical equations in sci-
ence is often found in descriptions of students’ problem-
solving process rather than during instruction (Bing &
Redish, 2007; Hansson et al., 2015; Hu & Rebello, 2013;
Schuchardt & Schunn, 2016). When trying to under-
stand the relation between the direction of velocity and
the viscous force represented by the equation Fv = −bv,
students referred to the mathematical rule that “two
negatives cancel out” (Bing & Redish, 2007). Similarly,
Hansson et al. (2015) described how one student manip-

ulated the equation (mgh ¼ mv2
2 ) by using the rule of div-

ision of fractions. In science classrooms, Schuchardt and
Schunn (2016) describe an often-used approach to
teaching inheritance where the instructor presents the
probability rule that “If both events are required then
multiply the probability of the two events together” to
help students make sense of calculating the probability
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of producing offspring with specific combinations of
genes.

Math-Structure sensemaking
In the Math-Structure sensemaking category, the focus
is on understanding the arrangement of variables (sym-
bols) and operations of the mathematical equations
(Bain, Rodriguez, & Towns, 2019a, 2019b; Becker &
Towns, 2012; Bing & Redish, 2007; Brahmia et al., 2016;
Cañadas et al., 2018; Hestenes, 2010; J. Hiebert &
Lefevre, 1986; Hu & Rebello, 2013; Izsák, 2004; Jacobs
et al., 2007; Karam, 2014; Karam & Krey, 2015; Kirshner,
1989; Kuo et al., 2013; Moss & Case, 1999; Pospiech,
2019; Redish, 2017; Redish & Kuo, 2015; Rodriguez
et al., 2019; Rodriguez et al., 2018; Schuchardt &
Schunn, 2016; Sherin, 2001). The idea of mathematical
structure has often been discussed in science education
literature from the perspective of symbolic forms, which
was proposed by Sherin (2001) as “the particular ar-
rangement of symbols in an equation [that] expresses a
meaning that can be understood” (p. 480). Because inter-
pretation of the mathematical structure depends on
knowing the symbolic arrangements in particular con-
texts, greater sensemaking is required than when apply-
ing mathematical rules. Therefore, Math-Structure
sensemaking is placed at the third level in the Mathem-
atics sensemaking dimension.
Math-Structure sensemaking emphasizes the number

and location of the variables and operations in the equa-
tion. Compared to the typical addition structure, 3 + 4 +
5 + 3 = _, mathematics students are more likely to offer
an incorrect answer when the equation is structured as 3
+ 4 + 5 = 3 + _ (McNeil & Alibali, 2004). In the develop-
ment of mathematical representations of scientific phe-
nomena, knowledge of mathematical structures provides
resources for scientists to organize mathematical sym-
bols and operations to represent the target relationship
in the phenomenon (Pospiech, 2019; Redish & Kuo,
2015). Sherin (2001) proposed that students use “sym-
bolic forms” to make sense of physics equations. Equa-
tions in the symbolic form of □+□ have a structure of
two components adding together. Sherin (2001) provides
an example of how students use their knowledge of the
mathematical structure of equations to express an idea
from their observations of a physical phenomenon that
friction consists of two components.
Students tend to memorize the structure of canonical

equations without conceptual understanding of the
mathematics which leads to their difficulty in choosing
or developing a meaningful equation for the target scien-
tific phenomenon (Bain, Rodriguez, Moon, & Towns,
2019; Becker & Towns, 2012; Redish, 2017; Rodriguez
et al., 2018; Sherin, 2001). For example, Bain, Rodriguez,
Moon, and Towns (2019) show that students tend to

conflate the ideas of rate constant and equilibrium con-
stant because of similarities in the structure of the equa-
tions. One student expresses the difficulty as “It just
seems that everything is the same almost, and it’s hard
to distinguish each equation and each principle” (Bain,
Rodriguez, Moon, & Towns, 2019, p. 1573). This quote
suggests that the student recognizes that the equations
look the same (have the same structure) but realizes that
they represent different concepts (principles).

Math-Relation sensemaking
Math-Relation sensemaking refers to understanding the
quantitative relationships expressed in the equation
(Bain, Rodriguez, & Towns, 2019a; Baroody et al., 2007;
Becker et al., 2017; Becker & Towns, 2012; Cañadas
et al., 2018; Carlson et al., 2002; Dixon et al., 2001; Hes-
tenes, 2010; Izsák, 2004; Izsák & Jacobson, 2017; Jacobs
et al., 2007; Karam, 2014; Kuo et al., 2013; Lazenby &
Becker, 2019; Lehavi et al., 2017; Levy & Wilensky, 2009;
Moss & Case, 1999; Pietrocola, 2009; Pospiech, 2019;
Redish, 2017; Redish & Kuo, 2015; Rodriguez et al.,
2018; Rodriguez et al., 2019; Schuchardt, 2016; Sherin,
2001; Smidt & Weiser, 1995; Thompson & Carlson,
2017; Tuminaro & Redish, 2007; Uhden et al., 2012; Von
Korff & Sanjay Rebello, 2014; Wink & Ryan, 2019). Carl-
son et al. (2002) defined covariational reasoning as at-
tending to the way in which two variables change with
respect to one another. For example, in the equation y =
2x, the math-relation embedded in the equation is that y
increases 2-fold for every unit increase in x. An under-
standing of quantitative relationships is often built on an
understanding of the mathematical structure of the
equation (Bassok, Chase, & Martin, 1998). However, the
mathematical structure is often not referred to during
sensemaking of quantitative relationships, perhaps be-
cause the knowledge of mathematical structure is intui-
tive and not explicitly available to students. Because
Math-Relation sensemaking of an equation is built on
understanding the mathematical structure, Math-
Relation is placed on the fourth level in the mathematics
sensemaking dimension.
Math-Relation sensemaking (coordination of relation-

ship between quantities) has been conflated in the litera-
ture with Sci-Pattern sensemaking (coordination of the
relationship between properties of a scientific
phenomenon) (e.g., Carlson et al., 2002). We have distin-
guished them in this framework because as in the ex-
ample of the equation for a line, y = 2x, quantitative
coordination can occur separately from any knowledge
of connection to real-world measures. Moreover, when
discussing sensemaking of mathematical equations in
science classrooms, it has been observed that students
tend to limit their sensemaking to the Math-Relation
sensemaking space (Becker & Towns, 2012; Izsák, 2004;
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Lehavi et al., 2017; Svoboda & Passmore, 2013; Wink &
Ryan, 2019). In Izsák’s study, two students developed a
mathematical equation to represent the relationship of
turns of a crank handle to the distance a weight is
moved, and they discuss the phenomenon entirely in
terms of quantitative relationships “Zero inches moves 4
point 5 inches per crank. And the weight starting at 14
inches only moves 3 inches.” (Izsák, 2004, p. 494) There
is no discussion of the physics of the phenomenon. In
another study (Lehavi et al., 2017), the teacher expressed
concern that “for students who hold the mathematical
conceptualization, time, speed and distance are merely
three quantities related by an equation” even when the
teacher tried to use a teaching strategy to move students
into physical understanding of the equation. In this case,
students were limiting their sensemaking to the quanti-
tative relationships between time, speed, and distance.
They were not connecting to the Sci-Pattern sensemak-
ing that speed, time, and distance are physical properties
of a scientific phenomenon that have a logical relation-
ship to one another: if speed increases, the distance trav-
eled in a specific time period will also increase.

Math-Concept sensemaking
Math-Concept sensemaking focuses on a network of
knowledge that enables explanation of the what, how, and
why of a mathematical idea, referred to as conceptual
knowledge (Baroody et al., 2007; Even, 1990; Fan &
Bokhove, 2014; Fuson et al., 1997; Haapasalo & Kadijevich,
2000; Hiebert & Lefevre, 1986; Hu & Rebello, 2013; Jacobs
et al., 2007; Moss & Case, 1999; Peled & Segalis, 2005;
Radmehr & Drake, 2019; Star, 2005; Thompson &
Carlson, 2017). For example, a conceptual understanding
of probability for two independent events A and B cooc-
curring includes understanding what probability means,
why the individual probabilities for the two events are
multiplied, and when to perform this calculation and why.
Sensemaking of mathematical concepts is the prerequisite
for reasoning and justification in mathematics problem-
solving (Peled & Segalis, 2005).
Students struggle with conceptual understanding of

various mathematical ideas in mathematics classrooms
(Even, 1990; Jacobs et al., 2007; Moss & Case, 1999). In-
correct or incomplete understanding of the concepts can
lead to adoption of incorrect procedures and rules, or
difficulty in solving novel problems (Jacobs et al., 2007).
For example, students sometimes provide 93 as the an-
swer for 57þ 36 ¼ ?þ 34, instead of 59. This error indi-
cates that they are treating the equals sign as a signal to
carry out the calculation that precedes it instead of treat-
ing it as an indicator of a relationship between the two
sides of the equation (Jacobs et al., 2007). Concept-based
reasoning in mathematics can lead to more efficient
problem-solving. Peled and Segalis (2005) investigated

students’ problem-solving with subtraction. When stu-
dents were asked to solve a word problem for the time dif-
ference between “one week, 5 days, and 18 hours” and “2
weeks, 3 days and 4 hours,” students who applied a more
conceptual strategy were more successful than those who
applied a rules-based approach that dictated that all units
of time needed to be converted to the same unit. The diffi-
culty that students have with conceptual understanding in
mathematics has been attributed to a focus in instruction
on procedures over concepts (Hill et al., 2005).
Math-Concept sensemaking in science classrooms is

relatively underexplored. One biology curriculum devel-
oped by Schuchardt and Schunn (2016) seeks to have
students understand the concept of probability in the
context of inheritance as the number of desired events
out of all possible events. Students who participated in
this curriculum showed improved ability to solve novel
and complex probability problems situated in inherit-
ance compared to students who were not exposed to this
curriculum. Reflecting the mathematics education litera-
ture, Math-Concept is placed at the highest level of the
mathematics sensemaking dimension.

Discussion
The Sci-math sensemaking framework is informed by
research across multiple fields
The categories of sensemaking identified in this paper
are drawn from literature from several fields including
studies of mathematics in science education, and math-
ematics education. Research from physics, chemistry,
and biology was synthesized to identify the four categor-
ies in the science sensemaking dimension of the Sci-
Math Sensemaking Framework. Therefore, the types of
science sensemaking that have been identified are ex-
pected to apply across different disciplines. Additionally,
evidence from both mathematics education and science
education was used to generate each category in the
mathematics sensemaking dimension of the framework.
These categories represent a synthesis of ideas from both
fields. Therefore, the Sci-Math Sensemaking Framework
is expected to provide a common structure for education
studies on mathematics in science contexts. The avail-
ability of a common structure will enable descriptions of
instruction in sensemaking and students’ sensemaking of
equations during problem-solving to be compared across
disciplines. Comparative studies will permit the abstrac-
tion of common principles that aid in sensemaking as
well as the development of testable models of how stu-
dents engage in sensemaking and how sensemaking of
equations affects students’ problem-solving.

Sensemaking opportunities on the science dimension
Categorization of the science sensemaking opportunities
when working with mathematical equations in science
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offers a framework for exploring the different types of
sensemaking that occurs in science classrooms. The four
sensemaking categories on the science dimension
emerged from literature on the process of mathematical
modeling in science (Etkina et al., 2006; Hestenes, 2010;
Izsák, 2004; Lazenby & Becker, 2019; Lehrer & Schauble,
2010; Levy & Wilensky, 2009; Michelsen, 2015; Redish,
2005, 2017; Redish & Gupta, 2009; Redish & Kuo, 2015;
Uhden et al., 2012), descriptions of students’ sensemak-
ing of mathematics in science during problem-solving
(Hu et al., 2013; Rodriguez et al., 2018; Sherin, 2001),
and descriptions of instructional approaches to teaching
mathematics in science (Lehrer & Schauble, 2010;
Michelsen, 2015; Schuchardt & Schunn, 2016).

Sensemaking opportunities on the mathematics dimension
The categories identified in the mathematics sensemaking
dimension of the Sci-Math Sensemaking Framework pro-
vide a nuanced description of the multiple types of math-
ematics sensemaking that can occur when working with
mathematical equations in science. The teaching and
learning of mathematical procedures, rules, structure,
relation, and concepts have been widely discussed in
mathematics education studies (Baroody, 2003; Cañadas
et al., 2018; Hiebert & Lefevre, 1986; Moss & Case, 1999;
Peled & Segalis, 2005; Star, 2005). The use of mathematics
in science offers the opportunity for students to practice
mathematics as mathematicians, thus developing their
mathematical thinking (Schoenfeld, 1992). In science,
development of canonical mathematical expressions in
science involves selection of a mathematical structure,
including the specific variables and their arrangement, that
best represents a specific scientific idea (Borromeo Ferri,
2006; Dukerich, 2015; Diaz Eaton et al., 2019; Gouvea &
Passmore, 2017; Halloun, 2007; Hestenes, 2010). However,
during instruction of mathematical equations in science,
the rich knowledge in mathematics is often neglected
(Hansson et al., 2015; Lazenby & Becker, 2019; Redish &
Kuo, 2015; Svoboda & Passmore, 2013). By including a
separate mathematics sensemaking dimension, the Sci-
Math Sensemaking Framework emphasizes the import-
ance of mathematics sensemaking as a means for students
to grapple with the represented science concepts (Bain,
Rodriguez, Moon, & Towns, 2019; Brahmia et al., 2016;
Sherin, 2001).

Relationship among different categories of sensemaking
The categories within the dimensions of the Sci-Math
Sensemaking Framework have been organized to repre-
sent increasingly sophisticated levels of sensemaking
from Sci-Label to Sci-Mechanism in the science sense-
making dimension and from Math-Procedure to Math-
Concept in the mathematics sensemaking dimension.
These levels have been theorized based on the referenced

literature and on logic. For example, in the literature of
science education, mechanistic reasoning is thought to
reflect a deeper understanding of the scientific
phenomenon than sensemaking of the labels of the en-
tities or of the pattern in the phenomenon. (Machamer
et al., 2000; Illari & Williamson, 2012; Russ et al., 2008).
Logically, understanding Sci-Mechanism requires identi-
fying associations between variables in the mathematical
equation and properties of the scientific phenomenon.
However, the placement of some of these levels (e.g., Sci-
Description below Sci-Pattern) needs to be assessed by
additional research.
During the interpretation or instruction of one equa-

tion, multiple types of sensemaking may occur simultan-
eously. With reference to the density equation, Sci-
Description sensemaking can only occur after the refer-
ents of the variables have been understood (Sci-Label
sensemaking), and Sci-Description sensemaking can
occur together with understanding the patterns repre-
sented in the equation (Sci-Pattern). Similarly, in the
mathematics dimension, Math-Concept is the most ad-
vanced type of sensemaking, but Math-Concept sense-
making may occur in conjunction with application of
procedures and rules and sensemaking of mathematical
structures.
In science classrooms, little priority is placed on Sci-

Mechanism or Math-Concept sensemaking of mathem-
atical equations (Bing & Redish, 2009; Schuchardt &
Schunn, 2016; Stamovlasis et al., 2005). Sensemaking at
these higher levels has shown promise with elevating
students’ understanding of science concepts and their
ability to solve quantitative problems (Mestre, Docktor,
Strand, & Ross, 2011; Schuchardt & Schunn, 2016;
Taasoobshirazi & Glynn, 2009). However, this does not
mean that instruction of mathematical equations needs
to always occur at these higher levels. For example, if
the goal is to rapidly develop students’ ability to quickly
solve problems of the same type, then Sci-Label and
Math-Procedure may be most efficient. Additionally,
some equations can only enable a Sci-Description or
Sci-Pattern sensemaking (e.g., density equation or diver-
sity index).

Sci-math Sensemaking framework to identify
opportunities for blended sensemaking
Specifying the sensemaking occurring in each of the two
dimensions of the Sci-Math Sensemaking Framework
will permit identification and description of opportun-
ities provided for blended sensemaking (Fauconnier &
Turner, 1998). For example, students who rely on algo-
rithms without connection to the scientific knowledge
embodied in the equations (Becker & Towns, 2012; Bing
& Redish, 2009; Case & Gunstone, 2003; Kuo et al.,
2013; Stewart, 1983) are using Sci-Label sensemaking to
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identify the variables combined with Math-Procedure to
solve the problem following a prescribed step-by-step
process. These two types of sensemaking provide little
opportunity for blended sensemaking, and students
using these two types of sensemaking have difficulty ap-
plying the mathematical equation to different contexts
(Redish, 2017; Stewart, 1983; Taasoobshirazi & Glynn,
2009). On the other hand, when students combine sen-
semaking of mathematical structures of an equation with
sensemaking of mechanisms responsible for the scien-
tific phenomenon, they are blending two types of sense-
making (Math-Structure and Sci-Mechanism) (Sherin,
2001). Students may start sensemaking of mathematical
equations from either the mathematics sensemaking dimen-
sion or the science sensemaking dimension. In chemistry,
accessing sensemaking of an equation from either dimension
could result in students moving to the other dimension for a
richer understanding of the equation (Bain et al., 2018). In-
struction that provides opportunities for blended sensemak-
ing has been shown to improve students’ understanding of
the scientific phenomenon and their ability to solve complex
and novel quantitative problems (Schuchardt & Schunn,
2016). Additionally, those with more experience in a field are
more likely to apply blended sensemaking to and be more
successful at solving quantitative problems, than those with
less experience (Redish, 2017).

Relationship between sensemaking opportunities and
pedagogical strategies
The types of sensemaking opportunities of mathematical
equations in science are often related to the pedagogical strat-
egies that are used. Evidence from innovative instructional ap-
proaches synthesized in this review shows that instruction
which has students develop mathematical equations to model
scientific phenomena can create opportunities for students to
engage in higher levels of sensemaking, including Sci-
Description (Lehrer & Schauble, 2010), Sci-Pattern (Baxter
et al., 2014), Sci-Mechanism (Schuchardt & Schunn, 2016),
Math-Structure (Izsák, 2004), and Math-Concept (Schuchardt
& Schunn, 2016). However, this relationship is not absolute.
Sensemaking can occur in classes taught by different methods.
Students can spontaneously engage in Sci-Mechanism and
Math-Structure sensemaking after having equations provided
to them during instruction (Mestre et al., 2011; Redish, 2017;
Stewart, 1983; Taasoobshirazi & Glynn, 2009). By separating
sensemaking from pedagogical strategies, it is possible to in-
vestigate whether different teaching methods can promote or
limit the type of sensemaking opportunities that occur during
students’ quantitative problem-solving.

Limitations
The categories of sensemaking of equations in science
that are presented in the Sci-Math Sensemaking Frame-
work are drawn from published literature. Moreover, the

scientific disciplines that were included were only biol-
ogy, physics, and chemistry, excluding disciplines such
as geology. It is possible that other sensemaking oppor-
tunities will be discovered during analysis of instruction in
different contexts or in investigation of scientists’ use of
mathematics in their work. The framework is intended to
be modifiable to allow addition of new categories.

Conclusions
This Sci-Math Sensemaking Framework is generated
from a systematic literature review that combines theor-
etical and empirical evidence on the teaching and learn-
ing of equations in mathematics and science. The
categories developed in this study capture sensemaking
opportunities of equations in science that has rarely
been studied. This framework can provide a consistent
way for researchers to compare sensemaking of math-
ematical equations in science across studies. The frame-
work is intended to be used by researchers to examine
students’ interpretation and application of mathematical
equations as well as the sensemaking opportunities cre-
ated during class by instructors. This framework may
also be used by instructors to reflect on their own teach-
ing, to examine whether the sensemaking opportunities
provided in class align with their learning objectives.
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