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Abstract

Background: Informal science activities are critical for supporting long-term learning in STEM fields. However, little is
known about the kinds of activities children and their families engage in outside of formal settings and how such
activities foster long-term STEM engagement. One gap in the literature is the lack of data that document self-designated
STEM activities and measure their impact on later engagement with learning opportunities that are distributed over time
and contexts (i.e., the informal learning ecology). One reason for this gap is that there has been little measurement during
the events, because using only a few measures (which can be completed briefly) may reduce psychometric validity. We
developed an instrument, the STEMwhere app, to measure four informal science learning supports (interest, engagement,
identity, and goal setting), across the informal learning ecology. For a period of 2months, 26 children ages 7–14 used the
app to check-in during STEM activities and answer eight questions about each activity.

Results: The results demonstrated that most STEM activities occurred in the home, often consisted of hands-on activities,
suggesting that the family home provides more opportunity for engagement than other locations. Child interest and
engagement ratings were high in all settings and activities suggesting that high situational interest was relatively
common during these activities. Further, user ratings suggested relations between different learning supports. For
example, increases in interest were related to increases in subsequent engagement and “fun” goals, while increases in
engagement were related to increases in learning goals. By collecting participant-generated check-ins, we identified
periods of increasing activity and their likely triggers, which is a novel measure we refer to as topical runs. We
operationally defined a run as a pattern of check-ins that were unlikely to occur by chance and shared a topic or location.

Conclusions: Our results serve as both a proof-of-concept for a novel tool for measuring informal STEM activity in the
wild that provides data consistent with existing measures and provide novel findings that contribute to our
understanding of where and how informal science activity occurs.
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Introduction
Measuring informal STEM activity across multiple time
points distributed across multiple contexts (hereafter, the
informal learning ecology; Erdogan & Stuessy, 2015) is im-
portant because surprisingly little is known about what
types of experiences outside of school ignite and sustain
children’s STEM learning (Science, Technology, Engineer-
ing, and Mathematics; National Academies of Sciences, En-
gineering, and Medicine (NASEM), 2016). In this paper, we
describe the results of a preliminary investigation using a
novel tool, the STEMwhere app, to measure informal

STEM activity across the informal learning ecology. Specif-
ically, we asked 26 children between ages seven and four-
teen to log into the app whenever they were engaged in a
STEM activity, as defined by the participant, and to rate
their interest, engagement, identity, and learning goals. The
data allowed us to measure STEM activity at multiple points
in time and across multiple contexts, which provided new
findings regarding where STEM learning occurs and how
these activities influenced support for learning over time.

Why is informal STEM learning important?
A well-trained STEM workforce is necessary for economic
success in the twenty-first century because business, indus-
try, and government agencies increasingly rely on workers
with STEM skills (NASEM, 2016a). We follow the National
Science Foundation (USA) in defining STEM as any activity
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within one of the four content areas denoted by the acro-
nym (see Gonzalez & Kuenzi, 2012; National Academies of
Sciences, Engineering, and Medicine. 2018). Further, we an-
ticipate that many activities could represent multiple areas
of STEM content, though these activities may or may not
be integrated within the activity (Kelley & Knowles, 2016).
STEM education is the primary driver for helping children
become adults with STEM skills; however, criticism of
STEM education has arisen within the US educational sys-
tem because little progress has been made on international
test scores (Provasnik, Malley, Stephens, Landeros, Perkins,
& Tang, 2016; Grønmo, Lindquist, Arora, & Mullis, 2015).
Moreover, although interest in STEM is common in early
childhood, a steady decline in the number of students en-
gaging in STEM courses and activities occurs through sec-
ondary school to universities (NASEM, 2016a). Thus, only
a fraction of those interested in STEM as children begin a
STEM career as adults (NASEM, 2016b).
Informal STEM learning has the potential to be an im-

portant part of the educational support system for helping
young children move from nascent interest in STEM to a
career in STEM (i.e., the STEM pipeline; NASEM, 2016a). A
recent estimate suggests that children spend only 20% of
their time learning in formal educational environments
(Eshach, 2007; Falk & Dierking, 2010; Sacco, Falk, & Bell,
2014), which suggests that informal environments provide
the means to augment learning in formal settings (Eshach,
2007; Morris, Masnick, Baker, & *Junglen, A., 2015) and
may support long-term engagement (Falk, Storksdieck, &
Dierking, 2007; Jones & Stapleton, 2017). Anecdotally, biog-
raphies of notable scientists suggest that their interest in
their field emerged from informal, rather than formal experi-
ences. For example, Neil deGrasse Tyson’s interest in astro-
nomy began with a trip to the Hayden planetarium (Farmer
& Shepherd-Wynn, 2012). Even if such experiences do not
increase STEM knowledge, they might support learning by
increasing interest or identity, which are non-cognitive sup-
ports for learning (Fenechel & Schweingruber, 2010). To
promote such learning, it is important to understand what
types of activities lead to later engagement. Although some
activities (e.g., a trip to the planetarium) might fit traditional
definitions of STEM, other types of activities (e.g., playing
with a drone) might not fit traditional definitions. In either
case, both types of activities may trigger an increase in
STEM engagement and are both included in our use of
STEM activity. In summary, a promissory note of informal
STEM learning is that it will contribute to building a health-
ier pipeline to science careers by promoting STEM learning.

Supporting STEM learning
STEM learning is traditionally defined as the accumulation
of relevant knowledge and processes of science (e.g., creating
unconfounded experiments; Zimmerman, 2007), which
emerge by augmenting cognitive mechanisms through

experience with culturally transmitted knowledge (Morris,
Croker, Masnick, & Zimmerman, 2012). However, this accu-
mulation of knowledge occurs within STEM-related activities
and requires non-cognitive supports such as interest, engage-
ment, and identity (see Table 1 in the “Method” section for
conceptual and operational definitions; Fenechel & Schwein-
gruber, 2010). Learning supports are critically important for
acquiring STEM knowledge because learning opportunities
alone are not sufficient, as demonstrated by students who at-
tend science class but fail to learn relevant content. How-
ever, there is a dearth of data measuring children’s
informal STEM activity across the informal learning ecol-
ogy that furthers our understanding of how specific learn-
ing supports during these activities facilitate later science
learning (Dorph, Schunn, & Crowley, 2017).
We focus on four learning supports for knowledge

acquisition. Interest refers to attention to content over time
(Hidi & Renninger, 2006; Maltese, Melki, & Wiebke, 2014).
Engagement is involvement or participation in content,
which results in positive emotional reactions (Eberbach &
Crowley, 2017; Milne & Otieno, 2007). Although interest
and engagement can be mutually influential (e.g., being in-
terested in a topic often drives engagement), interest is a
psychological state of which a student may be unaware
(e.g., interest triggered by a phenomenon), whereas engage-
ment generally refers to participation in an activity or event,
so the two need not be related (e.g., one may be engaged
without being interested; Renninger & Bachrach, 2015).
Moreover, interest is often generated by and limited to cap-
tivating phenomena (i.e., situational interest) but can be
maintained over long periods of time (well-developed indi-
vidual interest; Renninger & Hidi, 2015). Well-developed
STEM interest often manifests itself into sustained STEM
engagement with STEM topics, which leads to knowledge
acquisition (Thoman, Sansone, & Geerling, 2017).
Identity is recognition by a person and others that she or

he can contribute to a STEM field. The recognition from
another person (e.g., a parent or teacher) appears to be im-
portant in acquiring and sustaining STEM identity (Barton
& Tan, 2010). Positive STEM identity is a predictor of
higher levels of engagement and motivation (e.g., “I could
become a scientist”; Calabrese Barton & Berchini, 2013). In
a recent investigation, students who read stories about the
intellectual struggles of famous scientists (e.g., Einstein had
trouble in school) were more likely to view their own
struggles positively (a component of identity) and im-
proved their grades more than students who read about
only the intellectual achievements of these scientists (Lin-
Siegler, Ahn, Chen, Fang, & Luna-Lucero, 2016). Positive
STEM identity helps to sustain the drive to pursue STEM
over the long-term, a critical factor in choosing a career in
STEM (Barton & Tan, 2010).
In addition to the motivational supports identified above

(interest, engagement, and identity), goal setting is a central
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component of information-processing models of self-
regulated learning (Dunlosky & Metcalfe, 2008; Winne,
2001; for varying theoretical perspectives on self-regulation,
see Zimmerman & Schunk, 2001). Self-regulated learners
are active agents who set goals for their learning and then
attempt to evaluate and regulate their learning, interest,
motivation, and performance based on their knowledge
about how best to meet these learning goals (Pintrich, 2000;
Winne, Hadwin, Schunk & Zimmerman, 2008). People
who set goals are more productive and effective, so measur-
ing the kinds of goals that children set while engaging in in-
formal STEM learning can offer insights into students’
interest, engagement, and ultimate achievement. In sum-
mary, the combination of learning supports (goal setting,
interest, engagement, and identity) provides important links
between informal experiences and subsequent persistence
and achievement in STEM. Although all have been investi-
gated separately, there is a gap in our knowledge of the rela-
tion between STEM experiences and increasing STEM
activity. One reason for this gap is the methodological limi-
tation in collecting data that reveal the types of events that
ignite STEM interest and reveal their impact over time.
One goal of the present project is to develop a tool to

measure STEM activities and their impact on interest, en-
gagement, identity, and learning goals (hereafter learning
supports1). The interaction between how learners engage
with STEM activities will influence what one takes away
from a particular experience—whether it be attending a sci-
ence center or working with a home weather station (Winne
& Hadwin, 1998; Bjork, Dunlosky, & Kornell, 2013; for re-
views, see Zimmerman & Schunk, 2001). For example, a
child interested in baking might be more likely to set learn-
ing goals in this context (e.g., seeing the need to learn about
fractions to double a recipe) than a child less interested in
baking. As a result, each support might influence other sup-
ports, depending on previous experiences, and relevant con-
texts. A child with a high interest in baking might stay
engaged with this topic for a longer period of time as

compared to a child with little interest. In this way, these
learning supports may benefit or hinder learning in a
dynamic fashion in which changes in one support influences
others, which may lead to additional engagement or learning
opportunities (Eberbach & Crowley, 2009). Returning to our
previous example, a child who had a positive experience
learning fractions while baking with a parent might be more
interested in learning fractions while solving relatively unen-
gaging worksheets in a classroom. In a survey of university
students enrolled in STEM programs, many students re-
ported their interest in STEM being sparked by a range of
activities that might not be perceived as being true STEM ac-
tivities, such as watching television programs, playing out-
doors, and doing activities with their families (Maltese et al.,
2014). Although informal experiences have the potential to
improve formal learning, the evidence suggests that translat-
ing the enthusiasm from informal experiences into class-
room learning is difficult and often unsuccessful (Nasir,
2008; Saxe, 1988; Stevens, Satwicz, & McCarthy, 2008). Thus,
it is critical to follow what participants consider STEM expe-
riences, because it is unclear which types of experiences lead
to increases in activity and improvements in learning.

Measuring the informal learning ecology and activity
within this ecology
STEM activity occurs within a learning ecology, which refers
to learning opportunities that are distributed over time and
space (Erdogan & Stuessy, 2015). To understand the impact
of the learning ecology on informal STEM activity over a
period of time, measures are needed to address the following
questions: where do informal activities take place, with what
kinds of STEM activities are children engaged, why or how
are children engaged (as reflected by the learning supports),

Table 1 STEM learning supports: conceptual and operational definitions

Learning
support

Conceptual definition Operational definition

Self-report Behavioral

Interest Engaging with or reengaging with
content over time (Hidi & Renninger,
2006

Rating interest on a 10-point Likert scale Change in the number of and duration between
check-ins; increasing rates suggest increasing
interest

Engagement Involvement or participation in content,
resulting in positive emotional reactions
(Milne & Otieno, 2007; Wang et al, 2016

Rating engagement on a 10-point Likert
scale

Patterns in user-initiated check-ins; High fre-
quency check-ins on the same topic

Identity A recognition by a person and others
that she or he can contribute to a STEM
field (Calabrese Barton & Berchini, 2013

Separate child and parent rating
agreement with statements about seeing
themselves in STEM fields on a 10-point
Likert scale

Counting the number of user-initiated check-ins
related to identity ratings; counting specific
terms related to identity (see Table 2 for coding
rubric)

Goal setting A key component of self-regulated
learning and improves learning out-
comes (Pintrich, 2000)

Rating statements about three types of
goals (fun, entertainment, or learning) on
a 10-point Likert scale

Counting the number of user-initiated check-ins
related to previous learning goals

1We use this phrase to sidestep any confusion with either a subset of
learning strands commonly used in the informal science learning
community (see Fenechel & Schweingruber, 2010) or traditional
definitions of learning as knowledge accumulation (e.g., Zimmerman,
2007).
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and when (and how often) are the activities taking place? Un-
fortunately, easy-to-use tools are not available for measuring
learning outside of formal settings, so it is not surprising that
the National Science Teachers’ Association recently included
a specific declaration outlining the need for improving meas-
urement of learning in informal contexts (NSTA, 2012).
We developed the STEMwhere app to begin meeting these

measurement needs (what, when, where, and why of informal
STEM learning) while attempting to meet the following cri-
teria. The measurement app should be (1) relatively unobtru-
sive to use, (2) embedded in STEM experiences, (3) relatively
easy to use across ecologies, and (4) used to collect multiple
kinds of data (self-report and behavioral). The STEMwhere
app allows for real-time measurement of STEM activity by
asking users to “check-in” when engaged with STEM content
(by the user’s definition) and to answer a small number of
questions regarding their experience. Thus, the app allows re-
searchers to collect data during the experience, rather than
only retrospectively (see Table 1 for measurement details).
The approach we have outlined uses a small number of

measures in a brief period of time that may limit the psy-
chometric validity of the constructs being investigated.
However, we chose this approach for two reasons. First, in-
struments that record immediate data (termed experience
sampling) often produce results that are more accurate
than retrospective instruments (Alliger & Williams, 1993).
Retrospective reports tend to under-report negative experi-
ences (Piasecki, Huffor, Solhan, Trull , 2007) and overreport
positive experiences compared to data from experience
sampling (Stone et al., 1998). A good example is the
“beeper studies” of adolescent moods that demonstrated
that moods were much more consistent than had been re-
ported in retrospective surveys (Larson, 1989). Second, ap-
proaches that require considerable effort and time on the
part of participants might not be well suited for particular
topics. In the present study, we are interested in the types
of STEM activities in which families are engaged. Although
previous research has used retrospective surveys (Fredricks
et al., 2016), such methods incur time and effort costs on
the part of participants that may reduce response validity.
In addition, time-consuming surveys highlight response
biases (e.g., availability biases) that may reduce the accuracy
of what is reported (Bradburn, Rips, & Shevell, 1987). For
these reasons, we chose to use experience sampling, while
we acknowledge its potential limitations. Finally, we also
measured constructs that have been investigated in larger-
scale studies, so as to evaluate whether the current instru-
ment yields data to support similar conclusions. Perhaps
most notably, research has established that students’ inter-
est is predictive of subsequent engagement (Thoman et al.,
2017), so we expect to find the same relationship in the
present study (unless, of course, the small number of obser-
vations undermine the validity or sensitivity of our measure
to appropriately characterize these relationships).

Any time participants were engaged in a STEM activity,
they were instructed to open the app. When participants
opened the app, they entered their participant number, age,
and gender. Participants next selected their current loca-
tion, which prompted the GPS coordinates for that location
to be recorded. Participants were next asked to select a de-
scription of their location from a drop-down menu (my
home, museum, library, park/arboretum/nature, science
fair/exhibit, maker space, camp, or other). The next ques-
tion asked participants to select the closest match to the
question “What are you currently doing?” from a drop-
down menu (watching TV/movie, watching web-based
content, doing a web-based activity, listening to radio/
streaming/podcast, listening to a speaker, hands-on activity,
other). These options were provided because they are fre-
quently discussed in informal STEM research (Thoman
et al., 2017). After both questions, participants could enter
additional information about their location or activity in a
text box. The next eight screens each displayed one ques-
tion (e.g., How interested are you in this activity?) with a
10-point sliding response bar with emoticons associated
with text descriptions (e.g., interest: not at all, somewhat,
partially, interested, extremely interested). Six questions
were for children and two questions were for their parents.
Child questions were relevant to interest, engagement, fun
goal, learning goal, social goal, and child identity. Parent
questions measured parent ratings related to their child’s
STEM identity (e.g., the belief that their child could become
a scientist) and ratings of parent interest/engagement. Full
questions and scales are provided in the Appendix.

Overview of research questions
A main goal of the present investigation was to create a
tool for collecting information about informal STEM ac-
tivities, to measure how learning supports are related, and
how they influence activity across time and contexts. As
foreshadowed by our prior discussion of STEM activities,
we focused on answering the following key questions:

1. What types of experiences do children consider
STEM-related?

2. Where do STEM experiences occur and what kinds
of experiences occur?

3. To what extent are self-reported ratings for STEM
learning supports related to each other? For example, is
interest in a specific event related to future engagement
in that event? And is interest related to learning goals or
STEM identity?
4. Are self-reported ratings related to behavioral

measures (i.e., check-in rates)? For example, as predicted
above, do relatively high self-reported ratings of interest
predict behavioral changes in engagement (i.e., an
increase in the frequency of check-ins)?
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Method
Participants
Participants were recruited by posting flyers in locations in
Northeastern Ohio frequented by families with children in-
cluding libraries, parks, bookstores, and churches and by
posting to family-related listservs in this region (e.g., activities
for families and children). Twenty-one families participated
in the study. These families included 26 children, who ranged
in age from 7 to 14 years old (mean age 11.5 years), were
58% female, and were 60% White, 20% Asian-American, 10%
African-American, and 10% Indian-American. Participation
occurred between June and August so that families would
have more time to engage in “out of school” activities. We
acknowledge that there is likely to be variation in the amount
of engagement in informal STEM experiences across the cal-
endar year and that summer is likely to represent a period in
which there is higher family engagement levels compared to
times when school is in session.

Procedure
Families were given an iPad on which the STEMwhere
app was loaded and families were instructed to use the
app anytime they were engaged with STEM content2.
Importantly, we did not define STEM activities so that
we could measure what participants considered STEM
content. Each family was compensated in two ways, they
were given a family membership to a local science center
and they received cash compensation ($145) to cover
their expenses related to participation (e.g., transporta-
tion costs and food while attending the science center)
during the data collection period. The science center
membership was provided before data collection to
make sure that all participating families would have ac-
cess to this setting, regardless of their financial situation.

Measures
The STEMwhere app measured STEM learning supports
in two ways: self-reports and behavioral measures (Table 1).
Self-report measures used Likert scales to measure each
construct. We provided several categories of activities based
on most likely settings for informal STEM activities and an
“other” option for settings not covered by these options
(Fenechel & Schweingruber, 2010; NASEM, 2016a). Be-
cause self-report measures are often subjective, behavioral
measures were included in an attempt to provide more ob-
jective data from which to triangulate the measurement of
learning. In addition, the behavioral measures provided
novel data that could be used to uncover new elements to
informal learning, specifically to map the learning ecology
and to measure increases in interest and engagement.

Coding
The following section provides details regarding the coding
criteria for the behavioral data (see Table 2). The first

coding was to classify the number of check-ins for each par-
ticipant by location and type of activity. The app allowed
participants to decide whether an activity was considered
STEM. Obviously, a limitation to this approach is that par-
ticipants might include activities that scientists and educa-
tors would not consider to be STEM activities. Accordingly,
all activities were coded independently as to whether the ac-
tivity should be categorized as a STEM activity, following
the National Science Foundation definition. Those not
coded as fitting the definition were eliminated from further
consideration. Also, for those activities that were considered
STEM activities, we classified which type of STEM content
best described it (e.g., math). Although it is possible that an
activity was interdisciplinary, it is quite difficult to identify
activities as such. We used a conservative coding system
that did not allow for multiple categories in order to
minimize type I errors in coding. Check-in rates were calcu-
lated to provide a mean and standard deviation for each
participant expressed as check-ins per day. Participant-
generated descriptions were classified by location and activ-
ity and coded for the constructs outlined in Table 2. Two
independent raters coded the descriptions. The initial reli-
ability was .96 (Cronbach’s kappa) and 100% after discus-
sion. A total of 334 activities were collected and 54 (16%)
were eliminated after coding, leaving a total of 280 activities.

Topical runs
One goal was to measure increases in interest and engage-
ment in STEM activities (hereafter runs). Topical runs were
coded by identifying a series of check-ins that share a topic or
event type, occur close together in time, and are unlikely to
occur by chance. These runs were identified by comparing
the frequencies of check-in runs to the probability of clusters
generated from a Monte Carlo simulation (Heth & Cornell,
1987). Once identified, an analysis was conducted to identify
whether the conditions immediately before a run predicted its
occurrence (hereafter a trigger; Renninger & Bachrach, 2015).

Results
The analyses relevant to each research question are pre-
sented in the order that the questions were presented at the
end of the “Introduction” section. Comparisons for age and
gender yielded non-significant results, so age and gender
were not considered a factor in the following analyses.

2The app was also used to record measurements before and after
visiting three specific contexts: a science center, reading an online
newspaper article about science, and watching an online video about
science. Unfortunately, due to a technical issue with the app, nearly
half of participants were missing questions related to these locations.
Therefore, these data were not included in our analyses.

Morris et al. International Journal of STEM Education            (2019) 6:40 Page 5 of 12



What types of experiences do children consider STEM-
related?
There were a total of 334 check-ins by participants.
Fifty-four activities (16%) were eliminated after coding,
leaving a total of 280 activities. An analysis of the data
before and after removing these events showed no sig-
nificant differences, suggesting that removing these ac-
tivities did not change the overall result pattern. The
results below are based on analyses after non-STEM ac-
tivities were removed. Nearly all of the check-ins were
related to science (52%) or mathematics (44%), with a
small number related to technology or engineering (10%
and 2%, respectively). Most science check-ins were clas-
sified as reading books and doing hands-on activities
whereas most mathematics check-ins were related to
hands-on measurement (e.g., building/cooking) or math
activities (e.g., worksheets).

Where do STEM experiences occur and what kinds of
experiences occur?
The majority of check-ins occurred in the family home
(72%), followed by camps (10%), parks/nature (8%), li-
brary (6%), and museums (4%). The majority of descrip-
tions were hands-on activities (64%), followed by web-
based activities (15%), and watching TV/movies (10%).
The next question was to what extent do self-reported
ratings differ by location and type of activity? A one-way
ANOVA demonstrated significant differences in ratings
by location, F(5, 280) = 8.3, p = .001 and type of event,
F(5, 280) = 12.2, p = .001. Least squared difference post-
hoc tests were conducted to estimate significant differ-
ences between rating categories. Library check-ins were
associated with the highest ratings for setting learning
goals, parent engagement, and parent identity, whereas
camp check-ins had the highest ratings for friend/fun
goals and child identity (see Table 3 for detailed results).
For activities, web-based content was given the highest
ratings for interest, engagement, and learning goals, and
TV/movies were given the highest rating for fun goals.

To what extent are self-reported ratings for learning
supports related to each other?
A critical question is the extent to which individual
learning supports were related to each other. Thus, the
next set of analyses comprise a series of exploratory re-
gressions measuring the unique variance for each spe-
cific support explained by other supports.

Interest as a predictor
Approximately 48% of the unique variance in the engage-
ment rating was explained by the interest score (R2 = .48, F
(1, 280) = 330.1, p < .001), suggesting that higher interest rat-
ings were related to higher engagement ratings (β = .88).
Critically, this outcome is consistent with outcomes from
previous research (e.g., Thoman et al., 2017). The second re-
gression indicated that interest accounted for approximately
45% of the unique variance in setting fun goals (R2 = .45, F
(1, 280) = 245, p < .001), 11% of the variance in setting learn-
ing goals (R2 = .11, F (1, 280) = 42, p < .001), and only 1% of
the variance in setting social goals (R2 = .01, F (1, 280) = 24,
p < .08), suggesting that increases in interest were related to
increases in fun goal setting but little change in learning and
social goal setting (β = .92, .51, and .10, respectively). Interest
ratings were moderately related to changes in identity ratings
(R2 = .10, F (1, 280) = 44, p < .001, β = .58).

Engagement as a predictor
Engagement accounted for approximately 19% of the
unique variance in setting fun goals (R2 = .19, F (1, 280) =
72, p < .001), 29% of the variance in setting learning goals
(R2 = .29, F (1, 280) = 122, p < .001), and 0% of the variance
in setting social goals (R2 = .00, F (1, 280) = 0, p > .993).
Higher engagement ratings were related to higher ratings
for learning goal setting and fun goal setting but were unre-
lated to social goal setting (β = .572, .458, and .001 respect-
ively), consistent with previous research suggesting that
engagement is associated with goal setting and achievement
(Greene & Miller, 1996). Finally, higher engagement
ratings were related to higher identity ratings (R2 = .27,
F (1, 280) = 96, p < .001, β = .62).

Table 2 Coding categories for behavioral constructs

Learning
support

Operational definition Coding

Interest Number of and duration between check-ins Code number of check-ins associated with specific events or locations

Engagement User-initiated check-ins, user-entered
descriptions

Identify runs related to the same events or location. Runs are defined as check-in
patterns that occur in less than 1% of Monte Carlo simulations.

Identity User-initiated check-ins, user-entered
descriptions

Count specific key words related to STEM identity:
1. positive/negative evaluation terms (e.g., like, fun, enjoy) vs. (hate, etc.). related to
topics, performance, and abilities (evaluations after activities as suggested by
Hughes, Nzekwe, & Molyneaux, 2013)
2. Activities that influence identity (e.g., reading about scientists from under-
represented groups)

Goal setting Counting the number of user-initiated check-ins
related to previous learning goals

Count specific key words related to learning goals (e.g., learn, tried to, wanted to, I did it!),
social goals (friends, family, dad, mom, etc.), and fun goals (e.g., wanted to have fun, play)
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Parent-child ratings as predictors
Recall that parents provided two ratings: plans for engage-
ment and parent ratings of STEM identity. Higher parent
engagement ratings were related to higher child identity
ratings, R2 = .27, F (1, 280) = 104.7, p < .001, β = .69, and
higher parent engagement ratings were associated with
higher child engagement ratings, R2 = .41, F (1, 280) =
52.89, p < .001, β = .44. Higher parent identity ratings were
related to higher child identity ratings, R2 = .31, F (1, 280) =
84.98, p < .001, β = .73, and moderately related to child en-
gagement ratings R2 = .08, F (1, 280) = 38.6, p < .001, β =
.39. These results provide more evidence that parents play
an important role in supporting engagement with middle-
school age children and in supporting their children’s
STEM identity (Barton & Tan, 2010).

Are self-reported ratings related to behavioral measures?
The behavioral data from the STEMwhere app can aug-
ment the self-report data. One possibility that we investi-
gated was that the frequency of check-ins would also be a
reasonable measure of interest and engagement. Presum-
ably, the amount of interest would correspond to increases
in the frequency of check-ins. Imagine that a child checks
in 10 times over the course of 30 days for an average of one
check-in every 3 days. If check-ins were not random, then
the patterns might demonstrate something about the inter-
est and engagement that is driving them. For example, if
this child checks in five times in 2 days, this cluster may
suggest a rapid increase in interest and engagement, assum-
ing the events share similar topics (i.e., content or activities).
To evaluate such possibilities, the following analysis iden-

tified topical runs, defined as event clusters that shared
common topics and were unlikely to occur by chance. Runs
were identified by comparing the frequencies of check-in
runs to the probability of clusters generated from a Monte
Carlo simulation (Heth & Cornell, 1987). Specifically, we
first calculated the total number of check-ins and the mean
and standard deviation of the durations between check-ins
(in days) for each participant. From these data, we created

simulations of check-ins to calculate the probability of dif-
ferent runs (i.e., sequences of check-ins) that occurred in
less than 3% of simulations (see Fig. 1).
We then identified the activities that took place 1–2 days

before and during each run to determine if the location or
type of activity were similar within each run (shaded in Fig.
1). Ten runs were identified because they occurred in less
than 3% of simulations. Of those seven runs, six shared the
same topic (see Table 4). Topic themes were coded by two
independent raters with an initial reliability of .97
(Cronbach’s kappa) and 100% agreement after discussion.
The topical run from Participant 26 began with the pur-

chase of an inexpensive home weather station (e.g., dis-
played temperature, humidity). After this event, check-ins
significantly increased, all of which were related to weather
(e.g., reading books about tornadoes and storms, watching
web-based videos on weather, watching the Weather Chan-
nel). The run that did not share a topic, was the result of a
participant “catching up” on check-ins that had occurred at
other times. Specifically, the participant noted that her
family had been away on a trip, so she entered many check-
ins upon their return home. In this case, the pattern was an
artifact of access to the app. Although these patterns indi-
cated an increase in STEM engagement, the locations and
activities did not share common features.
An additional detail that clarifies these data is that four

runs occurred within the same families. Participants 1 and 26
are siblings and both showed similar increases in interest and
engagement in weather after the purchase of a home weather
system. The pattern of check-ins from participant 25 were re-
lated to an interest in cooking and baking that emerged on
this vacation. This suggests that family engagement can be
viewed as a contributing factor but not a sufficient condition
for increasing STEM engagement. In summary, check-in
rates provided a novel measure of interest and engagement.
One issue still remaining is whether self-report data were

consistent with behavioral data. For example, if a participant
rated an event as being highly interesting and planned on en-
gaging again in this activity, did he or she engage in this

Table 3 Self-reported event ratings by location and activity

Activity Location Activity

Home Camp Park Library Museum Web video Web-based TV/movie Hands-on Podcast/speaker

Interest 7.9 (2.6) 7.7 (2.2) 7.6 (1.4) 8.1 (3) 7 (.5) 9.5 (.2) 8.1 (2.1) 9.1 (1.2) 7.4 (2.7) 7.4 (1.2)

Child engagement 7 (2.6) 6.2 (2.3) 6.6 (1.9) 7.4 (3.3) 7.2 (1.2) 8.7 (1.6) 7.2 (2) 7.6 (2.7) 6.6 (2.6) 8.3 (1.9)

Parent engagement 6.6 (2.9) 7 (2) 7.8 (1.7) 8.8 (2.4) 7 (2.73) 7 (2.5) 7.7 (2.1) 4.1 (3.3) 7.2 (2.5) 8.1 (1.4)

Goal-friend 4.4 (3.2) 8.5 (1.9) 7.6 (3.2) 7 (3.6) 7.7 (.5) 1.8 (2.3) 4.4 (3.1) 6.2 (3.4) 5.8 (3.3) 3 (2.8)

Goal-learning 6.6 (3) 7 (1.7) 5.1 (2) 7.4 (2.4) 6.5 (1) 8.2 (2.4) 6.5 (2.8) 7.2 (3) 6.4 (2.9) 8 (2.8)

Goal-fun 7.3 (3) 7.4 (3.6) 7.7 (2.5) 7.6 (3.3) 7.5 (1) 6.7 (2.8) 8.4 (2.6) 8.9 (1.7) 7 (1.4) 6.9 (3.2)

Child identity 5.3 (3.3) 6.8 (2.2) 5 (3) 6.3 (3.5) 4.7 (2.5) 5.5 (2.5) 6.4 (3.3) 6.2 (3.2) 5.2 (3.2) 6.7 (2.6)

Parent identity 5.8 (3.2) 7 (2.3) 6.1 (2.1) 7.2 (1.9) 3 (.5) 7.7 (2) 7.2 (2.3) 3.8 (3.1) 6 (3.1) 7 (4.2)

Note: Table displays means with standard deviations in parentheses. Cells in boldface indicate a significant difference at the p > .05 level based on the results of
LSD post hoc tests
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activity again? To answer such questions, we compared self-
report data associated with runs (as identified above) to
mean self-report data using paired t tests. The results indi-
cated no significant differences between the self-reported rat-
ing of events and run means (see Table 5), suggesting that
the self-report data were not closely aligned with runs. A sec-
ond analysis investigated whether self-report ratings pre-
dicted the number of check-ins for a specific topic. For
example, if a child provided high interest ratings for events
related to chemistry, would that child show higher levels of
check-ins related to chemistry compared to a topic with
lower interest ratings? A series of bivariate correlations com-
pared the number of check-ins by topic to interest, engage-
ment, goal, and identity ratings from parents and children.
No significant correlations were found. A third analysis com-
pared ratings to check-in rates regardless of topic. Increases
in interest and engagement ratings were positively correlated
with increases in the number of check-ins, r = .17, n = 280,
and p = .003 and r = .19, n = 280, and p = .002, respectively.
No other correlations were significant.

Post-study survey
We conducted a brief survey of parents after the 2-month
study period had ended. In this survey, we asked four ques-
tions in total, with three evaluating specific features of the
app (results not reported here) and one about user experience
(“Tell us three features about the app that you liked”). For the
user experience question, seventy-five percent of parents indi-
cated that the app helped them remember STEM experiences
(e.g., “It was fun to see all the fun activities we did this sum-
mer!”) and 90% indicated that using the app encouraged
them to seek more STEM experiences (e.g., “The kids wanted
to do science things so they could report it in the app”) than

usual and increased family communication about STEM (e.g.,
“[the app] encouraged brain-storming and helped my son
realize some of his interests fell in the stem categories”; “We
started talking about science on our family hikes”).

Discussion
Proof-of-concept and notable outcomes
The goal of the present study was to develop and field test
a new instrument, the STEMwhere app, for measuring in-
formal STEM activity and learning supports. In this field
test, several outcomes were noteworthy and provide a
proof-of-concept that the app holds promise for investigat-
ing informal STEM learning across contexts and time. First,
most STEM activities occurred at home (72%), a finding
consistent with other research on STEM engagement (e.g.,
Maltese et al., 2014). One possibility is that the family home
provides more opportunity for engagement than other loca-
tions, which is fairly unsurprising because the family home
is the default location for family learning opportunities. The
majority of activities were hands-on (64%), with most of
these activities occurring in the home (72%). Thus, as dem-
onstrated here, the STEMwhere app can be used to map
ecologies where informal STEM learning takes place; by
sampling a larger number of participants in future research,
the app could be used to identify hotspots of STEM activity
across a larger geographical region.
Second, child interest and engagement ratings were high

in all settings and activities (no significant differences across
either), suggesting that high situational interest was relatively
common during these activities. Parent engagement varied
across activities, though not by settings. Many parent and
child ratings were similar; for example, camps, libraries, pod-
casts, and web content were given high ratings. The results

Fig. 1 Check-in rates for each participant. Shaded boxes indicate topical runs (check-ins shared topics) and unshaded boxes indicate runs (check-
ins that did not share topics)
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also demonstrated that parents and their children had some
different ideas about STEM experiences. For example, chil-
dren rated TV/movies as likely activities for future engage-
ment and valuable for developing identity whereas their
parents rated them as unlikely for future engagement and of
limited utility for developing STEM identity. Although some
activities might not fit traditional definitions of STEM by
teachers or researchers, their designation as such by partici-
pants was meaningful and may help to illustrate how a var-
iety of activities help to ignite STEM engagement.
Third, because STEMwhere can be used to collect data

on multiple learning supports, relationships among them
can be revealed. Our results are consistent with several
findings from previous research. One, increases in interest
predicted increased engagement (Thoman et al., 2017)
and “fun” goal ratings but weakly related to identity rat-
ings. This suggests that interest may drive later engage-
ment and that a goal of having fun with friends is more
closely related to interest than learning or other social
goals. Engagement ratings were related to learning goals
and identity, suggesting that moving beyond situational
interest is important for developing content knowledge
and positive STEM identity (Hidi & Renniger, 2006). The
comparison between child and parent identity ratings is of
interest because support from another person has been
suggested as a critical factor in the formation of positive
STEM identity (e.g., Calabrese Barton & Berchini, 2013).
Increases in parent identity and engagement ratings were
related to increases in child identity and engagement rat-
ings, providing evidence that social support is critical as

children form positive STEM identities. This pattern of re-
sults suggests reasonable validity for the brief measures
due to their fidelity with existing results.
Finally, the behavioral data from the app allowed us to cre-

ate a novel measure—a topical run. One long-standing issue
in education is how to measure increasing activity from its
inception. By collecting participant-generated check-ins, we
identified periods of increasing activity and their likely trig-
gers. We operationally defined a run as a pattern of check-
ins that were unlikely to occur by chance and shared a topic
or location. We identified six runs that fit these criteria.
These topical runs illustrated an increase in activity that dif-
fers from baseline behavior. The runs included a variety of
locations and activities, for example, participant 26 checked
in at a library, home, parks, and nature centers to engage
with weather-related content. The pattern not categorized as
a topical run provides a useful contrast in which there were
increases in the frequency of check-ins that were statistically
unlikely, yet the check-ins did not share a common topic. In
this case, the family was on vacation and child was engaging
in STEM-related activities that did not share a common
topic. It is possible that this pattern was sustained (at least
primarily) by the family, whereas those coded as topical runs
might have been sustained by the child and the family. The
analysis of run precursors and thematic patterns during the
topical runs (Table 4) provide some evidence for this sugges-
tion. Specifically, all runs were related to family activities;
however, those classified as topical runs might demonstrate
child-initiated activities, such as seeking books or videos
about drones. In this way, family engagement is perhaps a

Table 4 Descriptions of topical run and run check-in patterns

Participant Precursor of run Theme of run

1 Family purchase of weather station Weather-related activities including books, videos, and recording weather phenomena

2 Attended nature camp Investigating animals and their habitats

2 Family vacation None

5 Purchase of drone Building and modifying drones

19 Medical internship Health and medicine

25 Family vacation Science of cooking and baking

26 Family purchase of weather station Weather-related activities including books, videos, and recording weather phenomena

Table 5 Paired t test results comparing self-report and run data

Factor Non-run means Run means

Mean SD Mean SD 95% CI I score (p value)

Interest 8.33 1.99 8.53 2.3 .89, 1.29 − .88 (.18)

Engagement 7.23 2.34 7.77 2.8 .46, 1.25 1.24 (.10)

Goal fun 7.8 2.62 7.64 3.02 0.55, 0.83 1.03 (.15)

Learning goal 6.95 2.69 7.11 3.54 − .73, .16 .78 (.21)

Goal social 5.81 3.17 5.39 4.3 − .56, .31 1.18 (.11)

Identity 6.10 3.03 6.41 3.92 .23, 1.11 − .55 (.29)
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necessary (though not sufficient) factor in long-term learning
and engagement. Families who provide many opportunities
are more likely to find topics or activities that engage their
children, though it is difficult at the outset to predict which
of these activities will ignite a child’s interest.

Limitations and future directions
Although the aforementioned outcomes were based on a
large number of observations per participant, there are
several limitations. As noted in the introduction, the
choice of a relatively brief measure of experience sampling
has inherent limitations, most notably a reduction in psy-
chometric validity as would be found in extensive surveys.
The STEMwhere app allowed us to track participation
over time due to the low amount of effort to complete
measures at each observation. Our approach yielded a
large number of observations from a series of low-cost
measures rather than from one, high-cost instrument. Al-
though we used a single item to measure each construct,
the results were highly consistent with previous findings.
For example, interest predicted unique variance for en-
gagement as in previous research (Thoman et al., 2017).
Perhaps most important, the STEMwhere app can be
adapted by individual users, such as by adding more ques-
tions of a key construct or including questions to tap a
construct not included in our original program.
Another limitation is allowing participants to define what

constitutes a STEM activity. As noted above, approximately
16% of activities were excluded after coding because they were
evaluated as being unlikely to constitute a true STEM experi-
ence. One notable example was one participant who checked
in multiple times after playing Pokémon Go! On its own,
playing this app has negligible STEM value. Nevertheless, de-
fining STEM for participants would produce a different limi-
tation, notably that researchers may miss activities that lead to
later engagement (Maltese et al., 2014). This motivates a dee-
per question about the nature of what constitutes a STEM ac-
tivity. Nearly any activity has the potential to be linked to
some type of STEM activity. For example, the art of cooking
itself might not be considered a STEM activity. However, a
parent who asks her child why one salad dressing separates
while another does not might set up experiments (e.g., does it
separate after we add mayonnaise?) to discover the concept of
an emulsifier. In this case, this cooking activity would be clas-
sified as a STEM activity. Thus, it is difficult to accurately
measure the extent to which an activity is truly a STEM activ-
ity without obtaining more information about the nature of
the activity and the opportunities for learning provided by it.
Another limitation of the present proof-of-concept study

was that the observations were from a relatively small sample
of participants. Though intriguing, the data should be general-
ized cautiously, particularly the topical runs, which are based
on a small number of observations. An exciting avenue for fu-
ture research would be to pool data collected using the app

so as to create larger data sets that can provide the basis for
secondary analyses (analogous to the CHILDES database for
language research, MacWhinney, 2008). We developed the
STEMwhere app with this use in mind; in particular, the app
itself has several hard-wired questions about demographics
and the learning supports, so as to ensure that any investiga-
tor using the app will contribute outcomes relevant to core is-
sues pertaining to informal STEM learning. And, as implied
above, the most recent version of the STEMwhere app (which
is available free from the first author) has also been developed
so that an investigative team can include unique questions
relevant to their specific research questions and goals.
The STEMwhere app was developed as a research tool to

measure informal STEM learning, and, of course, any
measure may influence the outcomes one is attempting to
measure. Such reactive effects are typically viewed as a limi-
tation. In formal and informal educational settings, any
positive reactive effects may offset the limitation due to
measurement reactivity per se. For example, in the present
case, another encouraging result is the apparent effect of
app use on family STEM engagement. In particular, the re-
sults of the survey suggest that the app encouraged parents
to lead activities and to increase their communication about
STEM content. These results suggest an opportunity to use
the STEMwhere app to support parents as they guide their
children’s STEM activities outside of school. An example of
such an opportunity is a recent study in which an app (Bed-
time Math) was used to help parents increase their math
and number talk with their preschool aged children (Berko-
witz et al., 2015). The children of math-anxious parents
who used Bedtime Math showed significant gains in math
performance compared to children in a control group. In
these cases, the fact that an app can promote informal
STEM learning (as well as measure learning supports) is
encouraging and should be investigated in future research.

Conclusions
The STEMwhere app was used to measure four supports for
informal science learning (interest, engagement, identity, and
learning goals) for 2months by 26 children ages 7–14. Dur-
ing this time, the participants checked in during STEM activ-
ities and answered eight questions about each activity.
Although preliminary, the results revealed that most STEM
activities were hands-on activities that occurred in the family
home and that there are specific relations between learning
supports (e.g., increased interest was related to increased en-
gagement). Finally, check-in rates yielded a new measure, a
topical run, that provides new evidence for the conditions
under which children become engaged and measured in-
creasing activity over time. These results serve as a proof-of-
concept for the STEMwhere app for measuring informal
STEM learning in the wild by providing novel findings that
contribute to our understanding of where and how informal
STEM learning occurs.
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agree
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identity

I can imagine my child being a part of this field
someday.
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disagree
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agree

Agree Strongly agree
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