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Abstract

Background Blended mathematical sensemaking in science (“Math-Sci sensemaking”) involves deep conceptual
understanding of quantitative relationships describing scientific phenomena and has been studied in various disci-
plines. However, no unified characterization of blended Math-Sci sensemaking exists.

Results We developed a theoretical cognitive model for blended Math-Sci sensemaking grounded in prior work.
The model contains three broad levels representing increasingly sophisticated ways of engaging in blended Math-Sci
sensemaking: (1) developing qualitative relationships among relevant variables in mathematical equations describing
a phenomenon (‘qualitative level”); (2) developing mathematical relationships among these variables (‘quantitative
level”); and (3) explaining how the mathematical operations used in the formula relate to the phenomenon (“concep-
tual level”). Each level contains three sublevels. We used PhET simulations to design dynamic assessment scenarios

in various disciplines to test the model. We used these assessments to interview undergraduate students with a wide
range of Math skills. Interview analysis provided validity evidence for the categories and preliminary evidence for

the ordering of the categories comprising the cognitive model. It also revealed that students tend to perform at the
same level across different disciplinary contexts, suggesting that blended Math-Sci sensemaking is a distinct cognitive
construct, independent of specific disciplinary context.

Conclusion This paper presents a first-ever published validated cognitive model describing proficiency in blended

Math-Sci sensemaking which can guide instruction, curriculum, and assessment development.
Keywords Cognitive framework, Validity, Blended sensemaking, Math sensemaking, Science sensemaking

Introduction

Blended mathematical sensemaking in science (“Math-
Sci sensemaking”) is a special type of sensemaking that
involves developing deep conceptual understanding of
quantitative relationships and scientific meaning of equa-
tions describing a specific phenomenon (Kuo et al., 2013;
Zhao et al.,, 2021). Blended Math-Sci sensemaking is an
important component of expert understanding of sci-
ence and expert mental models (Redish, 2017). While
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various aspects of the Math-Sci sensemaking have been
described for specific disciplines (Bing & Redish, 2007;
Hunter et al.,, 2021; Lythcott, 1990; Ralph & Lewis, 2018;
Schuchardt, 2016; Schuchardt & Schunn, 2016; Tuminaro
& Redish, 2007), there has been little work on formulat-
ing and testing a theory of mathematical sensemaking as
a cognitive construct that applies across different scien-
tific fields. This paper offers initial evidence that a uni-
fied blended Math-Sci framework is possible. Having a
general framework for discussing, diagnosing, and sup-
porting the development of blended Math-Sci sensemak-
ing across disciplines will help improve instruction and
assessment principles.

To design the unified framework for blended Math-Sci
sensemaking, we build on previously published theoreti-
cal framework that outlines different ways students can

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-023-00409-8&domain=pdf
http://orcid.org/0000-0002-1295-216X

Kaldaras and Wieman International Journal of STEM Education

engage in Math and Science sensemaking separately
(Zhao & Schuchardt, 2021). We use the Math and Sci-
ence dimensions defined in Zhao and Schuchardt (2021)
to develop a new theoretical cognitive model (“frame-
work”) for blended Math-Science sensemaking to answer
the first research question of the study: (RQ 1): How can
one characterize the different ways of engaging in blended
Math-Sci sensemaking? The framework outlines qualita-
tively different proficiency levels reflecting increasingly
sophisticated ways of engaging in blended Math-Sci
sensemaking. Then, we investigated whether this theo-
retical framework indeed represents the various ways in
which students engage in such sensemaking. This is the
second research question of the study (RQ2): To what
degree does the validity evidence support the theoretical
framework for blended Math-Sci sensemaking? To answer
RQ 2 we specifically focused on evaluating whether the
validity evidence supported the existence of the catego-
ries and the order of the categories of the theoretical cog-
nitive framework developed as part of RQ 1.

To answer RQ 2, we probe the levels of the frame-
work by leveraging the capabilities of PhET simulations.
Specifically, one of the key features of the sensemaking
process is its dynamic nature focused on continuously
revising an explanation based on new evidence to figure
something out (Oden & Russ, 2019). The dynamic nature
of PhET simulations provides a unique and suitable envi-
ronment for assessing blended Math-Sci sensemaking
skills. This supports revisions of explanations by calling
on blended understanding of the scientific concepts and
the underlying mathematical relationships.

In the context of blended Math-Sci sensemaking, the
relevant mathematical equations represent processes
described by specific variables that reflect a certain
natural phenomenon. Simulations, in turn, represent
a scientific model of the physical behavior that reflects
the natural phenomenon with certain variables that
control that behavior. The simulation allows learners
to explore how the behavior depends on different vari-
ables, both qualitatively and quantitatively, therefore
providing a meaningful context for engaging in blended
Math-Sci sensemaking. Simulations provide a simplified
(but not too simplified) system for exploring the math-
ematical complexity of the phenomenon described in the
simulation.

We designed an interview protocol aimed at probing
the levels of the theoretical blended Math-Sci sense-
making framework in the context of PhET simulations
spanning physics, chemistry, and energy conversion dis-
ciplinary contexts. The range of scientific contexts was
chosen to explore the extent to which the blended Math-
Sci sensemaking varied with context. We collected and
analyzed interviews with 25 undergraduate science and
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non-science majors with a wide range of Math skills to
test the validity of the theoretical framework. The inter-
view analysis provided evidence of the validity of the
proposed theoretical framework, including both the
existence of the categories and preliminary evidence for
the order of the categories.

Literature review

Blended sensemaking refers to the process of combining
separate cognitive resources to generate a new, blended
understanding (Fauconnier & Turner, 1998). In the con-
text of blended Math-Sci sensemaking, the two cognitive
resources are the Science and the Math sensemaking,
respectively. We define the blended Math-Sci sensemak-
ing process as the process of integration of both Math
and Science cognitive resources to make sense of phe-
nomena as opposed to using only one of the cognitive
resources (e.g., either Science or Math sensemaking).
In this regard, blended Math-Sci sensemaking refers to
a distinct cognitive construct that incorporates the ele-
ments of Math and Science sensemaking but exhibits
unique features that result from the blending process.
This is similar to the way Fauconnier and Turner (1998)
describe the blending structure resulting from two men-
tal spaces, in this case Math and Science sensemaking
dimensions.

Evidence from prior studies suggests that the abil-
ity to engage in blended Math-Sci sensemaking reflects
higher level, expert-like understanding (Redish, 2017),
and has been shown to help students in solving complex
quantitative problems in science (Schuchardt & Schunn,
2016). The framework for blended Math-Sci sensemaking
presented here focuses on defining what proficiency in
blended Math-Sci sensemaking looks like at various lev-
els of sophistication. As shown in the description of the
levels below, the essence of blended Math-Sci sensemak-
ing lies in the student’s ability to demonstrate the blend-
ing of the Math and Science dimensions when making
sense of a phenomenon, as opposed to engaging in each
dimension separately.

Defining what proficiency looks like at various lev-
els of sophistication is important, because it provides
understanding of how students develop competence in a
cognitive construct (National Research Council [NRC],
2000). This understanding is essential for designing effec-
tive assessment, curriculum, and instructional strate-
gies for supporting student learning (NRC, 2000, 2012a)
and outlining what proficiency looks like and how it
develops over time (NRC, 2000). Cognitive frameworks
represent learning as a developmental process (NRC,
2012a, b; Smith et al., 2006) and provide a “road map”
for the pathway that students can follow to achieve this
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understanding (Duschl et al., 2007; NRC, 20124, b; Smith
et al., 2006).

To support students in blended Math-Sci sensemak-
ing, it is important to understand what proficiency
looks like at different levels of sophistication. The dif-
ferent levels of sophistication in this context refer to
the ability to integrate the two dimensions in a more
cognitively complex manner at the higher proficiency
levels. At present, there has not been a coherent frame-
work for characterizing proficiency in blended Math-
Sci sensemaking. However, there has been considerable
work characterizing different ways students can engage
in Math and Science sensemaking separately (Zhao &
Schuchardt, 2021) as well as characterizing blended
sensemaking from different educational perspectives
that are not describing different levels of proficiency
(Bain et al., 2019; Gifford & Finkelstein, 2020). Gifford
and Finkelstein (2020) developed a cognitive frame-
work for mathematical sensemaking in physics which
describes the process of sensemaking and relates it to
basic cognition. Bain et al. (2019) study high- and low-
quality Math sensemaking in the context of chemical
kinetics, but they do not examine different levels of
proficiency in blended Math-Sci sensemaking or how
this extends across disciplines, which is the focus of
this study.

Zhao and Schuchardt (2021) have provided a major
advance in presenting a framework that captures sense-
making opportunities for mathematical equations in
science grounded in the review of relevant literature.
The framework presents the sensemaking along two
separate dimensions: Science sensemaking and Math
sensemaking. The categories within the dimensions are
ordered theoretically to represent increasingly sophisti-
cated levels of sensemaking. The framework presented
by Zhao and Schuchardt is theoretical and has been
used to characterize sensemaking opportunities pro-
vided by instructors (Zhao et al., 2021). However, Zhao
and Schuchardt framework has not been validated in
terms of characterizing the types of blended Math-Sci
sensemaking that students can demonstrate in prac-
tice. Moreover, while the framework presented by Zhao
and Schuchardt can be used for characterizing both
Math and Science sensemaking and identify opportu-
nities for blended sensemaking during instruction, the
framework does not offer explicit guidance for support-
ing blended Math-Sci sensemaking at different levels of
sophistication, which is the focus of the current work.
This work builds on the work of Zhao and Schucha-
rdt (2021) and develops the two separate cognitive
dimensions of Science and Math into a unified cogni-
tive dimension of blended Math-Sci sensemaking. The
current study focuses on defining and distinguishing
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different proficiency levels of blended Math-Sci sense-
making for assessing and scaffolding instruction.

Theoretical framework
Developing cognitive model for defining proficiency
A cognitive model (also called a model of cognition)
describes how students represent knowledge and develop
proficiency in a domain (National Research Council
[NRC], 2001). Proficiency refers to describing what mas-
tery looks like in a domain. The understanding of how
proficiency develops is essential for designing effective
instructional and assessment strategies. Cognition mod-
els allow for empirical testing and valid interpretation of
assessment results, aligning curriculum, instruction, and
assessment with the purpose of helping students achieve
higher proficiency in a given concept (NRC, 2001).
Blended Math-Sci sensemaking is a cognitive construct
that has been studied in various fields of science. Zhao
and Schuhardt (2021) provided categories divided into
two dimensions (see Fig. 1): Science sensemaking and
Mathematics sensemaking (Zhao & Schuhardt, 2021).
Their Science sensemaking dimension includes four cate-
gories organized in the order of increasing sophistication
of understanding: scientific label (“Sci Label”), scientific
description (“Sci Description”), scientific pattern (“Sci
Pattern”) and scientific mechanism (“Sci Mechanism”).
The Math sensemaking dimension includes five catego-
ries in order of increasing sophistication: “Math Proce-
dure’, “Math Rule’, “MathStructure’, “Math Relation”
and “Math Concept” For example, logically, engaging in
“Sci Mechanism” type of sensemaking requires first being
able to identify specific properties and the correspond-
ing variables relevant to characterizing a given phenom-
enon (“Sci Description”). Once the variables have been
identified, it is possible to engage in identifying specific
patterns among the relevant variables (“Sci -Pattern”
in increasing order of sophistication. Finally, once the
relevant patterns have been identified, it is possible to
engage in developing a causal mechanistic account of the
phenomenon (“Sci Mechanism”). Similar logic applies
to the Mathematics sensemaking dimension. Zhao &
Schuchardt note the need to empirically test these levels
of sophistication for both dimensions. The current work
extends the work of Zhao and Schuchardt and their cat-
egories of sophistication to develop and empirically vali-
date a cognitive model that combines the two dimensions
to achieve blended Math-Sci sensemaking.

Developing theoretical cognitive model for blended
Math-Sci sensemaking

We used the Science and Mathematics sensemak-
ing categories described by Zhao and Schuchard and
blended them together to design new categories that



Kaldaras and Wieman International Journal of STEM Education

(2023) 10:18

Page 4 of 25

A Blended Math-Sci
Sensemaking
Mathematical Scientific E] Mechanism
g Sensemaking Sensemaking § Pattern
g Concept Mechanism g —
3 (Conceptual) O Description
7] Pattern category -
-E Relation bending 3 Mechanism
5 (Quantitative) Description g
2 . b= Pattern
= Structure Label } Combined £
§ (Qualitative) & Description
S
= Rule o Mechanism
Procedure Combined § Pattern
<
=
o Description
Q Mechanism
g
= Pattern idatine in thi
g Not validating in this study
&0
< Description

Fig. 1 Science and Mathematics categories of Zhao and Schuchardt (2021) blended into new categories making up the blended Math-Sci

framework

each combine a Mathematics and a Science dimension
to reflect the blended nature of the cognitive model. The
blending process is illustrated in Fig. 1 and discussed in
detail below. Since the focus of the cognitive framework
is quantitative understanding of scientific phenomena,
the levels of framework aim to describe increasingly
sophisticated ways of providing quantitative accounts of
phenomenon in question. Following the developmental
approach premise, the lowest level (level 1) of the frame-
work reflects limited ability to develop exact quantitative
relationship focusing instead on providing qualitative
accounts of phenomenon in question that will serve as
steppingstones for developing the exact quantitative rela-
tionships with different degree of sophistication at levels
2 and 3. Furthermore, levels 2 and 3 of the framework
reflect the ability to both develop quantitative relation-
ships and demonstrate quantitative understanding of the
previously known mathematical relationships at different
levels of sophistication. Therefore, this framework can
be used to guide instruction and assessment in various
contexts ranging from supporting learners in develop-
ing new mathematical relationships and attaining deeper
understanding of the known mathematical relationships
describing various scientific phenomena.

Before blending the dimensions, we combined the two
lowest categories of Zhao and Schuchardt Mathematics
sensemaking dimension (“Math Procedure” and “Math
Rule”) into one Math sensemaking category, because
they represent closely related types of Math sensemaking
(student knowledge of Math procedures and Math rules

respectively). We called the resulting category “Algorith-
mic’, because it represents very basic Math sensemak-
ing skills that only allow for the most rudimentary type
of blended sensemaking. While this type of sensemaking
is an important prerequisite to engaging in more com-
plex blended sensemaking and would be relevant to stu-
dents in lower grade levels, in the current study, we are
interested in looking at more advanced types of blended
Math-Sci sensemaking focusing on how it would hap-
pen in real-life settings when a mathematical explana-
tion of the observed phenomenon is sought. The focus of
the current study is validating the levels of the blended
Math-Sci sensemaking framework that reflect the types
of blended sensemaking occurring in a scenario when the
mathematical relationship is not provided to the learner
but is the end goal of the sensemaking activity. Since
both “Math Procedure” and “Math Rule” would not be
meaningful for this context, we will not be providing the
validity evidence for these categories in the current study.
However, we believe that it is important to include these
categories into the theoretical framework presented in
this paper, because they are important prerequisites for
developing higher level blended sensemaking ability.
These categories could be validated in the future studies.
Each blended category was developed by combin-
ing the four Math sensemaking dimension catego-
ries described by Zhao and Schuchardt (“Algorithmic’,
“Structure’, “Relation” and “Concept”) with three Science
sensemaking dimension categories (“Description’, “Pat-
tern’, “Mechanism”). We included their "Science Label”
category as part of our “Description” blended category,
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because both categories focus on naming and describing
the variables or system properties.

The resulting framework has each of the four Math
sensemaking categories (“Structure’; “Relation’, “Con-
cept”) subdivided into three Science sensemaking cat-
egories (“Description”, “Pattern’, “Mechanism”). The
order of sophistication in the blended Math-Sci sense-
making framework followed that suggested by Zhao and
Schuchardt. As shown in Fig. 1, the lowest Math sense-
making category termed “Algorithmic” was combined
with each of the three Science sensemaking categories to
yield the lowest level (level 0) of the blended framework.
This level will be theoretically described but not vali-
dated in the current study due to the reasons described
above. Similarly, the next lowest Math sensemaking cat-
egory termed “Structure” was combined with each of
the three Science sensemaking categories to yield three
blended Math-Sci sensemaking categories shown as the
lowest (“qualitative”) sublevel of the blended framework.
This is the lowest sublevel that will be validated in this
study. Similar logic applied to blending each of the three
Science sensemaking categories with the two higher level
Math sensemaking categories including “Relation” and
“Concept”. The twelve resulting categories are divided
into four broad levels (0-3) with respect to the Math
sensemaking dimension which we label as “algorithmic’,
“qualitative’, “quantitative’, and “conceptual” These reflect
different levels of proficiency in quantitatively describing
phenomena. Levels 1-3 of the framework contain three
sub-levels reflecting the Science sensemaking dimension,
as shown in Table 1. The theoretical “algorithmic” level is
labeled as level O of the framework in Table 1.

The resulting framework consists of new categories that
are adapted from the categories proposed by Zhao and
Schuchardt and follow similar ordering but reflect profi-
ciency in blended Math-Sci sensemaking. The process of
developing the blended categories focused on identifying
the aspects of student thinking relevant for characteriz-
ing scientific phenomena mathematically at various levels
of sophistication. The blended categories were developed
following discussions with educational and subject mat-
ter experts. The resulting framework was reviewed by
educational and subject-matter experts. The experts who
reviewed the framework had both subject matter knowl-
edge (chemistry, physics, biology) and educational exper-
tise and all of them held PhDs in the respective fields.
In addition, all the experts had over 5 years of teaching
experience in the respective fields and had professional
interest in pedagogy. As a result of the review no major
changes were made to the description of the first two
levels of the framework shown in Table 1. Furthermore,
the clarifications were made on the description of the
highest level of the framework, level 3. Specifically, the
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description of the lowest sublevel (“Description”) was
revised to emphasize student ability to notice both unob-
served or not directly obvious variables and constants
(the original iteration only focused on the variables). Fur-
thermore, the description of the highest sublevel (“Mech-
anism”) was revised to clarify what it means to provide
causal explanation of the equation structure, that is how
the equation (the variables and the mathematical opera-
tions among the variables) describe the causal mecha-
nism of the scientific phenomenon.

Theoretical cognitive model for blended Math-Sci
sensemaking

The detailed description of the blended categories is
shown in Table 1. The lowest, “algorithmic” (level 0) cat-
egory reflects recognizing mathematical relationships in
a provided formula. The higher categories apply to con-
texts where students are developing the mathematical
relationship from observations or recall the formula and
recognize that it applies to describe a given phenomenon
mathematically. This work concentrates on the latter con-
text, so we did not examine the "algorithmic" level in our
student validation interviews.

The lowest level that will be validated in the current
study, “qualitative’; reflects the ability to identify quali-
tative aspects that are important for characterizing the
phenomenon mathematically. While students can engage
in sensemaking of various aspects of the phenomenon
in question, their sensemaking is limited to qualitative
conclusions. The term “qualitative” in this context refers
to providing descriptive accounts grounded in language
(more vs. less, small vs. large) as opposed to “quanti-
tative, which refers to providing numerical, measur-
able accounts grounded in numbers (“increase by 5
vs. decrease by 10”). As noted above, this level reflects
blended Math-Sci sensemaking that serves as a stepping-
stone to developing exact quantitative accounts of phe-
nomena at the next level.

The intermediate level, “quantitative’, reflects the ability
to develop a quantitative description of the phenomenon
and the sublevels mirror those at the qualitative level but
reflect the ability to go beyond qualitative accounts. The
blended sensemaking at this level builds on the previous,
“qualitative” level. At the lowest (“Description”) sublevel
of the “quantitative” level students recognize numerical
values of the relevant variables (as opposed to the low-
est sublevel of the “qualitative” level, where they simply
identify the relevant variables). Furthermore, at the inter-
mediate (“Pattern”) sublevel of the “quantitative” level
students use the numerical values to identify specific
patterns among the numerical values of the variables.
Finally, at the highest (“Mechanism”) sublevel of the
“quantitative” level students translate these quantitative
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Table 1 Theoretical blended Math-Sci sensemaking framework

0 Students recognize mathematical relationships in a provided formula

1 Qualitative  Description

Pattern

Mechanism

2 Quantitative Description

Pattern

Mechanism

3 Conceptual  Description

Pattern

Mechanism

Students use observations to identify which measurable quantities (variables) contribute to
the phenomenon
Example: force and mass make a difference in the speed of a car

Students recognize patterns among the variables identified using observations and can
explain qualitatively how the change in one variable affects other variables, and how these
changes relate to the scientific phenomenon in question

Example: the smaller car speeds up more than the big car when the same force is exerted on both

Students demonstrate qualitative understanding of the underlying causal mechanism (cause-
effect relationships) behind the phenomenon based on the observations but can't define the
exact mathematical relationship

Example: it is easier to move lighter objects than heavy objects, so exerting the same force on a
lighter car as on a heavy car will cause the lighter car to speed up faster

Students recognize that the variables identified using the observations provide measures of
scientific characteristics and can explain quantitatively how the change in one variable affects
other variables (but not recognizing the quantitative patterns yet), and how this change relates
to the phenomenon. Students are not yet able to express the phenomenon as an equation
Example: recognizing that when variable A has value of X, variable B has value of Y

Students recognize quantitative patterns among variables and explain quantitatively how the
change in one parameter affects other parameters, and how these changes relate to the
phenomenon in question. Students not yet able to relate the observed patterns to the opera-
tions in a mathematical equation and can't develop the exact and accurate mathematical
relationship yet

Example: recognizing mathematical relationships such is direct linear and inverse linear among
others

Students can explain quantitatively (express relationship as an equation)(express relationship as
an equation) how the change in one variable affects other variables based on the quantitative
patterns derived from observations. Students include the relevant variables that are not obvi-
ous or directly observable. Students are not yet able to explain conceptually why each variable
should be in the equation beyond noting that the specific numerical values of variables and
observed quantities match with this equation. Students cannot explain how the mathematical
operations used in the equation relate to the phenomenon, and why a certain mathematical
operation was used. Students can provide qualitative causal account for the phenomenon
Example: In F,..=ma, multiplication makes sense because when applied force on the mass of 50 kg
increases from 10 to 20 N, acceleration increases by 2. That only makes sense for a multiplication
operation

Students can describe the observed phenomenon in terms of an equation, and they can
explain why all variables or constants (including unobservable or not directly obvious ones)
should be included in the equation. Students are not yet able to explain how the mathemati-
cal operations used in the formula relate to the phenomenon

Example: In F=ma, the F is always less than applied force by a specific number, so there must be
another variable subtracted from F .4 to make the equation work. The variable involves the prop-
erties of the surface. So, the equation should be modified: F,,yeq4-(variable) = ma

Students can describe the observed phenomenon in terms of an equation, and they can
explain why all variables or constants (including unobservable or not directly obvious ones)
should be included in the equation. Students are not yet able to provide a causal explanation
of the equation structure

Example: In F, .= ma, multiplication makes sense because as applied force on the same mass
increases, acceleration increases linearly, which suggests multiplication

Students can describe the observed phenomenon in terms of an equation, and they can
explain why all variables or constants (including unobservable or not directly obvious ones)
should be included in the equation. Students can fully explain how the mathematical opera-
tions used in the equation relate to the phenomenon in questions and therefore provide
causal explanation of the equation structure, that is how the equation (the variables and the
mathematical operations among the variables) is describing the causal mechanism of the
scientific phenomenon

Example: Since greater acceleration is caused by applying a larger net force to a given mass, this
shows a positive linear relationship between a and F,.,, which implies multiplication between m and
ain the equation, or F,.;=ma

et

Examples provided in the table assume students are working towards developing a mathematical relationship describing the scientific phenomenon in question
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patterns among the variables into the appropriate mathe-
matical relationship that describes the scientific phenom-
enon in question. The justification they provide for the
mathematical relationship is grounded in the numerical
values of the variables as opposed to higher level concep-
tual justification. An example of this would be developing
a mathematical relationship describing how accelera-
tion depends on the applied force (F,..=ma) and using
numerical values of each variable to support the choice
of variables and the operation among the variables in
the equation. Alternatively, a student might recall the
equation and recognize that it applies in a given context.
Irrespective of whether the mathematical relationship
is developed or recalled, at this level students justify it
using numerical values of the relevant variables.

Finally, the highest level, “conceptual’, indicates a causal
understanding of quantitative relationships describing
the scientific phenomenon. At the lowest (“Description”)
sublevel students not only identify additional unobserv-
able variables needed to characterize the phenomenon
mathematically, but also justify why they are scientifically
important to include in the mathematical relationship.
Furthermore, at the intermediate (“Pattern”) sublevel
students define quantitative patterns among the relevant
variables and directly translate those patterns into the
mathematical operations in the relationship describ-
ing the phenomenon. Students justify the mathematical
operations by directly connecting the observed quan-
titative patterns to the mathematical operations in the
equation. Alternatively, students might recall the math-
ematical relationship and recognize that it applied for
describing a given phenomenon mathematically. In this
case students justify the applicability of the mathematical
relationship by directly relating mathematical operations
in the equation to the observed quantitative patterns. An
example of this would be making a connection between
linear patterns among the variables and the multipli-
cation operation that would quantitatively describe
the relationship between these variables (see sample
response for this sublevel in Table 1). This is in contrast
to the lower, “quantitative” level where students use
numerical values of the relevant variables to justify the
derived mathematical relationship describing the phe-
nomenon. However, at this sublevel they are not yet pro-
viding causal explanation of the equation structure, that
is how the equation (the variables and the mathematical
operations among the variables) is describing the causal
mechanism of the scientific phenomenon. This ability is
indicative of the highest (“Mechanism”) sublevel. Specifi-
cally, at the highest sublevel students recognize that the
mathematical relationship provides a causal quantitative
account of the phenomenon. An example of this would
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be not just recognizing that a linear relationship between
the variables reflects multiplication operation in the cor-
responding equation but recognizing that the equation
reflects the scientifically sound causal relationship, such
as recognizing that applying a greater force to a given
mass causes greater acceleration, which is consistent with
the linear relationship between force and acceleration
reflected in the mathematical relationship for Newton’s
Second Law. This contrasts with the lower, “quantitative”
level where students justify the mathematical operations
using the numerical values of the relevant variables, but
provide causal account of the phenomenon at the qualita-
tive level without relating the equation structure to the
underlying scientific mechanism.

This hierarchy of levels makes sense in terms of the
level of mathematical abstraction required for the differ-
ent reasoning processes. In this study, we provide initial
empirical evidence for the ranking based on the inter-
views presented below. We see that students routinely
demonstrate blended sensemaking at the levels below
their highest demonstrated level of proficiency, but they
never demonstrate a high proficiency level while fail-
ing to achieve the criteria for lower proficiency levels.
However, given the limitation of the sample size and the
assessment scenarios, additional evidence is needed to
confirm the level hierarchy proposed here.

Validating the theoretical cognitive model for blended
Math-Sci sensemaking

Validating a cognitive model starts with develop-
ing a theoretical model reflecting what different lev-
els of proficiency look like in a domain. This model
is shown in Table 1. We empirically tested the model
using assessment interview scenarios from three dif-
ferent subject domains (physics, chemistry and energy
conversion). These interviews probed how well student
thinking fit within the levels and sublevels of the frame-
work shown in Table 1. The student responses were the
data used to test the validity of the model. This method
is following the Standards for Educational and Psycho-
logical Testing as appropriate for test validity evidence
(American Educational Research Association [AERA],
2018) and has been previously used to validate cogni-
tion models such as learning progressions (Kaldaras,
2020; Kaldaras et al., 2021a, b).

Response process-based validity is obtained by evalu-
ating the correspondence between responses to assess-
ments measuring the construct for a population of
students and the various cognitive model levels. If there
is sufficient evidence of correspondence between the
variation in student responses and the theoretical model
levels, one can conclude that a given cognitive model
exhibits response process-based validity (AERA, 2018).
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Fig. 2 Snapshot of the Acceleration simulation

We used a sample of students with a wide range of Math
and Science proficiency to adequately test the model.

Methods

PhET simulations allow learners to explore how the
behavior depends on different variables, both qualitatively
and quantitatively, therefore providing a meaningful con-
text for engaging in blended Math-Sci sensemaking. This
study uses PhET simulations as an assessment context to
test the cognitive model for blended Math-Science sense-
making shown in Table 1.The framework is designed to be
widely applicable for guiding curriculum and assessment
design.

To test the theoretical cognitive model for blended
Math-Sci sensemaking, we first selected PhET simula-
tions spanning three subject areas that would be suitable
to provide assessment scenarios. Then we developed an
interview protocol for each scenario that would probe
each level and sublevel of the model. That was followed
by interviewing undergraduate students spanning a range
of majors and Math proficiency on all three scenarios,
then coding their responses and comparing with the
levels of the theoretical model. We discuss each step in
more detail below.

Choosing disciplinary contexts and PhET simulations

Most studies on mathematical, scientific, and blended
sensemaking have been conducted in the fields of phys-
ics, chemistry and biology (Zhao & Schuchardt, 2021).
We initially planned to use those three disciplines as a
context for the current study. The next step was to choose
an appropriate phenomenon in each of those fields. The

main criteria were: (1) the simplicity of the mathematical
relationship describing the phenomenon; (2) the obser-
vational simplicity of the phenomenon; and (3) the wide
applicability of the scientific idea underlying the phe-
nomenon. As described below, we could not find suitable
assessment scenarios for biology that met all the defined
criteria, so we chose a different context for the third
scenario.

In terms of mathematical simplicity, the criteria were
phenomena that were described by a simple mathemati-
cal relationship (e.g., direct, or inverse linear multiplica-
tive relationships). This allowed a substantial fraction,
though far from all, of the interviewees (and presum-
ably our target population) to express the mathematical
relationship based on their interactions with the PhET
simulation describing the phenomenon. We also chose
phenomena described by a mathematical relationship
with only one type of mathematical operation to reduce
the mathematical complexity. Furthermore, we chose
PhET simulations that model phenomena that most stu-
dents are familiar with from everyday life and/or their
coursework. Finally, we chose phenomena that are based
on a widely applicable science ideas, so that the assess-
ment might offer a useful learning opportunity to the stu-
dent volunteers.

Following these criteria, we chose a PhET simula-
tion modeling acceleration on an object as a function
of applied force! (Newton’s Second Law) for physics.

! https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/
forces-and-motion-basics_en.html


https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics_en.html
https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-basics_en.html
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Fig. 3 Snapshot of Beer's Law simulation

The phenomenon is described by the formula F, ,=ma,
where “F,,,” is a net force exerted on an object (calculated
by subtracting applied force from the force of friction),
“m” is mass of an object and “a” is the acceleration of the
object. The formula involves a simple linear relationship
and describes a familiar scenario.

Figure 2 shows a snapshot of the Acceleration simula-
tion that students used during the interview. Students
could use different objects to change the mass, they could
apply force of different magnitude, change the magnitude
of friction, and observe how the acceleration and speed
change as a result of applied force on different masses.
At the beginning of the interview all students were given
time to interact with the simulation before responding to
interview questions. Then, when they indicated they have
explored the simulation enough to start the interview,
they were asked to respond to the interview questions.
Students were interacting with the simulation as they
were responding to the interview questions. This was the
case for all the three disciplinary scenarios.

For chemistry, we chose a PhET simulation modeling
the relationship between concentration of a substance
and the resulting absorbance at a given wavelength

% https://phet.colorado.edu/sims/html/beers-law-lab/latest/beers-law-lab_en.
html

(Beer’s Law?). The phenomenon is described by the for-
mula A=c b e, where “A” is the absorption at a given
wavelength, “c” is the concentration of a substance, “b” is
the width of the substance’s container and “e” is a molar
absorption coefficient constant reflecting an internal
property of a substance. Figure 3 shows a snapshot of
the Beer’s Law simulation that students were interacting
with during the interview. Students could use different
substances and change their concentration to investigate
how absorbance and transmittance change as a result.
They could also change the width of the container and
the wavelength at which the signal was detected. Note
that the molar absorption coefficient, which is a constant
in the Beer’s Law formula, is not a variable that students
can change in the simulation. However, it can be noticed
that at the same concentration and wavelength different
substances absorb differently, which implies that there is
some parameter unique to the substance that also affects
the absorption.

We selected an interdisciplinary phenomenon for our
third scenario, the conversion of energy and the efficiency
of the conversion across different systems. The phenom-
enon is described by an efficiency formula which could
be represented in one of the two ways: a) Fraction of the


https://phet.colorado.edu/sims/html/beers-law-lab/latest/beers-law-lab_en.html
https://phet.colorado.edu/sims/html/beers-law-lab/latest/beers-law-lab_en.html
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Fig. 4 Snapshot of Energy Conversion simulation

Energy Used= Useful Energy output/Energy input or b)
Useful Energy Output = Energy Input- Energy Lost to use-
less forms. This phenomenon was chosen, because it rep-
resented simple mathematical relationships (inverse or
subtraction) and involved a familiar and important idea
that spans different disciplines. Finally, the PhET simu-
lation showing energy conversion® allowed learners to
investigate the energy efficiency of various systems. We
label this context “energy conversion” Figure 4 shows a
snapshot of the Energy Conversion simulation. Students
could change components of the system (energy input,
energy generator, energy output) and observe the amount
of energy converted and lost at each step within a system.
They could quantify the amount of energy by counting
the number of energy boxes and their type (mechanical,
electrical, thermal, light, chemical).

Developing interview protocol

We developed an interview protocol that was used for all
three assessment scenarios (physics, chemistry, energy
conversion). The interview protocol is provided in the
Appendix (Additional file 1).

The interview questions focused on asking students
to use the PhET simulation to explore the phenomenon
and then characterize the behavior mathematically.
Then, a set of questions probed the mastery of the lowest

3 https://phet.colorado.edu/sims/html/energy-forms-and-changes/latest/
energy-forms-and-changes_en.html
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(“qualitative”) level of the framework in Table 1 by ask-
ing students to identify the relevant variables, note quali-
tative patterns among the variables, and qualitatively
explain causal relationships between the variables.

Next, student thinking at the intermediate (“quanti-
tative”) level was probed by asking students to deter-
mine the numerical values of the relevant variables and
the quantitative patterns among the variables. This
was followed by asking them to develop mathematical
relationships (express a mathematical relationship or
equation) among the variables and justify that quantita-
tive relationship.

At this point, if students were struggling to provide a
mathematical relationship based on their interaction with
and observations of the simulation, they were provided
with data that was collected from the simulation (or rel-
evant to the simulation, as the case with energy conver-
sion). This data was presented to them in a table which
reflected how numerical values of the relevant variables
change with respect to each other. For example, for the
Acceleration simulation, students were provided with
three data tables: one showing how acceleration changes
as different forces are applied to the same mass; a sec-
ond one showing how acceleration changes as the same
force is applied to different masses; and a third table
showing the acceleration for the combination of differ-
ent objects with the same resulting mass (to demonstrate
that it is the resulting mass that matters, and not the
combination of objects). As students were studying the
data provided to them, they were also allowed to go back


https://phet.colorado.edu/sims/html/energy-forms-and-changes/latest/energy-forms-and-changes_en.html
https://phet.colorado.edu/sims/html/energy-forms-and-changes/latest/energy-forms-and-changes_en.html
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Student Physics Chemistry SAT Math Score Major

1 Algebra-based HS Chemistry Not available Undecided

2 Algebra-based General Chem. | 540 X-Ray Technician

3 Calculus-based HS Chemistry 750 Aerospace Engineer

4 Calculus-based General Chem. |l 760 Integrated Physiology

5 Calculus-based HS Chemistry 720 Mechanical Engineer

6 Calculus-based General Chem. Il 680 Mechanical Engineer

7 Calculus-based AP/IB Chemistry Not available Mechanical Engineer

8 Algebra-based HS Chemistry 740 Mechanical Engineer

9 Calculus-based HS Chemistry Not available Mechanical Engineer

10 Algebra-based HS Chemistry Not taken Civil Engineer

11 Calculus-based Organic Chem. Il 790 Biology

12 Honors physics HS Chemistry 560 Undecided

13 Calculus-based General Chem. | 760 Human Biology

14 Calculus-based General Chem. | 730 Symbolic Systems

15 Calculus-based HS Chemistry 760 Computer Science/Astronomy
16 Calculus-based AP Chemistry 690 Environmental System Engineering
17 Calculus-based HS Chemistry 670 Environmental systems engineering
18 Calculus-based Honors Chem 660 Undecided

19 Calculus-based Organic Chem. I 760 Symbolic systems/pre-med
20 Calculus-based HS Chemistry Not taken Undecided/plan to do Physics
21 Algebra-based HS Chemistry 710 Elementary Education

22 HS Physics General Chem. | 490 Elementary Education

23 Algebra-based HS Chemistry 560 Elementary Education

24 None HS Chemistry 480 Elementary Education

25 None HS Chemistry 580 Elementary Education

and forth between the data and the simulation to see if
that helps them figure out the mathematical equation.

If they were still unable to give a suitable equation,
they were presented with a list of possible equations
and asked to use the simulation and the data to see if
they can figure out which of these equations properly
described the phenomena. The list of possible formulas
was purposefully made very long with similar combina-
tions of variables to minimize the possibility of guessing
the correct formula simply based on which variables it
contained. The data tables with lists of possible for-
mulas for all the assessment scenarios are provided in
the Appendix (Additional file 1).

Finally, those students who mastered levels 1 and 2, by
giving a correct equation based on either the PhET simu-
lation alone, or a combination of the data and the list of
possible formulas provided to them were assessed as to
their mastery of level 3, conceptual. The students were
asked to justify the mathematical relationships among the
variables in the equation, and explicitly relate the math-
ematical operations to the observations in the simulation.
This probed whether students could accurately translate
observation patterns to specific mathematical operations.

In addition, students were also asked to provide a causal
explanation for the equation structure that they pro-
posed, focusing on probing whether students understand
cause-effect relationships reflected in the equation.

If at any point during the interview students recalled
an equation from memory (such as F,,,=ma) and recog-
nized that it applies in a given situation, they were asked
to provide justification for why they thought the equation
applied based on all the information they have. They were
asked probing question consistent with each of the levels
of the framework to help gauge the degree of sophistica-
tion of their justification as related to the framework. For
example, for level 2 (“quantitative”), they were asked to
use the quantitative patterns they have identified to jus-
tify the recalled mathematical relationship and its appli-
cability in a given context.

Interviews

Interviews were conducted via zoom using standard
zoom recording features. Each interview lasted between
40 and 60 min during which students were given time to
interact with the simulation and answer interview ques-
tions provided in the Appendix (Additional file 1). Each
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Table 3 Interview coding rubric for Beer's Law simulation

1 Description
Pattern

Mechanism

2 Description

Pattern

Mechanism

3 Description

Students identify concentration and width of the container as variables that affect absorbance and transmittance

Students identify that for specific wavelength the larger the concentration the larger the absorbance, and the smaller the transmit-
tance

Students recognize that the concentration of substance is the main causal factor behind the changing absorbance and transmittance
but can't define the exact mathematical relationship for Beer's law

Students quantitatively describe how the change in the concentration and the container width affect absorbance and transmittance
but don't recognize quantitative patterns yet
Example: when | use concentration X for substance A, the absorbance changes to Y

Students recognize that the relationship between concentration/container width and absorbance is positive linear, and between
concentration/container width and transmittance is not linear (may say logarithmic or inverse). Students are not yet able to relate the
observed patterns to the operations in a mathematical equation and can't develop exact mathematical relationship for Beer's law

Students can explain quantitatively (express the relationship as an equation) for how the change in concentration and container width
affects absorbance. The formula derived: A= concentration - width of vial- molar absorption coefficient (MAC). Students can't fully
explain why MAC should be included in the equation and can't justify multiplication operations beyond the fact that numerical values
of the variables otherwise don't agree. Students recognize that the cause for changing absorbance is concentration of the substance
Note: MAC is an unobserved variable because it is not reflected in the PhET simulation and can only be inferred by noticing that absorbance at
a given concentration and wavelength is different across various substances. MAC is provided to students in data tables

Students can express the relationship as an equation for absorbance (A =concentration - width of vial - molar absorption coefficient
(MAQ)) and explain that MAC relates to specific properties of a given substance, and therefore should be included in the equation. Stu-
dents can't explain why multiplication is their operation of choice beyond the fact that the numerical values of the variables otherwise

don't agree
Pattern

Students can develop the equation for absorbance and explain how the patterns among variables in the formula relate to observa-

tions. Specifically, students recognize that concentration and container width have a positive linear relationship to absorbance, which
suggests multiplication operation. They also recognize that concentration and container width relate to absorbance through the
factor of MAC, which also suggests multiplication operation. Students are not yet able to provide a causal explanation of the equation

structure
Mechanism

Students recognize that the cause for the change in absorbance is primarily the change in concentration (all other factors such as

cuvette width and MAC being related to concentration) and can relate all the variables and operations in the equation to the observa-

tions of the phenomenon

student completed three interviews, each focusing on
one of the three subject areas and PhET simulations,
respectively.

Participants

Participants were first- and second-year undergraduate
students recruited from a large public university and a
private university in Western US. Participants were cho-
sen from the list of volunteers to represent a sample of
students with varying levels of Math and Science prepa-
ration. The participants were recruited by sending an
email to the list of volunteers introducing the interview
opportunity and asking volunteers to sign up. A total of
26 students were interviewed. One student was dropped
from the interview analysis, because they did not finish
all three interviews. The relevant information on the par-
ticipants’ level of preparation is shown in Table 2. Spe-
cifically, Table 2 shows the highest level of Physics and
Chemistry taken by each student as well as their Math
SAT score and major. All participants were compensated
for each interview with $20 gift cards.

Interview analysis

Rubric development

Interview analysis was conducted using rubrics designed
for each of the three PhET simulations. Each rubric was
aligned to the framework shown in Table 1 and described
in detail what student responses should contain at each
sublevel for each specific simulation. An example of
Beer’s Law rubric is shown in Table 3. The Newton’s
Law and Energy Conversion rubrics are provided in the
Appendix (Additional file 1). Note that all the rubrics are
very specific and contain samples of student responses
that would be consistent with a given sublevel of the
framework for each disciplinary scenario. The rubrics
were reviewed by the same disciplinary and educational
experts that reviewed the framework shown in Table 1
to ensure alignment with the framework. No significant
changes were made to the rubrics upon the review.

Interview coding

All interviews were analyzed by the first author follow-
ing the respective rubrics. The coder listened to each
interview and recorded the time stamps for the instances
where they believed the interviewee demonstrated the
blended Math-Science sensemaking consistent with
specific sublevel of the framework. To ensure that three
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interviews from the same students were coded ran-
domly and the level assignments from the interviews of
the same student were not known, the coder paid special
attention not to code more than one interview from the
same student within a short time frame.

Inter-rater reliability

Inter-rater reliability (IRR) was obtained by having a sci-
ence education researcher unfamiliar with the project
code two interviews in each discipline using the respec-
tive rubric. Before coding for establishing the IRR, the
researcher was trained in using the framework shown
in Table 1 and the rubrics for each disciplinary scenario.
The IRR was established by having the coder listen to
six interviews (two from each disciplinary scenario) and
record the time stamps for the instances where they
believed the interviewee demonstrated the blended
Math-Science sensemaking consistent with specific sub-
level of the framework. The time stamps were recorded
and compared to those assigned by the first author during
discussion. When discussing rating for each interview,
the researchers compared final level assignment and evi-
dence for all other sub-levels of the sensemaking frame-
work detected in the interview. This approach ensured
that the same information from student responses is
taken as evidence for all level assignments.

For Beer’s Law and Energy Conversion simulations,
the IRR was 100% on the first try. That is, the timestamps
assigned by both coders were the same for both inter-
views. For Acceleration simulation, the IRR was 100% for
one of the interviews on the first try. For the other inter-
view, one of the coders assigned level 2 “Mechanism”
and the other coder assigned level 3 “Description” (dif-
ference 1 sub-level). Upon discussion both conders con-
cluded that the interviewee did in fact demonstrate level
3 “Description” blended Math-Science sensemaking.

Results

Validity evidence supporting the existence

of the categories of the theoretical framework

Below are sample responses for each sub-level of the
framework for all three disciplinary scenarios. Tables 4,
5 and 6 show sample responses for the sub-levels of
“Description’, “Pattern” and “Mechanism” respectively
at each of the broad levels (“qualitative’, “quantitative”
and “conceptual”). We were able to identify evidence of
blended Math-Science sensemaking corresponding to
every level and sublevel of the framework.

Table 4 shows sample responses for each of the
three disciplinary scenarios for the “Description” sub-
level at each of the broad levels of the framework.
The “Description” sublevel at the lowest “qualitative”
level reflects student ability to identify the observable

(2023) 10:18
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variables relevant for characterizing the phenomenon
mathematically. For Acceleration simulation, the vari-
ables are acceleration, mass, and force. For Beer’s Law
simulation, the variables are concentration, container
width and absorbance. For Energy Conversion simula-
tion, the variables are energy input and energy output.
Student responses shown in Table 4 for this sublevel
are examples of proficiency in blended Math-Science
sensemaking focusing on student ability to identify
the variables relevant to characterizing the phenom-
enon mathematically, but not provide any quantitative
account of these variables yet. For example, for Accel-
eration simulation sample response states “In the sim
you can change the mass and the force and see how
that affects acceleration”. The bolded phrase reflects
blended Math-Science sensemaking. Math sensemak-
ing is reflected in student recognizing that changing
the values of mass and force changes acceleration. It’s
a qualitative evaluation at this level, so numerical val-
ues or quantitative patterns of these changes are not
identified yet. Science sensemaking is reflected in rec-
ognizing the relevant scientific variables describing
the phenomenon observed in the simulation: mass,
force, and acceleration. The two types of sensemaking
cannot be meaningfully separated, because one can-
not occur without the other: as students interacts with
the simulation and change the numerical values for
mass and force, they notice that this also changes the
numerical value for acceleration, which they otherwise
cannot control. Therefore, mass and applied force as
well as acceleration are relevant for characterizing the
observed phenomenon mathematically. Similar assess-
ment holds for the other two disciplinary scenarios and
for all the sublevels.

The “Description” sublevel at the next level, “quantita-
tive’, reflects the student’s ability to notice the values of
the variables corresponding to a particular situation, but
not noticing the patterns of behavior corresponding to
changes in any of those variables. For Acceleration simu-
lation, this involves noticing there are specific numeri-
cal values for acceleration, mass, and force. For example,
for Acceleration simulation sample response states “If
you apply a force of 500 N and you have a mass of 50,
then the net force is 500, you see that the acceleration
is 10” The bolded phrase reflects blended Math-Science
sensemaking, because it contains elements of Math and
Science sensemaking, but similarly to the above exam-
ple they cannot be meaningfully separated. Specifically,
in the sample response the student is recognizing the
numerical values of the variables (Math sensemaking)
that are relevant for providing quantitative account of
the observed phenomenon (Science sensemaking). Simi-
larly, for Beer’s Law simulation, this means noticing the
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specific numerical values for concentration and con-
tainer width, which result on changes for the values of
the absorbance. For Energy Conversion simulation, this
involves noticing the numerical values for the variables
of energy input and output. At this level, students can
connect their qualitative observations with the specific
numerical values of the variables from the simulation or
data provided to them (like with Beer’s Law and Energy
Conversion examples), but they do not notice any quanti-
tative relationships between the variables (compare to the
“Pattern” sublevel of quantitative level shown in Table 5,
where students can recognize specific numerical patterns
from the data or the simulation).

Finally, the “Description” sublevel at the highest level,
“conceptual” reflects the student’s ability to both iden-
tify and justify the need for the variables that are not
directly observed or those that are not directly obvious.
Students at this level can justify their mathematical rela-
tionship by stating that it is supported by the patterns
among the numerical values of the relevant variables.

For Acceleration simulation, this involves specifi-
cally recognizing that F , is calculated by subtracting
the applied force from friction force and justifying the
mathematical relationship (F,.=ma) using numerical
values of the variables to show that the formula works.
For example, for Acceleration simulation sample response
states “The friction force was 84, to counter it, you
would need, like 84 newtons of applied force, and
then, the weight of this mass is 50 kg. I solved on paper
what the acceleration should be (using F, . =ma), and
it should be 1.68 m/s2, and that’s what the sim is show-
ing” The bolded phrase reflects blended Math-Science
sensemaking, because it contains elements of Math and
Science sensemaking, but they cannot be meaningfully
separated, because one cannot occur without the other.
Specifically, the student is explicitly connecting their
observations of how variables in the simulation affect
each other to generate the phenomenon e.g. accelera-
tion (Science sensemaking) to the numerical values of
the associated variables required to characterize the
phenomenon mathematically (Math sensemaking). In
addition, in this specific example the student recalled
F, . =ma from memory and recognized that it applied.

Blended sensemaking at the “conceptual” level with
Beer’s Law simulation involves recognizing that there
is an additional variable that needs to be accounted for
apart from concentration and container width to find the
specific absorption properties of a substance. This vari-
able is molar absorption coefficient (MAC), and it is not
part of the PhET simulation on Beer’s Law. Students can
infer the information about this variable by noticing that
different substances at a given wavelength and the same
concentration absorb differently. Most students were
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provided MAC as part of the data on Beer’s Law simula-
tion (see Appendix (Additional file 1) for data tables pro-
vided to students), and they could use the information on
MAC to help them develop the exact mathematical rela-
tionship. This is reflected is the sample quote, where the
student first recognizes that there should be an additional
variable, then confirms it using the provided data: “I
guess there is something between the wavelength and
the solution type, some constant, like a certain vari-
able that is specific to the solution that determines
what wavelength gets through. Going back to the data,
you would have to divide the absorbance and the length
by the molar absorption coefficient to get the concentra-
tion” The student is explicitly connecting their observa-
tions of the scientific phenomenon in the sim (noticing
something specific to the solution that determines what
wavelength gets through) to the numerical values of the
associated variables. The student justifies the derived
Math relationship using the numerical values of the vari-
ables (see the rest of the example).

Finally, Energy Conversion simulation blended sense-
making at the “conceptual” level involves recognizing the
variable of “energy lost as thermal” in any system during
the process of energy conversion. This thermal energy is
not used for the purposes of the system (e.g., generating
electricity). The PhET simulation shows thermal energy
loss at every step of the process in the form of energy
units leaving the system and not being used, but it is hard
to notice this lost energy. This represents an unobserved
variable for this phenomenon. The mathematical rela-
tionship can be derived either in the form of a) Fraction
of the Energy Used = Useful Energy output/Energy input
or b) Useful Energy Output=Energy Input- Energy Lost
to Useless Forms. The mathematical relationship is justi-
fied by using the numerical values of the relevant vari-
ables to show that they make sense for the specific form
of the mathematical relationship. In the example quote,
the student is recognizing that the thermal energy should
be part of the equation and derives the equation for spe-
cific case as “Electrical energy equals 1/6 thermal plus
5/6 of the mechanical”. This is an acceptable variation
of the equation in part b where the useful energy is the
mechanical energy and energy input is electrical energy
in the student’s example. The student derived it for a spe-
cific case observed in the simulation and recognized that
the type and amount of useful energy will be different for
different systems (see the rest of the example). Like in
above examples, Math and Science sensemaking cannot
be separated: the student uses observations of the scien-
tific phenomenon (e.g.. energy transfer and conversion
through the system) to quantify the amounts and types of
energies at each stage of the process to develop the math-
ematical relationship using the simulation.
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Table 5 shows sample responses for each of the three
disciplinary scenarios for the “Pattern” sublevel at each of
the broad levels of the framework. The “Pattern” sublevel
at the lowest level, “qualitative’; reflects student ability to
identify the qualitative patterns among the observable
variables relevant for characterizing the phenomenon.
At this level students cannot translate the identified
qualitative patterns into the exact mathematical relation-
ship. As shown in sample student responses, Math and
Science sensemaking cannot be separated: as students
change the numerical values for various variables, they
not only notice the changes in the numerical values of
other variables (which is consistent with lower, “Descrip-
tion” sublevel) but also provide a qualitative evaluation of
this change using words such as “more’, “less’, “higher’,
“lower” etc. as opposed to specific numerical and quan-
titative patterns, which happens at the next level. This
qualitative evaluation (Math sensemaking) occurs as stu-
dents are making sense of how the variables relate to each
other and the phenomenon (Science sensemaking).

The next level, “quantitative’, involves noticing the
exact quantitative patterns among the observable varia-
bles. The quantitative patterns include recognizing direct
and inverse relationships, or verbally describing a specific
pattern (e.g., as variable A increases by X units, variable B
increases by Y units). At this level, students cannot trans-
late the identified quantitative patterns into the exact
mathematical relationship. Math and Science sensemak-
ing dimensions cannot occur separately: students identify
quantitative patterns relevant for mathematical descrip-
tion of the phenomenon (Math sensemaking) as they are
making sense of how the variables relate to each other
and the overarching phenomenon (Science sensemaking).

Finally, at the highest level, “conceptual’; students can
translate the quantitative patterns they have noticed into
the exact mathematical operations and develop a quan-
titative relationship for the phenomenon. They can fully
explain the choice of the mathematical operations (and
argue against choosing alternative mathematical opera-
tions using observations as evidence) and relate them to
specific observations of the phenomenon. For example,
sensemaking at the “conceptual” level for the Acceleration
simulation would involve relating observations (larger
mass requires more force to move) to the multiplication
operation in the formula. For the Beer’s law simulation,
sensemaking would involve relating the observations
(increasing container width and concentration leads to
increased absorbance) to the multiplication operation in
the formula for absorption. Finally, for the Energy Con-
version simulation, sensemaking at the conceptual level
involves relating observations (useful energy is always a
fraction of energy input) to the division (or multiplication
operation if the conversion rate is known) in the formula.

(2023) 10:18
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Students at this level cannot provide a causal explanation
for the equation structure (see Table 6 “conceptual” level
sample responses for comparison). As can be seen from
the examples, Math and Science sensemaking dimen-
sions are blended: students relate qualitative or quantita-
tive observations to the mathematical operations in the
equation (Math sensemaking) that is used to quantita-
tively describe the scientific meaning of the phenomenon
(Science sensemaking).

Table 6 shows sample responses for each of the three
disciplinary scenarios for the “Mechanism” sublevel at
each of the broad levels of the framework. The “Mecha-
nism” sublevel at the lowest level, “qualitative’, reflects
student’s ability to identify qualitative causal relationships
among the relevant variables. For the Acceleration simu-
lation, this involves recognizing that applied force causes
acceleration. For the Beer’s Law simulation, this involves
recognizing that concentration is the main causal factor
behind changing absorbance. For the Energy Conversion
simulation, this involves recognizing that the reason all
energy input cannot be converted into useful energy is
because there is always thermal energy loss in the system.
However, at this level students cannot develop the exact
mathematical relationship describing the phenomenon.
The Math and Science dimensions are blended, because
this qualitative evaluation (Math sensemaking) occurs
as students are working towards establishing causal rela-
tionship among the relevant variables that describe the
phenomenon (Science sensemaking). For example, for
Acceleration simulation stating that “Acceleration would
stop when you stop pushing” reflects figuring out that
acceleration is caused by applied force, because if there
is no applied force, there is no acceleration, which is the
essence of the scientific meaning of the phenomenon.
Similar logic applies to all examples in Table 6 for this
level.

The “Mechanism” sublevel at the next level, “quan-
titative”, reflects the student’s ability to develop an
exact quantitative relationship, justify that relationship
using numerical values of the relevant variables, and
recognize the qualitative causal mechanism behind the
phenomenon. At this level students cannot provide a
causal explanation for the equation structure and can-
not justify the choice of the mathematical operation by
directly relating their choice to patterns in their obser-
vations. That is what distinguishes it from the highest
level, “conceptual” For the Acceleration simulation,
this involves developing the mathematical relation-
ship for Newton’s Law, justifying the relationship using
data (either from the simulation, or the data provided
to the students), and recognizing that applied force
causes acceleration. For the Beer’s Law simulation,
this involves developing a mathematical relationship
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for Beer’s Law, justifying the relationship using data
(either from the sim, or the data provided to the stu-
dents), and recognizing that change in concentration
of the substance causes a change in the absorbance.
Finally, for the Energy Conversion simulation, this
involves developing the mathematical relationship for
efficiency in the form of Fraction of Energy Used = Use-
ful Energy output/Energy input and justifying the
equation using the data provided. Students at this level
can qualitatively recognize that there is always energy
lost as thermal in the process of energy conversion,
but they struggle to relate it explicitly to the equation.
In the example shown in Table 6 the student recog-
nized that the reason the LED lightbulb is more effi-
cient than incandescent is because the incandescent
lightbulb loses more thermal energy. However, when
given wrong data that shows a system with over 100%
efficiency (see the bottom right data table for Energy
Conversion simulation in the Appendix (Additional
file 1)) the student applied the formula derived earlier
(Efficiency = Useful Energy output/Energy input) and
stated that 125% efficiency is acceptable since it was
a constant that holds across that system. This exam-
ple demonstrates that while the student has qualitative
understanding of the causal mechanism (recognizes
that there is thermal energy lost from the system)
and can derive the mathematical relationship for the
phenomenon, they cannot relate the mathematical
relationship meaning to the causal mechanism. This
is the distinguishing feature between this level and
the highest level, “conceptual” The Math and Science
dimensions are blended, because the students develop
a quantitative relationship (Math sensemaking) that
reflects how the relevant variables describe the over-
arching scientific phenomenon (Science sensemaking).

Finally, the “Mechanism” sub-level at the highest
level, “conceptual’;, reflects the ability to develop the
exact quantitative relationship, justify the relationship
by explicitly relating the choice of the mathematical
operation to the observations, and provide causal expla-
nation for the equation structure. For the Acceleration
simulation, this involves developing the mathematical
relationship for Newton’s Law, justifying the choice of
multiplication operation by directly relating observa-
tions (the force is directly related to mass and accelera-
tion) to the choice of multiplication as the operation in
the equation, and recognizing that the equation struc-
ture supports the premise that applied force causes
acceleration. For the Beer’s Law simulation this involves
developing the mathematical relationship for Beer’s
Law, justifying the choice of multiplication operation
by directly relating observations (the absorbance is
directly related to concentration and container width)
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to the choice of multiplication as the operation in the
equation, and recognizing that the equation struc-
ture supports the premise that concentration causes
absorption. For Energy Conversion, this level would
involve deriving the relationship for efficiency (either
in the form of a) Fraction of the Energy Used = Useful
Energy output/Energy input or b) Useful Energy Out-
put=Energy Input- Energy Lost to useless forms) and
relating the observations of energy lost to useless forms
(such as thermal) to the formula derived across vari-
ous systems (beyond specific cases).The Math and Sci-
ence dimensions are blended, because students directly
relate the equation structure to the observations of the
phenomenon.

Validity evidence supporting the order of the categories

in the theoretical framework

Below are sample responses from one student for each
sublevel of the framework for Newton’s Second Law
disciplinary scenario (Acceleration simulation). Table 7
shows sample responses for the sublevels of “Descrip-
tion”, “Pattern” and “Mechanism’, respectively, at each of
the broad levels (“qualitative’, “quantitative” and “concep-
tual”) for the same student. These sample responses illus-
trate that the same student engaged in blended Math-Sci
sensemaking at all the sublevels of the framework. The
only two levels the student did not demonstrate were
level 2 (“qualitative”) “Description” and level 2 “Mecha-
nism” Level 2 “Description” was not demonstrated,
because the student started defining the quantitative pat-
terns right away (level 2 "Pattern”) without reiterating the
data from the simulation first as would be indicative of
this sublevel (for example, “when I use mass X, accelera-
tion changes to Y” type of sensemaking). However, it is
reasonable to assume that this student could demonstrate
level 2 “Description” type of sensemaking, and they sim-
ply skipped over it during the interview. This is because
it is unlikely that the student would demonstrate level 2
(“quantitative”) “Pattern” type of sensemaking (e.gForce
and mass will be directly proportional to one another” as
shown in Table 7) if they were not able to reiterate the
data from the simulation. Therefore, it is reasonable to
assume that the student simply skipped over this step in
the blended Math-Sci sensemaking process during the
interview. Furthermore, level 2 “Mechanism” was not
demonstrated, because the student justified the opera-
tions in the formula by directly relating to the observed
quantitative patterns, which is consistent with the higher
level 3 (“conceptual”) “Mechanism” instead of using the
numerical values, which is the indicator of the missing,
level 2 (“quantitative”) “Mechanism”. This response pat-
tern was common for students who were assigned the
highest level of the framework: they did not always justify
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Table 8 Final level assignment for each simulation
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Student Acceleration Beer’s law Energy conversion SAT Math

1 Level 3 Pattern Level 3 Mechanism* Level 3 Mechanism Not available
2 Level 1 Mechanism Level 1 Mechanism* Level 2 Description 540

3 Level 3 Mechanism Level 2 Pattern* Level 3 Mechanism 750

4 Level 2 Description Level 2 Pattern Level 2 Pattern 760

5 Level 2 Pattern Level 2 Pattern Level 2 Pattern 720

6 Level 3: Pattern Level 3: Pattern Level 3: Mechanism 680

7 Level 2: Mechanism Level 2: Mechanism Level 2: Pattern Not available
8 Level 2: Mechanism Level 2: Mechanism Level 2: Mechanism 740

9 Level 3: Mechanism Level 3: Mechanism Level 2: Mechanism Not available
10 Level 3: Pattern Level 3: Mechanism Level 3: Pattern Not taken

11 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 790

12 Level 3: Description Level 3: Description Level 3: Mechanism 560

13 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 760

14 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 730

15 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 760

16 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 690

17 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 670

18 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 660

19 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 760

20 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism Not taken

21 Level 3: Mechanism Level 3: Mechanism Level 3: Mechanism 710

22 Level 1: Mechanism Level 1: Mechanism Level 1: Mechanism 490

23 Level 1: Pattern Level 1: Mechanism Level 1: Mechanism 560

24 Level 1: Pattern Level 1: Pattern Level 1: Pattern 480

25 Level 2: Mechanism Level 1: Pattern Level 2: Mechanism 580

*Students were not provided molar absorption coefficient data

their formula using numerical values of the relevant vari-
ables obtained from the simulation or from the sample
data but would directly relate the identified quantitative
patterns to the mathematical operations in the formula,
which is consistent with level 3 (“conceptual”). There-
fore, for students who are engaging in level 3 (“con-
ceptual”’) blended sensemaking level 2 (“quantitative”)
“Mechanism” sublevel would sometimes not be observed.
However, it is also reasonable to assume that they could
demonstrate this sublevel of sensemaking which was
skipped during the interview. This is because, as consist-
ent with the developmental approach reflected in the
framework, justifying the mathematical relationship
using numerical values of the relevant variables (level 2
“Mechanism”) is cognitively easier than justifying the
relationship by directly relating mathematical operations
to the observations (level 3 “Mechanism”). Therefore, it
is reasonable to assume that the student can easily justify
the mathematical relationship using numerical values but
chose to use a more cognitively demanding justification
path consistent with level 3 “Mechanism’, because they

were able to engage in blended Math-Sci sensemaking at
that level.

The student whose responses are shown in Table 7
demonstrated the same pattern of engaging in all the
sublevels of the framework for the other two disciplinary
scenarios. These data provide evidence that a student
who is assigned the highest level of the framework can
engage in blended Math-Sci sensemaking at all the lev-
els below that highest level. Similarly, students who were
assigned any other level of the framework were also able
to demonstrate engagement in blended Math-Sci sense-
making at all levels below the assigned sublevel, but not
above. This pattern was observed for all the three disci-
plinary scenarios. These findings indicate that the theo-
retical ordering of the framework categories shown in
Table 1 is supported by the response patterns irrespective
of the disciplinary context. These results provide prelimi-
nary response process-based validity evidence that the
theoretical ordering of the categories in the framework
proposed in this study is plausible (AERA, 2018; Kaldaras
et al., 2021a). However, given the small interview sample
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and few assessment scenarios, further work is needed to
confirm the theoretical ordering of the categories.

Validity evidence supporting blended Math-Sci
sensemaking as a distinct cognitive construct

Table 8 shows final level assignment for all interviewed
students for all three disciplinary scenarios. The gen-
eral trend (15 students out of 25) was that students were
assigned the same level and sublevel across the three dis-
ciplinary contexts. The other ten students exhibited dif-
ferent degree of variability in level assignment across the
three disciplinary scenarios. Specifically, six students out
of 25 were assigned the same broad level (“qualitative’,
“quantitative’, “conceptual”) across all three disciplinary
contexts (physics, chemistry, and energy conversion), but
the sublevel assignment (“Description’, “Pattern’, “Mech-
anism”) varied within that level. The level assignments for
these students are shown in bold italic in Table 8.

Furthermore, the levels assignment for one of the stu-
dents (student 2) differed by 1 sublevel only for one of the
simulations. Specifically, student 2 was assigned level 1
“Mechanism” on Acceleration and Beer’s Law simulations
but scored one sublevel higher at level 2 “Description” on
the Energy Conversion simulation. The level assignments
for this student are shown in Italic in Table 8.

Only three students out of 25 were assigned different
broad levels across the three disciplinary scenarios. The
levels assignments for these students are shown in bold
in Table 8. Each had a unique feature. Student 3 was
assigned level 3 “Mechanism” on Acceleration and Energy
Conversion simulation but scored four sublevels below at
Level 2 “Pattern” on the Beer’s Law simulation. Notably,
this student was an early interview and unlike the subse-
quent 22 of the others was not provided with the molar
absorption coefficient on Beer’s Law simulation. We
believe this affected that student’s ability to bring together
the quantitative observations made while interacting
with the simulation to develop the exact mathematical
relationship. However, notice that students 1 and 2 were
also not provided the molar absorption coefficient. This,
however, did not affect the ability to demonstrate level
3 “Mechanism” for student 1. Regarding student 2, it is
likely that it was the student’s low level of blended sense-
making proficiency that affected their ability to transition
to higher levels of the framework as opposed to the lack
of information on molar absorption coefficient. Student
9 was assigned level 3 “Mechanism” on the Acceleration
and Beer’s Law simulations but scored three sublevels
below at on Energy Conversion simulation. This student
expressed a strong incoming pre-conception about the
energy conversion process, which interfered with their
sensemaking in the energy context (the student was sure
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that an incandescent lightbulb uses thermal energy rather
than electricity to produce light.) Finally, student 25 was
assigned level 2 “Mechanism” on the Acceleration and
Energy Conversion simulations but scored four sublevels
lower at level 1 “Pattern” on the Beer’s Law simulation.
This student was unfamiliar with the subject matter and
seemed more confused than any of the other students as
to what the simulation was showing. That appeared to
affect their sensemaking during the exploration of this
simulation.

In general, the data indicate that students tend to be
assigned the same level and sublevel of the framework
irrespective of disciplinary context. Most fluctuations
happen for within level assignment where students score
in different sub-levels (“Description’, “Pattern’, “Mecha-
nism”) of the same broad level (“qualitative’, “quantita-
tive”, “conceptual”). Finally, it is rare that students are
assigned sublevels in different broad levels of the frame-
work, but as noted, this was usually because of some
unique difficulty with one of the contexts. In addition, the
level assignments seem to be reasonably well related with
SAT Math scores below 650 but does not distinguish well
for scores above 650, as shown in Table 8.

Discussion

In this paper, we presented a theoretical framework
for blended Math-Sci sensemaking grounded in prior
research. The framework shown in Table 1 represents
the first detailed categorization of the blended Math-Sci
sensemaking process that has been validated by student
response data. The levels of the framework were devel-
oped following the blending process of the selected the-
oretical categories for Math and Science sensemaking
dimensions originally described by Zhao and Schucha-
rdt (2021). The final theoretical framework for blended
Math-Sci sensemaking shown in Table 1 was reviewed
by educational and subject matter experts and represents
a cognition model reflecting engaging in blended Math-
Sci sensemaking process. The development of the frame-
work helped answer the first RQ of our study: How can
one characterize the different ways of engaging in blended
Math-Sci sensemaking?

We gathered response process-based validity evidence
for the theoretical framework by analyzing student
responses from the interviews probing the levels of the
theoretical framework shown in Table 1. The interviews
were conducted in three disciplinary contexts, including
physics, chemistry and energy conversion. The results of
the interview analysis provided evidence for the existence
of all the levels and sublevels of the framework shown in
Table 1. Specifically, we were able to identify evidence
for all the different types of blended Math-Sci sensemak-
ing in student responses for each disciplinary context, as
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illustrated in Tables 4—6. This finding provides evidence
for the second RQ of out study: To what degree does the
validity evidence support the theoretical framework for
blended Math-Sci sensemaking?

Furthermore, we have observed that students who
demonstrated reaching any level of the framework were
able to demonstrate engagement in blended Math-Sci
sensemaking at all levels below the demonstrated level,
but not above (Table 7). This pattern was observed for
all the three disciplinary scenarios. These findings sug-
gest the theoretical ordering of the framework categories
shown in Table 1, but further confirmation is needed.

This work has important implications for instruction on
blended Math-Sci sensemaking skills. Specifically, we have
demonstrated that blended sensemaking can be character-
ized by different increasingly sophisticated cognitive lev-
els, which suggests that the framework shown in Table 1
can be used both as a diagnostic tool to accurately deter-
mine the level of individual students as related to blended
Math-Sci sensemaking, and as a guide for what needs to
be emphasized during instruction to help students attain
higher blended sensemaking ability (NRC, 2001).

Furthermore, the level assignments seem to be rea-
sonably well related with SAT Math scores below 650
but does not distinguish well for scores above 650, as
shown in Table 8. This suggests that Math sensemaking
is strongly integrated with the Science dimension in the
context of blended Math-Sci sensemaking. Therefore,
to effectively support learners in developing higher pro-
ficiency in blended Math-Sci sensemaking it is essential
that the two dimensions are closely integrated during
instruction and assessment. This strategy is similar to
that put forth by the Framework for K-12 Science Edu-
cation (NRC, 2012a, b) emphasizing the important of
supporting students in developing the ability to integrate
the three dimensions of science (disciplinary core ideas,
scientific and engineering practices and crosscutting
concepts) as opposed to supporting them in developing
proficiency in each dimension separately. According to
the Framework for K-12 Science Education it is the abil-
ity to demonstrate the integration of the three dimen-
sions that is indicative of 3D learning, which reflects
deep understanding of complex constructs. Similarly, we
believe that it is the ability to demonstrate the integration
of Math and Science sensemaking that is indicative of
high proficiency in blended Math-Sci sensemaking. We
believe that the parallel between 3D understanding and
blended Math-Sci sensemaking is meaningful and accu-
rate, because both represent examples of complex cogni-
tive constructs (NRC, 2000) and therefore likely require
similar strategies during the learning process.
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Finally, the data analysis showed that the level of stu-
dent sensemaking tends to be consistent across the vari-
ous disciplinary contexts, as shown in Table 8. What little
variation there is primarily occurs with sublevel assign-
ment (“Description’, “Pattern’, “Mechanism”) within a
single broader level.

These findings suggest that blended Math-Sci sense-
making is a distinct cognitive construct irrespective of
specific disciplinary context, which in turn has important
implications for instruction. Specifically, it is likely that
supporting students in developing Math-Sci sensemak-
ing ability in one disciplinary context would help them
apply such sensemaking in other subjects. This hypoth-
esis should be further investigated.

The framework presented here will provide guidance
for how to teach students to carry out blended Math-Sci
sensemaking. Although it remains to be tested, it is likely
that the levels of this framework serve as a learning pro-
gression for this type of sensemaking. Will students move
efficiently from lower sensemaking levels to higher with
appropriate learning experiences, and will they transfer
this across different contexts? Exploring these questions
will be the subject of future work. The capabilities of
PhET simulations that facilitated this research will likely
also be useful for teaching sensemaking.

Another area of future work is to extend this work to
create an assessment instrument to easily and accurately
diagnose individual student’s level of blended Math-Sci
sensemaking. We will specifically align individual assess-
ment items to the sublevels of the framework to probe
student blended sensemaking ability at each individual
sublevel.

Finally, the lowest, “Algorithmic” level (level 0 in
Table 1) of the framework should be validated in the
appropriate context such as K-12 and across various
scientific disciplines including chemistry, physics and
biology.

The framework presented here reflects a natural
path towards generating new knowledge by engag-
ing in blended Math-Sci sensemaking with the purpose
of characterizing an observed scientific phenomenon
mathematically. Specifically, the levels of the framework
shown in Table 1 represent an authentic progression of
how scientists and engineers generate new knowledge in
real-life settings. In particular, they start by observing the
phenomenon of interest aiming at identifying relevant
variables, qualitative and quantitative patterns of change
among those variables, and ensuring that the resulting
mathematical formula reflects a quantitative cause and
effect relationship among the identified variables such
that the formula explains the scientific phenomenon
under study. These key steps are reflected in the levels of
the framework shown in Table 1 and described in detail
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at varying levels of cognitive sophistication. As such, the
framework shown in Table 1 reflects the current vision
for STEM education focused on supporting students in
developing deep science understanding by helping them
progress from novice to expert-like understanding (NRC,
2012a, b). Therefore, we believe that the framework will
be widely applicable across STEM disciplines for guid-
ing curriculum, instruction and assessment aimed at
helping students build expertise in blended Math-Sci
sensemaking.

Conclusion

In this work, we have developed and presented validity
evidence for a cognitive framework for blended mathe-
matical sensemaking in science. We hope that this frame-
work can serve as a guide for curriculum, instruction,
and assessment to help support students in developing
higher proficiency in this important construct.
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b Width of the container (as used in Beer's Law formula)
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formula)
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