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Background: Computational modeling is an increasingly common practice for disciplinary experts and therefore
necessitates integration into science curricula. Computational models afford an opportunity for students to
investigate the dynamics of biological systems, but there is significant gap in our knowledge of how these activities
impact student knowledge of the structures, relationships, and dynamics of the system. We investigated how a
computational modeling activity affected introductory biology students” mental models of a prokaryotic gene
regulatory system (lac operon) by analyzing conceptual models created before and after the activity.

Results: Students’ pre-lesson conceptual models consisted of provided, system-general structures (e.g., activator,
repressor) connected with predominantly incorrect relationships, representing an incomplete mental model of gene
regulation. Students’ post-lesson conceptual models included more context-specific structures (e.g., CAMP, lac
repressor) and increased in total number of structures and relationships. Student conceptual models also included
higher quality relationships among structures, indicating they learned about these context-specific structures
through integration with their expanding mental model rather than in isolation.

Conclusions: Student mental models meshed structures in a manner indicative of knowledge accretion while they
were productively re-constructing their understanding of gene regulation. Conceptual models can inform
instructors about how students are relating system structures and whether students are developing more
sophisticated models of system-general and system-specific dynamics.
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Introduction

Modeling and model-based reasoning are important sci-
entific processes that encompass the way scientists inter-
act with phenomena (S. W. Gilbert 1991; Jungck 2011).
There are different types of modeling practices that fall
under the umbrella of model-based reasoning, including
visual modeling and thought-experiments (Nersessian
1999; Seel 2017). Modeling (frequently coupled with
simulations) is a skill that develops over time and is con-
sidered a core competency for postsecondary biology
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students (AAAS 2011). Modeling can involve a spectrum
of skills from passive observation of graphs to creation and
interpretation of models ranging from conceptual to com-
putational (Eaton et al. 2019; Garfunkel and Montgomery
2016). Moreover, scientists engage in modeling for many
reasons, including exploring dynamics of complex systems,
developing conceptual frameworks, making predictions,
and generating causal explanations (Nersessian 2009;
Odenbaugh 2005; Svoboda and Passmore 2013). Modeling
allows scientists to synthesize current knowledge, represent
complex systems, interrogate their dynamics, and develop,
prioritize, and test hypotheses prior to performing expen-
sive and lengthy laboratory experiments (Hallstrom and
Schénborn 2019; Odenbaugh 2005). At the same time,
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modeling can prompt experiments on mechanisms and
tests of predictive outcomes.

Because modeling is so intricately tied to scientists’
work, it follows that modeling should be reflected in
classroom practices where students can develop skills
necessary to reveal the mechanisms of phenomena, like
scientists. Creating a model is part of the modeling
process that also includes practices like making predic-
tions, evaluating data outcomes, and revising the model
(Brewe 2008; Fretz et al. 2002; Sins et al. 2005). Models
are an abstraction of real biological phenomena and
should vary depending on the modeler’s knowledge of
the system, purpose (i.e., scope) of the model, and ability
to represent their mental model for their intended audi-
ence. This paper considers three types of models: mental
models, conceptual models, and computational models,
and we define their relationships below and in Fig. 1.

Mental models are the knowledge structures residing
in our brains for the biological phenomena we observe
(Ifenthaler et al. 2011; Seel 2017). An instantiation of a
mental model can be externalized (although not re-
quired) as a conceptual model created by the modeler
and depicts the structures and relationships necessary to
represent the phenomena (Shavelson et al. 2005). In this
work, the conceptual models of prokaryote gene regula-
tion were created within specific bounds provided by the
instructor (details provided in the “Methods” section).
Conceptual models allow for thought-experiments
whereby students consider the potential biological out-
comes from interactions represented in their models and
have opportunities to compare their outcomes to obser-
vations or consensus, scientific models.
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Instructors play a critical role in fostering cognitive de-
velopment of student modeling ability as they create op-
portunities to construct, manipulate, and evaluate
conceptual models (Bray-Speth et al. 2014; Brewe 2008).
Unfortunately, postsecondary students have few and ir-
regular opportunities for modeling in biology despite
evidence that modeling has been shown to be an effect-
ive way of developing deep disciplinary understanding
(Mulder et al. 2016; Seel 2017). Importantly, construct-
ing and interpreting conceptual models focuses student
attention on the relationships within the model rather
than the structures in isolation (Dauer et al. 2013;
Hmelo-Silver et al. 2007; Jordan et al. 2008). With stu-
dent attention focused on relationships, instructors can
challenge students to consider the system dynamics and
complexity that emerges from variation in the structures,
network-like relationships, and dynamics (Dauer and
Dauer 2016; Williams and Clement 2015). When the re-
lationships among structures can be described mathem-
atically or computationally in a model, the dynamics of
the system can be revealed through simulation (Abou-
Jaoudé et al. 2016). Computer simulations allow for the
exploration of computational and mathematical models
and permit students to adjust biological settings to re-
peatedly manipulate a multitude of variables (de Jong
and van Joolingen 1998; Rutten et al. 2012). Simulations
afford opportunities to repeat computational experi-
ments, evaluate their results against expected outcomes,
and revise one’s mental model about relationships (Seel
2017; Soderberg and Price 2003).

Importantly, conceptual and computational models
can be assessed and therefore inform the instructor
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about a student’s current and changing mental model
(and hence understanding) of the phenomena (Fig. 1).
Instructors can support the construction of computa-
tional models by providing partially worked out models
to expand (Mulder et al. 2016), offering opportunities to
compare multiple models, and between models and ex-
periments (Fuhrmann et al. 2018; Schwarz et al. 2009).
Computational model-based activities have been firmly
established as improving learning in science, especially
when used as a support rather than replacement of other
teaching approaches (Rutten et al. 2012; Smetana and
Bell 2012). While these reviews describe research on
whether computational models are helpful, what is less
clear is how computational models impact students’
mental models.

Creating, interpreting, and conducting thought experi-
ments with conceptual models will positively impact stu-
dents’ mental models (Seel 2017). Pairing conceptual
models with empirical observations of simulated aquaria
had dramatic impacts on student-drawn models of nitrogen
cycles (Vattam et al. 2011). Similarly, coupling secondary
students’ computer modeling with experimentation im-
proved learning of diffusion and osmosis (Fuhrmann et al.
2018). Conceptual models created repeatedly during a
course helped students reorganize and expand students’
knowledge of the genetic basis of evolution (Dauer et al.
2013) and earth systems (Pearsall et al. 1997). During con-
ceptual model formulation, the iterative process of com-
parison between the created model and mental model and
observations move students towards more sophisticated
theories about the phenomena (Louca and Zacharia 2012;
Windschitl et al. 2008). Students connect their prior know-
ledge to new experiences, ideas, and knowledge and can
lead to students accreting new knowledge to their mental
model, revision of relationships among structures, and
pruning of extraneous relationships and structures (Louca
and Zacharia 2012; Rumelhart and Norman 1978). This
means students are developing more technically (or discip-
linary) accurate relationships between system structures as
they learn to know the system not only by its structures,
but also by how those structures are related to each other.
The next step is making the transition from relation-based
thinking (ie., describing relationships) to system-based
thinking that links the relationships to the mechanism of
the observable phenomena (Louca and Zacharia 2012).

When conceptual models of biological systems are de-
scribed mathematically and computationally, there can
be important benefits for students’ mental model about
how the system functions, ie., the system dynamics.
While students’ conceptual models can show an in-
structor if students are relating specific structures, there
is little information about the strength of those relation-
ships and the relative impact of those relationships on
overall model functioning. For example, a relationship
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may be present in the biological system, but only impact
system functioning under very specific environmental
conditions or be conditionally dependent on the pres-
ence of other structures. Once relationships are de-
scribed mathematically in a computational model,
students’ mental models can be compared to model out-
puts (e.g., data tables, figures) to reinforce or eliminate
specific relationships or series of relationships to better
explain the mechanism of the phenomena. Bodemer
et al. (2005) demonstrated that students who actively
interacted with content to insert it into computer repre-
sentations of figures had significantly greater learning
gains and investigated their models more systematically
than their peers who used pre-integrated figures or fig-
ures separate from content, as might be expected from
students reading a textbook. Therefore, students who ac-
tively engage the dynamic relationships would be ex-
pected to reinforce those connections in their mental
models or add new connections to explain the observed
outcomes. This process will, inevitably, revise the stu-
dents’ mental model and therefore lead to a new instan-
tiation of that mental model that may be externalized in
a conceptual model.

Therefore, conceptual models serve a dual purpose:
one for students and one for instructors. It is instructors’
goal to facilitate conceptual change that is manifested by
development of an increasingly sophisticated mental
model that can explain the general phenomena and be
applied to specific contexts. Conceptual models prepare
students to simulate system dynamics using computa-
tional model reasoning and inform instructors of stu-
dents’ current and changing knowledge of the system
(i.e., students’ mental model of the phenomena). For stu-
dents, the effort needed to create a conceptual model
challenges them to access their prior knowledge about
structures in the system (e.g, DNA, mRNA, proteins)
and prepares them to consider how these structures
interact to regulate gene expression. A student’s concep-
tual model helps the instructor visualize students’ know-
ledge about the relationships, which structures the
students deemed were central or peripheral to the sys-
tem, and their knowledge of the particular context
(Ifenthaler et al. 2011). Students’ conceptual models will
change when their mental models are re-constructed as
they add context-specific structures, connect these struc-
tures, and utilize a computational model to causally ex-
plain the biological outcomes (Bodemer et al. 2005;
Smetana and Bell 2012).

For this study, the general phenomenon of interest
was gene regulation. How, when, where, and under what
environmental conditions genes are transcribed into pro-
teins (i.e., gene regulation) underlies the diversity in or-
ganisms’ forms and functions (Cooper 2015) and is a
core conceptual idea for postsecondary students in the
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USA (Brownell et al. 2014). While eukaryotes have com-
plex regulatory mechanisms, postsecondary biology stu-
dents frequently begin with the comparatively simple
regulatory mechanisms of prokaryotic organisms. In pro-
karyotes, protein-coding genes that are part of the same
pathway are often located together in an operon regu-
lated by a single promoter region and transcribed into a
single mRNA. Typically, students learn about the trp
and lac operons, which have different regulatory mecha-
nisms: the frp operon is repressible and the lac operon
is inducible (Stefanski et al. 2016). The long-term benefit
for students is to establish a foundation about how mo-
lecular components work together to regulate gene ex-
pression and, as students advance in their curricula,
allow students to apply this general mental model to
other gene regulatory networks (Esmaeili et al. 2015).

We investigated changes in students’ conceptual
models and asked two research questions: (1) what do
conceptual models reveal about changes in students’
mental models of gene regulation and (2) how do stu-
dents apply this mental model during a computational
modeling activity? We hypothesized that completing
computational modeling activities would improve stu-
dents’ knowledge of the structures and relationships of
gene regulation by reinforcing, replacing, removing, and
improving quality of the relationships within the system.
We analyzed pre-lesson and post-lesson conceptual
models to describe changes in students’ mental models
induced by completing computational modeling activ-
ities based on the lac operon system of regulation of
gene expression in prokaryotes. Pre-lesson conceptual
models determined students’ baseline knowledge about
relationships that could impact prokaryote gene regula-
tion. Comparison of pre to post conceptual models
helped explain how a computational modeling activity
impacted students’ ability to reconcile a specific context
with their mental models of gene regulation.

Methods

Study context

The study was conducted over two terms (fall 2015 and
spring 2016) in the same academic year with students
enrolled in the first of a two-part sequence of introduc-
tory biology lecture and laboratory courses for life sci-
ence majors at the University of Nebraska-Lincoln in the
USA. The first course in this sequence focuses on cell
biology. Data were collected during one 3-h lab period
in week 14 or 15 of the 16-week term. Consenting stu-
dents in both terms (fall—179 students; spring—159)
were demographically similar: percent of students that
were female (2015—116, 66%; 2016—116, 74%), age
(2015—median was 19years; 2016—19), and percent
white/non-Hispanic (2015—88%; 2016—84%). Prior to
the lac operon modeling activity, students in both terms
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had completed two computational modeling activities
(weeks 4 and 8) on cellular respiration and cell cycle.

Computational modeling lesson

The computational modeling lesson deployed in this study
was designed to improve student conceptual understand-
ing of the structures, processes, and molecules of gene
regulation in the context the lac operon (Crowther et al.
2019). The modeling lesson leverages a constructivist ap-
proach, whereby students can learn about the biological
system by building and interrogating the dynamics of the
modeled system. The lesson is detailed in Crowther et al.
2019 and freely available in the Cell Collective systems
modeling and simulation platform (https://cellcollective.
org; Helikar et al. 2012, Helikar et al. 2015). In the /ac op-
eron, the genes code for proteins that import and break
down lactose into galactose and glucose. In the human
gut, prokaryotes such as E. coli may activate the lac op-
eron when lactose is present (and glucose is absent) to
produce glucose for cellular respiration.

Students (1 = 345; of which 338 provided research
consent) were assigned a concise reading about E. coli
and its metabolism prior to attending the laboratory ses-
sion where the modeling activity took place. During the
lesson, students were provided with a pre-constructed
computational model and they predicted, tested, re-
corded, and explained their findings in scenarios related
to “perturbing the system” through nutritional or muta-
tional variations in structures of the modeled system. In
a series of investigations, students discovered how the
presence and absence of glucose and lactose affected the
molecular interactions and ultimately resulted (or not)
in operon transcription. Students also introduced mu-
tated versions of proteins to determine how inactive
molecules impacted transcription.

Pre- and post-lesson conceptual model construction

Students’ mental models were assessed with conceptual
models before (pre) and after (post) the computational
modeling lesson. Students were asked to show how the
given structures interact to affect transcription (Supplemen-
tal materials S1). Provided structures were general terms re-
lated to mechanisms of gene regulation (e.g., activator,
repressor), not names of molecules involved in the regula-
tion of the lac operon (e.g, CAP). Pre and post models
were purposefully general because the mental model we
hoped to elicit was focused on gene regulation, rather than
knowledge of a single gene regulatory network. We were
also concerned students may try to re-create the model
seen in the background (pre) or in the lesson (post) rather
than generalizing about the mechanisms of gene regulation.
Conceptual models are visual representations of intercon-
nected structures that holistically address a function or pur-
pose. They are composed of structures in boxes that are
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connected with labeled arrows that describe the relation-
ship (in this study, these are usually a mechanism or behav-
ior) between the two connected concepts (Bray-Speth et al.
2014; Hmelo-Silver et al. 2007). Using the student example
in Fig. 2, an operon is a structure with relationships to en-
zymes, promotor, DNA, and a repressor. DNA is “in” the
operon which “produces” enzymes. For the purposes of this
study, a word outlined in a box was deemed a structure
and a relationship was represented by an arrow. Conceptual
models are valuable and valid tools for measuring student
understanding and have been used in the context of cellular
systems (Akgay 2017; Bergan-Roller et al. 2018; Lee et al.
2015; Ummels et al. 2015; Verhoeff et al. 2008). Here, we
used conceptual models to represent students’ mental
model of the regulation of gene expression and how their
understanding was affected by the lesson. Students’ pre
models were constructed at the beginning of the class
period, without notes or the reading, and their post models
were constructed following the lesson and before students
left the classroom, again without notes. Both models were
created on paper.

Analysis

We analyzed conceptual models to determine changes in
students’ mental models induced by completing a
computer-based lesson about the lac operon system of
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gene regulation in prokaryotes. We did not compare stu-
dents’ models to an “expert” model of the system. For
each students’ models, we examined pre to post differ-
ences (n = 289 models) by analyzing their entire concep-
tual models as well as individual structures within their
conceptual models (Bergan-Roller et al. 2018). The con-
ceptual models were analyzed for quantity of structures,
quantity of relationships, average correctness, and inter-
connectivity. An example of a student-generated concep-
tual model with annotations, how it was analyzed, and
related model metrics are illustrated in Fig. 2. Quantity
of structures is the number of structures (boxes) in a
conceptual model. Quantity of relationships is the num-
ber of relationships (arrows) in a conceptual model. As a
surrogate measure for overall correctness, we quantified
the average correctness of all relationships in students’
models. Average correctness was determined by scoring
individual relationships for correctness on a scale from 1
to 3 (Supplemental Materials S2) and calculating the
average correctness for the entire model (Dauer et al.
2013). This calculation assumes that students build a
fragmented mental model of a complex system as they
develop their understanding the system dynamics from
the interaction of many structures. Interconnectivity was
determined using the web-like causality index (WCI)
that measures the number of structures with multiple
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causes (Fig. 2 box D) or effects (Fig. 2 box E) (Plate
2010). WCI is the sum of two proportions: multiple
causes divided by total structures and multiple effects di-
vided by total structures, and ranges from O (linear
models) to 2 (web-like).

A local environment analysis looked at individual struc-
tures for presence of relationships, quantity of connected
relationships, and structure correctness. Quantity of con-
nected relationships was the number of relationships (ar-
rows) connected to a specific structure (Fig. 2, box C).
Structure correctness was the average correctness of rela-
tionships connected to a specific structure (Fig. 2, box B).
In Fig. 2, the average structure correctness of RNA poly-
merase is 2.3 because the connection “binds to promoter”
is scientifically accurate (3), as is “transcribes DNA” (3),
but “operator recruits RNA polymerase” is inaccurate (1).
High scores for quantity and correctness of relationships
indicated that the student embedded the structure in their
mental model in an integrative way as opposed to just
adding to the periphery of the model.

Nearly all of the 338 consenting students created a model
with at least three structures during the pre-lesson (337)
and the post-lesson (334) and could be analyzed for the
quantity of structures. There were 292 students (pre) and
302 students (post) who created models with more than
one described relationship (labeled arrow) that could be an-
alyzed for quantity of relationships and average correctness
of the described relationships, as well as interconnectivity,
and local environment of context-specific structures (post
only). There were 289 students who created models that
could be assessed for change in relationship quality and
change in local environment for provided structures.

We examined whether differences existed between fall
2015 and spring 2016 terms based on students’ pre model
metrics (numbers of structures and relationship, quality of
relationships, interconnectedness) and included gender
and ACT scores as covariates. For every metric, there was
no significant difference between the terms and therefore
we pooled data across terms. The data were analyzed
using a linear mixed effects model with repeated measures
(students) and additive and interactive models were fit for
change from pre to post. The additive models provided a
better data fit for each metric as determined by the AIC
values and this model was used. Effect sizes were calcu-
lated using Hedges g,, when comparing pre to post with
repeated measures (Cohen 1988). Change in presence of
structures was determined using a binomial logistic re-
gression with the presence/absence on the pre model to
normalize the data.

Results

Overall, conceptual models demonstrated that students
started with incomplete, mostly inaccurate mental
models of regulation of gene expression. Following the
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lesson, students created conceptual models that repre-
sented mental models containing more structures and
relationships while concurrently improving the quality of
the relationships. In this section, we revisit our research
questions to examine how students’ models changed be-
cause of the modeling lesson.

Changes in scope and quality of students’ conceptual
models

Pre-lesson conceptual models consisted of an average of
8.2 structures (nine were provided), and 50% of students
(155) included nine or more structures in their pre
models. Students had a varying number (average 7.9) of
relationships connecting these structures (Table 1). Most
of these relationships (range 74—80%) were labeled, and
we analyzed these labeled relationships for quality, using
a rubric for this purpose with values of incorrect (1),
plausible but lacking technical accuracy (2), and scientif-
ically accurate (3). On the pre models, students used low
quality, mostly incorrect, relationships (1.7, SE = 0.03).
For a median student, it was common to have relation-
ships that scored, for example, 3, 3, 2, 2, 1, 1, 1, 1, sug-
gesting good knowledge of some relationships but
overall vague or inaccurate relationships dominating.
Students’ pre models also had low interconnectedness as
the average WCI was 0.32 (SE = 0.01, highest possible =
2), suggesting most of their structures had a single cause
or effect arrow rather than web-like with multiple ar-
rows associated with each structure.

Post-lesson conceptual models were larger and of
higher quality (Table 1, Fig. 3). The number of struc-
tures significantly increased from pre to post (£(289) =
6.27, p < .001) to 9.3 structures (SE = 0.16) with a
medium effect size (g,, = 0.39). The majority of students
(54%) increased the number of structures used in their
models. More students (207 students, 63%) included at
least nine structures on the post-lesson conceptual
models. The number of total relationships increased
(¢(289) = 4.59, p < .01, g,, = 0.28) to 8.9 relationships
(SE = 0.17) with 54% of students increasing the number
of relationships used in their models. There was no
change in WCI (£(289) = -1.934, p = .054, g,, = 0.13)
with 48% of students decreasing in interconnectedness,
11% staying the same, and 38% increasing.

There was a significant pre to post increase in average
relationship correctness (£(289) = 6.436, p < .001) from
1.7 to 1.9 with a medium effect size (g,, = 0.41, Table 1).
These models were, on average, below the 2 threshold.
We focused on 2 because models with an average cor-
rectness below 2 contained incorrect relationships and
suggested students’ mental models also had incorrect re-
lationships. The number of students who averaged a 2
or above on the pre models (94 students, 33%) increased
on the post conceptual models to 153 students (53%). Of
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Table 1 Differences in number and quality of represented structures and relationships between pre- and post-lesson conceptual

models (SE = standard error of the mean)

Metric Pre-lesson Post-lesson

Average number of represented structures (9 provided) 8.2 (SE=10.15) 9.3 (SE = 0.16)**
Average number of relationships 79 (SE = 0.19) 8.9 (SE =0.17)*
Average correctness (3 high-1 low) 1.7 (SE = 0.03) 1.9 (SE = 0.03)**
Average interconnectivity (WCI) 0.32 (SE =0.01) 0.30 (SE = 0.01)

*p < .05, * p < 001

the 289 student pre and post models that could be
assessed for change in relationship quality, 63% in-
creased their average correctness, 6% stayed the same,
and 31% decreased. Most students increased in both
number of relationships and relationship quality (Fig. 4).
Nearly half of 289 student models (44%, n = 128) in-
creased in size and increased in quality of relationships
and 19% (n = 54) reduced model size while concomi-
tantly improving relationship quality. Another 22% (n =
64) increased the size of models by labeling more arrows
at the same time these labels were of lower quality.
These changes in structures, relationships, and relation-
ship correctness demonstrated that students’ mental
models of the lac operon system had a small to medium
positive effect on the number of structures and quality
of connections, a change that can be attributed to the
computational modeling lesson.

Changes in context specificity and connectivity in
students’ models

A local environment analysis of the structures helped
determine how students’ models changed to accommo-
date the changes in relationship number and quality.
The provided structures were general biology structures
common to many gene regulatory systems and were
present in most student models (55-89% of models).
Provided structures generally appeared in more pre than

post models (Table 2). Two general structures, mRNA
and operon, appeared in 5% and 13%, respectively, of
pre models and increased significantly in presence (11%
and 23%) in post models. The number of labeled rela-
tionships associated with structures was generally below
two, indicating a structure that was connected by a sin-
gle arrow (either cause or effect) and peripheral rather
than integrated into their model. Structures such as acti-
vator, operator, promoter, and repressor often had two
or more arrows (relationships greater than or equal to 2)
connected to them and were more central to students’
conceptual models. The number of relationships associ-
ated with a given structure changed little from pre to
post for provided structures (Table 2), with an un-
changed or declining trend of number of relationships.
While the number of relationships remained the same
or decreased, the quality of the relationships (correct-
ness) increased significantly for most of the provided
general structures (Table 2). Co-activator, DNA, and re-
pressor had an average correctness greater than 2 indi-
cating these structures had more correct than incorrect
relationships associated with them. Other structures
approached an average correctness of 2 but models still
had more incorrect than correct relationships associated
with these structures.

Context-specific structures, such as lac operon, allo-
lactose, and cAMP, were present in fewer than 10% of
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in average model score per student from pre to post

pre models, as we expected. After observing lac operon-
specific terms in many models, we chose to analyze how
students incorporated them as evidence of how students
integrated these structures into their general gene regula-
tion mental models. These structures appeared more fre-
quently on post models, although they were only present
in approximately 20% of the post models (Table 3). When
students included context-specific structures, they gener-
ally integrated these structures with two or more connec-
tions on post conceptual models (Table 3). Lac repressor
and glucose had an average of 3 and 2.6 relationships, re-
spectively. In addition to integrating context-specific
structures rather than adding them peripherally, students
labeled these relationships with high quality annotations.
The quality of the relationships connected to context-
specific structures were generally greater than two, dem-
onstrating mainly correct relationships. Context-specific
structures were not as common as the general, provided
structures, but when present, students integrated them
into their models with more and higher quality relation-
ships than the general structures.

Discussion

The lac operon system is a relatively simple system with
large implications for understanding cellular mechanisms
of the regulation of gene expression. The system lends it-
self to computational modeling, in particular, because
there are relatively few structures that interact in response
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Table 2 Local environment analysis (presence, average number
of relationships, and average correctness) of provided structures
in students’ conceptual models (n = 289 students). Relationships
are number of labeled arrows connected to the structure and
correctness is the quality of those relationships. Models were
only included in the analysis if the student created a conceptual
model that contained at least 1 labeled relationship on the pre-
and post-lesson activity

Structure Assessment Presence (%) Relationships Correctness
Activator Pre 818 22 1.7
Post 72.0* 2.1 1.9%*
Coactivator Pre 67.2 13 1.8
Post 55.0%* 13 2.0*
Corepressor Pre 67.2 13 19
Post 57.0* 13 20
DNA Pre 89.1 19 19
Post 79.6%* 1.8 2.1*
Inducer Pre 64.7 20 2.1
Post 559 14 1.9%%
Operator Pre 68.7 23 1.7
Post 733 24 1.9%
Promoter Pre 64.7 2.1 1.7
Post 63.8 20 1.9%
Repressor Pre 86.0 2.1 1.8
Post 77.8 22 2.1%*

RNA polymerase Pre 84.5 2.1 1.7
Post 86.6 19 1.9%

*p <.05,** p <.001

=

to environmental cues and relatively simple logical rules
that result in biologically realistic, observable patterns.
This study focused on how students’ mental models of
gene regulation changed as they observed the outcomes
emerging from dynamic, interactive components, as

Table 3 Local environment analysis (presence, average number
of relationships, and average correctness) of context-specific
structures that were not provided in instructions (n = 329
models). Relationships are the number of labeled arrows
connected to the structure and correctness is the quality of
those relationships. Only post-lesson models were analyzed
because presence on pre-lesson models was below 10%

Structure Assessment  Presence (%) Relationships  Correctness
Allolactose Post 222 20 22
cAMP Post 246 1.9 2.1
CAP Post 258 20 23
Glucose Post 19.2 26 20
Lac operon Post 210 1.5 1.7
Lac repressor  Post 14.6 30 20
Lactose Post 243 1.5 19
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represented through students’ conceptual models. We hy-
pothesized that completing computational modeling activ-
ities in a specific context would improve students’
knowledge of the structures and relationships of gene
regulation by reinforcing, replacing, removing, and im-
proving quality for the relationships within the system.
Students demonstrated a better understanding of gene
regulation by representing their larger (structures and re-
lationships) and higher quality mental model. Following
the modeling lesson, more than half of students con-
structed larger conceptual models with significantly more
structures and relationships (medium effect size, g,, =
0.28 and 0.39, respectively). Larger conceptual models are
reflective of a greater number of structures in students’
mental model of the system (Ifenthaler et al. 2011), as
would be expected from spending time engaging with a
biological system. In other studies, increased model size
was a common outcome as students encountered new
content (Bray-Speth et al. 2014; Dauer et al. 2013; Mintzes
and Quinn 2007). Bigger is not necessarily better if new
knowledge is weakly connected to existing knowledge or
stored in isolation. Accreting new knowledge needs to be
accompanied by re-constructing their mental model to ac-
count for the new knowledge that relate those new struc-
tures in a biologically consistent model (Mintzes and
Quinn 2007).

In our study, students’ mental models increased in size
and improved in relationship quality: 63% of students
significantly increased their average model correctness
(medium effect size, g,, = 0.41, Fig. 4). Approximately
half of the students still retained incorrect and vague re-
lationships within their mental models. For the other
half of students, the lac operon computational lesson re-
inforced some relationships and challenged students to
replace or remove other relationships and forced them
to restructure their model (Pearsall et al. 1997; Reinagel
and Bray Speth 2016). Consequently, a computational
model reinforced some mental model relationships by
showing the result of those interactions. For example,
activation of the catabolite activator protein (CAP) by
cAMP can result in transcription of the operon. In a
general model, this would mean that a co-activator binds
to an activator and can result in transcription of the op-
eron to mRNA. This can emphasize the relationship be-
tween these two structures and their outcome and may
cause students to reconsider their mental model of how
an operon can be induced by molecular interactions.

At the same time, student models increased in size
and quality, their models were also changing in compos-
ition as they learned this specific system. Analysis of the
local environment provided insight into the specific
areas of learning that occurred during the computer-
based modeling lesson. Generally, students’ inclusion of
general structures (e.g., activator, inducer) decreased or
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remained the same, while the inclusion of context-
specific structures (e.g., allolactose, cAMP) increased
(Tables 2 and 3). More than half of students (58%) in-
cluded at least one context-specific structure on their
post models without prompting. Most of these students
still included more general structures (the structures
provided) although 23% (n = 76 students) included an
equal or greater number of context-specific structures.
Overall, this suggests a replacement of generic terms for
context-specific terms rather than addition of new
context-specific terms as modifiers to a generic model.
This highlights the variation in knowledge building as
new and existing knowledge are actively integrated
(Nenciovici et al. 2019). The post conceptual models
captured the process whereby students reinforced some
relationships and structures and replaced some struc-
tures with lac-specific structures; at the same time, they
have removed incorrect connections and improved the
quality of other relationships.

Students included context-specific structures with
greater centrality than would be expected if these were
simply adding to a general model. For most of the
context-specific structures, the number of relationships
was at or above 2, describing a structure embedded
within the model rather than peripheral (Table 3). A per-
ipheral structure would be connected with a single arrow
and represent a beginning or end of the idea, rather than
internal to the model. Low centrality structures (peripheral)
like coactivator and corepressor (Table 2) suggest most stu-
dents connected them as instructed but added them per-
ipherally rather than central to showing the model purpose.
Some structures, like lactose and glucose, were expected to
have low centrality since they were environmental condi-
tions and represented a “start” point to the model. Lactose
was often included in this way (Table 3) while glucose was
often connected with multiple relationships suggesting
greater clarity for integration of lactose than glucose.

One can imagine that a student would show a decrease
in relationship quality if they struggled to incorporate
the new structures into their mental model. However,
we noted that overall model quality (average correctness)
increased and the general structures that were retained
in students’ mental models increased in quality. For ex-
ample, activator and repressor structures were included
in 82% and 86% pre models. These two structures were
present in 72% and 78% of post-lesson models with the
same number of relationships, but significantly higher
correctness, 1.9 and 2.1 (Table 2). While these terms
were retained in students’ post models, their quality of
relationships suggests the lesson supported their learn-
ing of how activators and repressors impacted gene ex-
pression. Interestingly, only the quality of relationships
connected to inducer decreased significantly, possibly
because inducer was a minimally integrated in the
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computational Jac operon lesson. Because context-
specific structures were infrequently included on pre
models, we were unable to determine the change in
quality of relationships. We imagine that if students
were asked to include context-specific terms in their pre
models and if the purpose of the model was constrained
to explaining the lac operon system, relationship quality
would have been low because most students likely had
little prior knowledge of these structures. What is sur-
prising is that on students’ post-lesson models, they used
high quality relationships suggesting students’ mental
models changed rapidly to incorporate the context-
specific structures and replace the generic structures.

Conclusions

The overall changes in students’ conceptual models,
from small and general to larger, more context-specific,
and higher quality, suggest multiple changes in their un-
derstanding of the functionality of the system (Reinagel
and Bray Speth 2016; Verhoeff et al. 2008). As Reinagel
and Bray-Speth (2016) showed with conceptual models
of gene-to-phenotype models, students improved in their
ability to apply a generalized model to a specific context.
We assume that students enhanced their understanding
of the system functionality by first creating a conceptual
model, then using a computational model to simulate
the dynamics, because students would have engaged
their mental model of gene regulation before conducting
thought experiments to predict and explain the dynam-
ics. This study did not examine the application of lac
operon knowledge to a novel gene regulatory system and
it would be interesting to determine how students use
their knowledge of system dynamics to generalize about
other regulatory networks. That is, does a students’
mental model of a system such as the lac operon system
provide the foundation for student reasoning about
other prokaryotic and eukaryotic gene regulatory sys-
tems? Determining students’ abilities to generalize their
systems thinking offers a cautionary tale. It is possible
for students to develop an accurate mental model of sys-
tem structures without understanding the mechanisms
that give rise to the observed phenomena (Louca and
Zacharia 2012). Pedagogical considerations, either em-
bedded in the lesson or in follow-up by instructors, be-
come paramount to ameliorate this concern. While the
study is lacking consideration of systems thinking ex-
trapolation, students have established a mental model of
gene regulatory networks in prokaryotes that could be
further harnessed by instructors.

The postsecondary biology community continues to
seek instructional methods that can improve students’
core competencies in modeling and simulation related to
biological systems (AAAS 2011). Instructors should con-
sider how students are learning in these environments and
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the opportunities for student to change their conceptual
understanding of system structures, relationships, and dy-
namics that underlie the phenomena. By coupling concep-
tual models and computational modeling, instructors
ensure students’ mental models are informed by dynamic
interactions and students can be challenged more than by
conceptual models alone (Seel 2017).

While time-consuming, modeling (including con-
structing and revising conceptual and computational
models) affords benefits for students’ conceptual change.
Supporting students’ modeling abilities likely requires a
concerted effort over multiple class periods, courses, and
years. We are unaware of research on longitudinal
changes in students’ modeling ability at the postsecond-
ary level, possibly because broad integration of modeling
into biology curricula is rare (see Thompson et al. 2013
for quantitative integration). Longitudinal studies into
integrative curricula can provide critical feedback to in-
structors about student modeling abilities over time and
inform how to introduce critical skills like mathematic-
ally relating relationships, how and when to revise
models, and using models to fuel science discovery.

Modeling is an interdisciplinary skill (Brewe 2008; J. K.
Gilbert 2004; Hallstrom and Schonborn 2019) that can
be scaffolded within a course by the instructor who em-
phasizes the iterative and repetitive nature of modeling.
The repetition of generating, evaluating, and modifying
models will enculturate this method of thinking about
science through the lens of models (Windschitl et al.
2008), much the way biologists approach their experi-
mental design (Nersessian 2009). Undoubtedly, it re-
quires a commitment by the instructor to purposefully
integrate modeling, not just models, into their pedagogy.

The benefit of an integrated course for the student is a
more sophisticated mental model that can be generalized
to other phenomena. Conceptual and computational
models feedback to students’ mental model. When de-
ciding to use conceptual models to elicit students’ men-
tal models, we want to share a few considerations
supported by this research. Larger models may not be
indicative of better mental models, especially if the rela-
tionships are missing or incorrect. Importantly, concep-
tual models at one time point will help identify the
structures students have integrated within their model
as these are likely more central to students’ mental
model than peripheral structures. Repeated conceptual
modeling activities will inform the instructor about what
structures and relationships have been reinforced and
how students are attempting to connect new knowledge
into their existing model by replacing and eliminating
relationships.

As students accrete new knowledge and re-construct
their existing mental models of the system, their concep-
tual models will increase in size, connectivity, and
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(hopefully) quality. Knowing the structures can help in
discovery of the relationships between those struc-
tures as students inquire about the system dynamics
(Lazonder et al. 2009) and apply their model to solve
problems (Seel 1995). Computational modeling activ-
ities that are properly structured as inquiry activities
will reinforce students’ conceptual understanding of
presence and quality of relationships. Consequently,
these activities will re-emphasize the quantitative na-
ture of the relationships among structures and
reinforce those same relationships in the students’
mental models. Embedding computational models into
curricula can help students visualize and experience
the dynamic nature of systems in a way that product-
ively enhances their mental model of the phenomena.

The strength of relationships within students’ mental
models will become useful as they encounter the lac op-
eron in subsequent courses, like genetics, biochemistry,
and evolution (Cooper 2015). The students that devel-
oped a robust, interconnected model would likely have
an enhanced ability to retrieve their conceptual model of
regulation of gene expression (Dauer and Long 2015)
and would be prepared to expand, improve, and apply
this model to new systems. Introductory students are
pursuing diverse academic pathways, and instructors
should consider their role in developing students’ abil-
ities to apply their understanding of gene regulation to
other scenarios and the importance of modeling in dis-
covering these generalizations. Feedback mechanisms,
emergent outcomes, and environmentally sensitive inter-
actions are applicable in the lac operon, gene regulation,
and biological system writ large. This lesson, and other
computational modeling lessons, allows students to
“break” the system as a way of exploring complex inter-
actions and outcomes as they construct knowledge of
how systems operate dynamically.
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