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Abstract 

Background  Data literacy is increasingly important in today’s data-driven world. Students across many educational 
systems first formally learn about data in elementary school not as a separate subject but via the mathematics 
curriculum. This experience can create tensions in the priorities of learning and assessment given the presence of 
other foundational mathematics content domains such as numbers, algebra, measurement, and geometry. There is 
a need to study data literacy in comparison to these other content domains in elementary mathematics. To address 
this need, we developed a methodology motivated by thinking curriculum theory and aligned with international 
assessment framework, for comparative analysis across mathematics content domains. This methodology examined 
increasing levels of cognitive domains from knowing to applying to reasoning across mathematics content domains. 
Intended, assessed, and attained curricula were analyzed using Singapore as a case study, combined with broader 
comparisons to attainments in four East Asian countries in TIMSS, an international large-scale assessment.

Results  We found that learning in the data domain had very limited coverage in intended and assessed curricula in 
Singapore. However, compared to other mathematics content domains, the data curriculum placed heavier emphasis 
on higher-order cognitive domains including the use of generally difficult mixed data visualizations. This demanding 
curriculum in Singapore was associated with the highest attainment in the data domain among average 4th grade 
Singaporean students relative to students in four East Asian countries in TIMSS, as analyzed by quantile regression. 
However, lower-performing Singaporean students at the 10th percentile generally did not outperform their East Asian 
peers. We further found very limited applications of data in other mathematics domains or cross-domain learning 
more generally.

Conclusion  Our study offers a comparative analysis of the data curriculum in elementary school mathematics 
education. While the data curriculum was cognitively demanding and translated to very high average attainments of 
Singaporean students, the curriculum did not equally help weaker Singaporean students, with implications on current 
discourse on equity–excellence trade-off in science, technology, engineering, and mathematics (STEM) education. 
Our study further highlights the lack of cross-domain learning in mathematics involving data. Despite the broad 
applicability of data science, elementary school students’ first formal experience with data may lack emphasis on its 
cross-domain applications, suggesting a need to further integrate data skills and competencies into the mathematics 
curriculum and beyond.
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Introduction
As the world produces digital data at ever-increasing 
rates, there is a need to make sense of the large mass of 
data to generate new knowledge. Consequently, in the 
past few years, there has been tremendous interest in 
data science as an emerging field (Cao, 2017). Educators 
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have recently called for a more prominent K-12 data sci-
ence education in order to foster early data literacy and 
support the increased demand for data literate citizens 
(Wise, 2020). Bakker et al. (2021) recently surveyed math-
ematics educational researchers, reporting data literacy 
as among the most frequently mentioned future educa-
tional goals of mathematics. The most recent Guidelines 
for Assessment and Instruction in Statistics Education 
II (GAISE II), a comprehensive document guiding K-12 
statistics and data science education, highlight the goal 
of developing students as data problem-solvers (Barga-
gliotti et al., 2020, 2021). Given that learning about data 
is traditionally embedded within elementary mathemat-
ics curricula in many countries (Davies & Sheldon, 2021; 
Groth, 2018), in this study, we aim to understand how 
and to what extent data knowledge and skills are learned 
and assessed within existing mathematics curriculum in 
comparison to other mathematics content domains. We 
focus on Singapore as a case study while further using 
multi-country attained curriculum data from interna-
tional assessment for broader comparisons.

Literature review
In the ensuing literature review, we draw on two major 
theoretical frameworks and related research. One exam-
ines the relationship between data science, statistics and 
mathematics, and the other focuses on curriculum frame-
work for a comparative analysis. Both lay the ground for 
research in comparing how students learn about data and 
are assessed in relation to other fundamental content 
domains in elementary mathematics education.

Learning about data in elementary mathematics
Data is1 a group of numbers in specific contexts, giv-
ing them meaning beyond their abstract representation 
(Cobb & Moore, 1997). The study of data has discipli-
nary roots in statistics (Donoho, 2017). However, there 
is consensus that the emerging field of data science is an 
amalgamation of multiple disciplines beyond statistics, 
for a number of reasons (Blei & Smyth, 2017). First, data 
deluge has necessitated computational methods to man-
age, process and mine big data (Cao, 2017). Moreover, 
there is a shift toward working with messy real-world 
data in different domains, giving rise to important skills 
in data processing (e.g., cleaning, transformation) and 
data visualization, going beyond the traditional focus of 
theory-driven statistical methods (Donoho, 2017). Simi-
lar to previous expositions (Cao, 2017; Engel, 2017), we 
consider data science as an interdisciplinary science of 
learning from data, aided by modern computational tools 

and methods. Data science combines the disciplines of 
statistics, mathematics, and computer science, applied 
to specific domains (Fig.  1). Further extending previous 
expositions, we also make explicit the scientific nature 
of data science. First, processes that classically make up 
the scientific methodology are important to data sci-
ence such as formulating hypotheses and testing them 
using various forms of data collection and computational 
experiments (Karpatne et  al., 2017). Second, key ele-
ments of how the scientific endeavor operates also play 
central roles in data science such as cycling through data 
for discoveries and reliance on reproducibility (Blei & 
Smyth, 2017). Some components of data science, as thus 
conceptualized, are already formally incorporated in the 
curriculum of elementary and secondary school systems 
via data visualizations (e.g., graph learning) (Aksoy & 
Bostan, 2021), descriptive and inferential statistics (e.g., 
distributional reasoning) (Biehler et al., 2018), data pro-
cessing (e.g., in science inquiry) (Watson, 2017), and pro-
gramming (Bråting & Kilhamn, 2021).

As an important component of data science (Fig.  1), 
statistics is typically incorporated in K-12 education via 
the subject of mathematics (Groth, 2018). This situation 
motivates a comparative approach to statistics education 
within mathematics. Such studies have employed cur-
riculum analysis, for example, qualitatively comparing 
the intended mathematics curriculum across different 

Fig. 1  Data science as an interdisciplinary field. Our framework of 
data science as an amalgamation of mathematics, statistics, and 
computer science with specific domain applications. Overlaid are 
iterative scientific processes that support data science. Underlined in 
magenta, components of data science formally incorporated in the 
curriculum of many elementary and secondary school systems

1  Used here in the singular form, etymology notwithstanding.
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content domains such as numbers, algebra, geometry, 
and measurement (Dingman et al., 2013; Lv & Cao, 2018). 
Davies and Sheldon (2021) comprehensively reviewed 
the curricular challenges of embedding data science and 
statistics in England’s national mathematics curriculum. 
For example, standard paper-based assessment in math-
ematics is argued to be inappropriate for statistics as the 
latter requires experience working with actual data, most 
meaningfully done on a computer, unlike for traditional 
mathematics contents (Davies & Sheldon, 2021). In addi-
tion, Jones et  al. (2015) performed an analysis of math-
ematics textbook curricula in the United States, finding 
that statistics contents tended to be very limited in earlier 
grades but gradually increased to about 20% of instruc-
tional pages by 5th grade. Tellingly, the textbooks at most 
grade levels covered statistics later compared to other 
mathematics contents, likely reflecting (intentionally 
or unintentionally) the order of importance assigned by 
the textbook writers (Jones et  al., 2015). There was also 
very little integration of statistics with other mathemat-
ics contents in all textbooks examined except one (Jones 
et al., 2015). Other studies have focused on teachers, with 
preservice mathematics teachers reporting the least con-
fidence in teaching statistics compared to other math-
ematics content domains (Lovett & Lee, 2017). Indeed, 
objective assessments revealed inadequate preservice 
teachers’ foundational knowledge in statistics, espe-
cially at higher levels of statistical inquiry (Lovett & Lee, 
2017). Shin (2021) further found that preservice teach-
ers drew largely on mathematical pedagogical knowledge 
unrelated to statistical thinking when noticing statistics 
classroom interactions, suggesting an imbalance in their 
training of content-specific pedagogical knowledge. In 
short, students may not fully experience the unique rigors 
of thinking about data when learning within a mathemat-
ics curriculum. While these studies have contributed to a 
comparative understanding of statistics education within 
mathematics, key gaps remain. These include how and 
to what extent data skills and knowledge are learned and 
assessed within an existing mathematics curriculum in 
comparison to other mathematics content domains that 
seemingly play larger roles in elementary mathematics.

Potentially contributing to some of these gaps in knowl-
edge is statistics educational research tending to mature 
separately from mathematics educational research. For 
example, two recent influential books on statistics edu-
cation had very limited comparisons to other mathemat-
ics content domains (Ben-Zvi et  al., 2017; Leavy et  al., 
2018). The history of statistics has also been traced not 
to mathematics but to demography and epidemiology 
in the seventeenth century followed by data visualiza-
tions in the eighteenth century (Wild et al., 2018). It also 
appears that research on statistics education seemed to 

be infrequently published in leading mathematics edu-
cation journals in the last decade, an observation that 
others have made (Batanero et al., 2011). Further, statisti-
cal thinking is argued to be distinct from mathematical 
thinking; chance and uncertainty play central roles in sta-
tistical thinking unlike in mathematical thinking (Cobb 
& Moore, 1997). All these observations suggest statistics 
education as aspiring to, and to some degree, succeed-
ing in, growing separately from mathematics educa-
tion. However, we argue for study of learning about data 
within the mathematics curriculum. This need is due to 
the strong entrenchment of statistics within the K-12 
mathematics curriculum, likely to continue in the fore-
seeable future (Davies & Sheldon, 2021; Groth, 2018). 
Teachers trained in mathematics are the ones creating 
learning environments to formally teach children about 
data for the first time, with potential issues that may 
arise as reviewed above. Overall, there is a need to better 
understand the curriculum priorities, learning expecta-
tions, assessment, and attainment in statistics in compar-
ison to other mathematics content domains.

Curriculum analysis framework
One approach to comparing across mathematics con-
tent domains is to use a curriculum  framework. There 
are contested views of curriculum as being focused on 
content, product or process (Kelly, 2009). Here, follow-
ing the suggestion of Hirsch and Rey (2009), curriculum 
is defined as what “society values and expects in terms 
of mathematics content” (p. 749). This definition makes 
clear that a curriculum is a society-specific statement of 
priorities, emphases, and expectations in mathematics. 
Curriculum can be divided into the explicit and hidden 
curriculum. While the latter is an important aspect of 
classroom and school experience (Alsubaie, 2015), the 
explicit curriculum lends itself to be more transparently 
quantified and compared within and across educational 
systems. Explicit curriculum can be further decomposed 
to three components most relevant to the present study: 
(1) the intended curriculum that officially documents the 
progression of learning contents and experiences; (2) the 
assessed curriculum that monitors student learning; and 
(3) the attained curriculum that quantifies actual extent 
of achievement of knowledge and skills. Analysis using 
these different components of curriculum is very useful 
as they provide a common basis with which to compare 
across mathematics content domains. This framework is 
also in line with studies cited above that have taken a cur-
riculum approach involving various components such as 
intended curriculum and textbook curriculum.

Beyond the structural components of curriculum as 
outlined, there is also a process component of curricu-
lum. Nisbet (2005) proposes the thinking curriculum in 
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which processes related to thinking are taught as cogni-
tive skills. This skills-based approach of how students 
perceive, organize and make sense of information has 
origins in cognitive psychology but with alignment to 
educational frameworks including work by Bloom on 
hierarchy of learning objectives in the cognitive domain 
(Krathwohl, 2002). At the lowest level, students learn to 
reproduce knowledge, typically involving memorization 
and regurgitation of isolated facts or procedures, pro-
cesses that educational systems have traditionally focused 
on (Nisbet, 2005). Other cognitive skills are higher order 
such as applying existing knowledge to solve a problem 
or even higher, reasoning based on multiple pieces of 
information, a skill that is championed as part of educa-
tion in the 21st Century (Geisinger, 2016). This cognitive 
skills approach is general enough to be applied to differ-
ent content domains within a discipline, and is used by 
different curriculum frameworks in both local (Ministry 
of Education Singapore, 2012; Tanudjaya & Doorman, 
2020) and international assessments (Lindquist et  al., 
2017).

Curriculum is embedded within a specific context of 
values and expectations as argued by Hirsch and Rey 
(2009) and thus, needs to be studied as such. The Singa-
pore curriculum can be used as a case study for several 
reasons. Singapore is a small, developed Southeast Asian 
country with an educational system that is generally 
well regarded based on international assessments (Mul-
lis et al., 2020; Schleicher, 2019). However, past research 
has highlighted existence of gaps in educational achieve-
ment, some of which are wide (Ali, 2016), suggesting a 
more complex picture that deserves further investigation. 
Singapore is also a good case study as the local literature 
on statistics education is scant (Chia, 2016; Wu & Wong, 
2007), with mostly qualitative approaches. None, to our 
knowledge, has taken a curricular perspective for com-
parative purposes. This gap is not surprising as statistics, 
like in many countries, was only recently introduced in 
the past 20 years in Singapore compared to much longer 
history of educational research on traditional mathemat-
ics content domains (Toh et  al., 2019). While our main 
intended and assessed curricular analyses focus on Sin-
gapore, a broader international comparison is useful. This 
comparison can quantify the extent to which the local 
intended and assessed curricula translate to actual attain-
ments using common yardsticks across countries. For 
this cross-country comparison, international large-scale 
assessment data can be leveraged, specifically Trends in 
International Mathematics and Science Study (TIMSS). 
Large-scale assessments do have limitations such as 
questions about measurement and validity (Johansson, 
2020). However, they can still be valuable in providing 
quality data to compare the attainments of Singaporean 

students to similarly developed East Asian countries. The 
TIMSS data is also based on a well-established assessed 
curriculum framework with a hierarchy of cognitive 
skills aligned to what is reviewed above (Lindquist et al., 
2017). We can further analyze the performance in spe-
cific content domains to disentangle country-specific 
effects (e.g., high attainments by a country regardless of 
content domains) from mathematics domain-specific 
patterns that apply across countries (e.g., lower attain-
ment in a particular domain for all countries). There is 
also data on how well the local curriculum matches the 
TIMSS assessed curriculum to further explain the com-
parative results (Fishbein et  al., 2021). Overall, a cur-
riculum  framework allows comparative analysis within 
Singapore across mathematics content and across coun-
tries for a more comprehensive picture of how students 
learn about data in mathematics.

Research objectives
Focusing on the mathematics curriculum in Singapore, 
our study has the following research objectives (RO) and 
associated research questions (RQ):

RO1) To compare the data domain to other math-
ematics content domains in the intended curriculum: 
RQ1a, What is the intended content coverage of the data 
domain? RQ1b, How does it compare to other content 
domains in terms of cognitive skills required?

RO2) To compare the data domain to other mathemat-
ics content domains in the assessed curriculum: RQ2a, 
What proportion of the assessed curriculum is devoted 
to the data domain compared to other content domains? 
RQ2b, Are there differences in the assessed cognitive 
skills required by the different content domains? RQ2c, 
To what extent is there cross-content domain learn-
ing, especially involving data, and if so, how is it being 
assessed?

RO3) To compare Singaporean students’ attainment 
using international large-scale assessment: RQ3a, How 
do the attainments of Singaporean students in the cur-
rent 2019 cycle compare to Singaporean students in 
previous cycles? RQ3b How do the attainments of Singa-
porean students compare to East Asian peers in the cur-
rent 2019 cycle? RQ3c How are these differences, if any, 
explained by differences in the local curriculum?

Methods
Intended curriculum
We examined the 2013 Singapore Primary School 
Mathematics Syllabus document written in English 
(Ministry of Education Singapore, 2012). The document 
forms the foundation of the intended elementary math-
ematics curriculum in Singapore’s public school sys-
tem (Lee et al., 2019), attended by the vast majority of 
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students in Singapore. The 2013 document is the most 
recent complete curriculum for all elementary grades. 
We programmatically extracted verbs from the ‘Learn-
ing Experiences’ (henceforth, learning verbs) section 
of each of the three content domains (termed strands 
in the official document): numbers and algebra, meas-
urement and geometry, and statistics. This section 
provided detailed descriptions of learning experiences 
intended for students. Examples included “Write addi-
tion and subtraction equations for number stories” and 
“Use data from the Internet to make a picture graph”. 
The TIMSS 2019 mathematics framework (Lindquist 
et  al., 2017) lists an array of verbs for three cognitive 
skills labeled as ‘cognitive domains’: knowing, apply-
ing, and reasoning. Descriptions of these domains, as 
given below, were used to classify the learning verbs in 
the intended curriculum. For verbs not in TIMSS defi-
nitions, authors discussed and assigned them to a cog-
nitive domain based on how the word was used in the 
intended curriculum, supplemented by past reviews of 
verb usage in learning objectives (e.g., Stanny, 2016). For 
the statistics domain, we focused on the ‘Data represen-
tation and interpretation’ sub-domain which dominates 
the elementary school statistics curriculum. The other 
sub-domain is ‘Data analysis’, a much smaller content 
area involving average. In addition to being a small con-
tent area, ‘Data analysis’ is intended to be taught very 
late at Primary 5 (second to the last grade for elemen-
tary schools in Singapore). Because we were interested 
in comparing content sequence across primary (grade) 
levels, it made ‘data analysis’ sub-domain even less use-
ful given the very late introduction. Thus, we narrowed 
our focus and simply labeled the remaining ‘Data repre-
sentation and interpretation’ sub-domain as ‘data’, which 
is also aligned with the TIMSS content domain labe-
ling. We quantified the percentage of words belonging 
to each cognitive domain in each of the three content 
domains. Verb extraction, frequency counts in word 
clouds and bar graphs were generated using Python 
programming language.

Assessed curriculum
For assessed curriculum, we analyzed items from recent 
semestral assessment 2 (SA2) in public schools. These 
assessments were based on the 2013 intended curricu-
lum as elaborated above. SA2 are summative assess-
ments that Singaporean students take toward the end 
of the school year that would generally cover all of the 
school  year’s contents, and are locally developed and 
administered in individual schools. We focused on Pri-
mary 2 to 6 as summative assessments are very rare at 

Primary 1. Following other studies that have sampled 
schools in Singapore (e.g., Ang et al., 2020), we divided 
Singapore into three regions: eastern, central, and west-
ern. For each region, we randomly identified up to five 
public schools and attempted to obtain their assess-
ment booklets across all levels (Primary 2–6). However, 
assessments for some schools were not made avail-
able and/or they may not have assessment for all levels. 
Eventually, six schools spread across the three regions 
contributed to our sample for complete assessment 
booklets across all levels. Two researchers indepen-
dently categorized the assessment items to a cognitive 
domain—knowing, applying and reasoning—based 
on our definition that broadly aligned with TIMSS’ 
definitions. Generally, we defined knowing as testing 
a student’s knowledge using lower-order skills such as 
recalling and retrieving information. For example, this 
might involve doing two-digit addition for numbers 
domain or reading off a value from a bar graph for data 
domain. Applying entailed students utilizing knowledge 
in a range of situations involving intermediate order 
skills such as efficient problem-solving and data mod-
eling. For example, students in the geometry domain 
were expected to identify and make use of properties 
of perpendicular or parallel lines to solve for angles in 
a complex figure while in the data domain, they were 
required to combine mathematical operations after 
reading data off a bar graph. Reasoning required stu-
dents to think logically and systematically to synthesize 
novel ways to approach or solve problems with higher-
order skills such as justifying solutions and drawing 
conclusions based on evidence. In the numbers domain, 
for example, students were expected to solve multi-step 
word problems requiring inference while in the data 
domain, students had to make and justify conclusions 
from one or more data displays. Our scheme of classi-
fying items is congruent with past work on data liter-
acy. For example, Curcio’s (1987) framework for graph 
comprehension has three increasingly complex skills. 
Our knowing classification approximately maps to Cur-
cio’s “reading the data” while applying involves “read-
ing between the data” and reasoning entails “reading 
beyond the data”. For assigning to cognitive domains, 
two raters had 88.9% agreement and discrepancies were 
resolved by consensus. The items were also assigned to 
content domains (numbers and algebra, measurement 
and geometry, and data) and a data visualization type 
(for data domain questions only). Items involving mul-
tiple domains were assigned as such. After categoriza-
tion, all statistical analyses were done in Python.
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Attained curriculum: cross‑country analysis of TIMSS 
achievement data
We used publicly available TIMSS data from five cycles 
(2003, 2007, 2011, 2015, 2019) for Grade 4 mathematics.2 
The latest cycle in 2019 is of most interest as it came from 
the students who underwent the 2013 curriculum as 
elaborated above. The past cycles were further analyzed 
to address our research question of how attainments in 
the current cycle compared to past cycles over the dec-
ades. Curriculum changes in Singapore are known to be 
incremental instead of wholesale reforms as elaborated 
by a recent review (Lee et al., 2019). Thus, while attain-
ments in previous cycles may have come from different 
curricula, there are overlaps in terms  of knowledge and 
skills intended to be learned across the decade, support-
ing comparisons of results. In addition to Singapore, we 
also examined data from Hong Kong SAR, Republic of 
Korea, Chinese Taipei, and Japan. These countries have 
similar levels of socio-economic development, have com-
parable East Asian demographics as Singapore (over 70% 
of Singaporeans are of Chinese descent), and are all gen-
erally performative educational systems. Many studies 
in the past have also compared Singapore to these East 
Asian countries using TIMSS data or otherwise (e.g., 
Chen, 2014; Chen et al., 2018; Tan, 2018), thus, we used 
similar comparative analyses. TIMSS 2019 has three con-
tent domains: numbers, measurement and geometry, and 
data. The numbers domain also includes pre-algebra con-
cepts involving computing unknown variables (Lindquist 
et  al., 2017). These TIMSS content domains generally 
overlapped with Singapore’s three content domains. 
Using total student weight (labeled as TOTWGT by 
TIMSS) and plausible values (PVs), we computed scale 
scores for Singapore and four East Asian countries in 
each of the three content domains. TIMSS analysis was 
done in R programming language using intsvy, a pack-
age for processing and analysis of large-scale assessment 
data given their unique sampling designs (Caro & Biecek, 
2017).

To statistically compare attainments, we used quan-
tile regression, a flexible statistical procedure that can 
examine specific locations in the distribution without 
assumptions of normality and linearity unlike in linear 
regression. In our case, we focused on the 50th percen-
tile and 10th percentile, corresponding, respectively, to 
the middle- and lower-performing students that are of 
main interest in our study. Because there is a very large 
number of all possible pairwise tests that can be done 
(over 2000 possible pairwise tests from 5 (countries) × 5 

(cycles) × 3 (content domains) number of values), we 
instead use planned comparisons derived specifically 
from our RQ3a and RQ3b (see text above). For RQ3a, we 
used quantile regression on the 50th percentile Singapo-
rean students in the current 2019 cycle, comparing it to 
50th percentile Singaporean students in the four previous 
cycles (2003, 2007, 2011, 2015). We performed this test 
for all three content domains. These tests were repeated 
for the 10th percentile. A total of 12 tests for 50th per-
centile and 12 tests for 10th percentile were conducted. 
We further analyzed cycle-on-cycle changes by compar-
ing change from 2015 to 2019 with 2003 to 2007, 2007 
to 2011 and 2011 to 2015 (unlike the above analysis 
which compared actual attainments in 2019 cycle to all 
other cycles). This analysis was done for both 50th and 
10th percentile Singaporean students for the data domain 
only, resulting in 8 tests. For RQ3b, we used quantile 
regression on the 50th percentile Singaporean students 
in the current 2019 cycle, comparing it to 50th percentile 
of East Asian students in the current 2019 cycle. We per-
formed this test for all three content domains. These tests 
were repeated for the 10th percentile performers. A total 
of 12 tests for 50th percentile and 12 tests for 10th percen-
tile were conducted. Consistent with previous research, 
we performed separate tests for each PV, taking the aver-
age t-statistic across PVs as the final statistic to compute 
the p-values. We furthermore used total student weight 
(TOTWGT in TIMSS) as weights. These steps ensured 
that the tests incorporated uncertainty in estimating stu-
dent performance (PV) as well as national representa-
tiveness (weights). Even though the comparisons were 
planned, there was still a large number of comparisons. 
To be more conservative, we used Bonferroni correction 
to maintain family-wise Type 1 error at 0.05. P-values 
reported have been corrected for multiple planned com-
parisons. Furthermore, because of the large sample sizes, 
most comparisons were highly statistically significant. 
Effect sizes (Cohen’s d) were thus further computed to 
aid interpretation of statistically significant comparisons. 
Statistical analyses were done on SPSS.

Curriculum overlap was analyzed for Singapore and 
the East Asian countries using the Test–Curriculum 
Matching Analysis (TCMA) data that reported whether 
TIMSS assessment items were covered in the national 
curriculum as determined by experts in individual coun-
tries (Fishbein et  al., 2021). Using the TIMSS database, 
we assigned the test items to their respective content 
domains, allowing us to examine whether Singapore’s 
performance was due to differences in test item coverage.

2  Equivalent to Primary 4  in Singapore. The term Grade 4 is kept to be con-
sistent with TIMSS terminology where appropriate.
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Results
Intended curriculum
We first examined learning verbs used in the intended 
mathematics curriculum in Singapore (RO1). A total 
of 719 occurrences of 64 unique learning verbs were 
extracted and analyzed when combined across all levels. 
We observed that higher-order verbs related to reason-
ing were dominant in the data domain compared to the 
other content domains (Fig.  2A; RQ1a). Higher-order 
learning experiences were also intended for in the other 
two content domains but with more emphasis on lower-
order verbs related to applying and knowing compared to 
the data domain (RQ1b). To further examine the nature 
of the learning experiences, we examined the frequency 
of learning verbs via a word cloud (Fig. 2B). In the data 
domain, students were, for instance, expected to “Discuss 
examples of data presented in various forms” and “Use 
the presented data display to make interpretations and 
predictions”. The discuss and make verbs belonging to 
the reasoning cognitive domain were the most frequent 
verbs in the data domain. In addition to the learning 
experiences, Fig. 2C shows the progression of data con-
tents in the intended curriculum. The sequence is gen-
erally picture graphs (Primary 1 and 2) followed by bar 
graphs (Primary 3), then tables and line graphs (Primary 
4). Students at Primary 6 (last elementary grade) were 

introduced to pie charts (RQ1a). Overall, the results sug-
gest that Singapore’s intended curriculum in data domain 
strongly emphasized learning verbs for higher cognitive 
skills compared to other mathematics content domains 
(RQ1b).

Assessed curriculum
To address RO2, we characterized 1315 summative 
assessment items from six public schools in Singapore. 
Taking items from all grade levels in total, we found that 
a large proportion of assessment items were devoted to 
higher-level reasoning skills in the data domain (Fig. 3A). 
We further broke down the assessment items by primary 
levels (grades). There were only 5.5% of items devoted 
to the data domain at Primary 2 and this proportion 
increased to 13.4% at Primary 6 (Fig.  3B; RQ2a). The 
numbers and algebra domain formed most items at lower 
primary levels while measurement and geometry became 
important at upper primary levels (Fig. 3B). In terms of 
cognitive expectations, at Primary 4, the data domain 
had highest emphasis on applying (Fig. 3C; RQ2b). How-
ever, from Primary 5 onward, there was a big increase in 
emphasis on reasoning in data (majority of all assessed 
items) unlike in the other two content domains where 
the increases in cognitive skills were more gradual as 
the students progressed up the primary levels (Fig.  3C; 

Fig. 2  Comparing mathematics content domains in the intended curriculum in Singapore. A Cognitive domains of learning verbs used in different 
content domains in the intended mathematics curriculum combined across all levels. B Word cloud of learning verbs as a function of content 
domains with size related to the frequency of word occurrence within a content domain and colors corresponding to cognitive domains. C 
Progression of contents in the data domain
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RQ2b). A very small proportion of items (6.4%) covered 
multiple content domains (RQ2c). Overall, our analysis 
of the assessed curriculum agrees with observations of 
the intended curriculum of greater proportion of higher-
order cognitive skills required in the data domain com-
pared to other mathematics content domains.

To further probe the data domain in the assessed cur-
riculum, we quantified the types of data displays assessed 
(Fig. 4A). We found good alignment between the assessed 
items (Fig. 4A) and the intended curriculum (Fig. 2C) in 
terms of the progression of data visualizations at the dif-
ferent primary levels. For example, bar graphs were never 
assessed before Primary 3, aligned with the intended cur-
riculum. There was also significant coverage at upper 
primary levels of data displays previously introduced 
at lower primary levels. For instance, even at Primary 
6, there was still a good proportion of items devoted to 
bar graphs introduced 3 years earlier (Fig. 4A). This indi-
cates a spiral nature of the assessed curriculum that sig-
nificantly revisits previous years’ contents as emphasized 
in the intended curriculum (Ministry of Education Sin-
gapore, 2012). There were also mixed data visualization 
assessment items, starting at Primary 4 (Fig.  4A). This 
assessment was similarly in line with the intended cur-
riculum that emphasizes learning experiences for linking 
different types of data visualizations starting at Primary 
4 to enhance the representational fluency of students. 

Figure  4B shows examples of actual data visualiza-
tions assessed, generally covering all the contents of the 
intended curriculum. However, we also observed some 
misalignment. Tables were assessed at Primary 3 even 
though the official curriculum intended for it to be cov-
ered starting at Primary 4. Moreover, comparing cogni-
tive domains in the intended data curriculum (Fig.  2A) 
to assessed curriculum (Fig.  3A) identified apparent 
misalignment such as stronger emphasis on knowing 
in assessed curriculum compared to intended curricu-
lum. Overall, these observations suggested patterns of 
alignment with some deviations between intended and 
assessed curriculum.

Attained curriculum: a cross‑country analysis of TIMSS 
achievement data
Using international large-scale assessment data from 
TIMSS, we addressed RO3 on how Singaporean students 
(N = 5041–6668 students from 5 cycles) performed in 
comparison to peers from developed East Asian countries 
(Hong Kong SAR, N = 2968–4608 students; Rep. of Korea, 
N = 3893–4334 students; Chinese Taipei, N = 3765–4661 
students; Japan, N = 4196–4535 students). Figure 5 shows 
the distribution of scale scores. Lower quartile, median 
and upper quartile define each box while lower and upper 
whiskers represent 10th and 90th percentile, respectively. 
Here, we have highlighted the main patterns while Table 1 

Fig. 3  Comparing mathematics content domains in the assessed curriculum in Singapore. A Cognitive domains in different content domains for 
assessment items combined across all primary levels. B Percentage of assessment items in different content domains from Primary 2–6. C Cognitive 
domains of assessment items from Primary 2–6 in different content domains from Primary 2–6
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to Table 3 have more detailed statistics of all our planned 
comparisons. For RQ3a, Singaporean students in the cur-
rent 2019 cycle were compared to Singaporean students 
from previous cycles. 50th percentile Singaporean stu-
dents in the current 2019 cycle performed statistically 
significantly better than 50th percentile Singaporean 
students in all four previous cycles in all three content 
domains (all corrected p-values < 0.001). The range of 
effect sizes for 2019 vs. four previous cycles for the data 
domain was small to medium in sizes at d = 0.17–0.60. 
However, the better performance among 10th percen-
tile Singapore students in the 2019 cycle compared to 

previous cycles  was less prominent than for 50th per-
centile Singaporean students, with small effect sizes at 
d = 0.05–0.11 for the data domain. When averaging the 
range of effect sizes, 50th percentile Singaporean stu-
dents had 4.52 times 2019  performance advantage  com-
pared to 10th percentile Singaporean students in the 
data domain, a discrepancy that was not as large for the 
numbers (2.62 times), and measurement and geometry 
domains (2.09 times). To reiterate, the 2019 Singaporean 
students underwent the 2013 intended curriculum as ana-
lyzed above. In sum, analyses for RQ3a suggested a data 
curriculum that preferentially elevated the performance 

Fig. 4  Data visualizations in the assessed curriculum in Singapore. A Types of data visualizations assessed from Primary 2–6. B Examples of types of 
data visualizations assessed
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of middle-performing students but had much less of a 
positive effect on lower-performing students. This une-
qual positive effect on different groups of Singaporean 
students was much more pronounced for the data domain 
than the other content domains.

To investigate the extent to which the current data 
curriculum was associated with increased attain-
ments, we further examined cycle-on-cycle changes, 
i.e., compared change from 2015 to 2019 with 2003 to 
2007, 2007 to 2011, and 2011 to 2015 (unlike the above 
which compared actual attainment in 2019 cycle to all 
other cycles). All cycle-on-cycle changes were statisti-
cally significant (p-values < 0.001), thus, we focused on 
effect sizes. For the 50th percentile Singaporean stu-
dents, the 2015–2019 cycle-on-cycle change effect size 

was d = 0.17 comparable to other effect sizes of 0.38 
and 0.18 for 2003–2007, and 2011–2015, respectively 
(there was decline in performance for 2007–2011). In 
contrast, for the 10th percentile Singapore students, the 
2015–2019 cycle-on-cycle change effect size (d = 0.08) 
was smaller than the other cycle-on-cycle changes (0.23 
and 0.11 for 2007–2011 and 2011–2015, respectively; 
there was decline in performance for 2003–2007)). 
Summarizing RQ3a results, 50th percentile Singapo-
rean students had comparable increases in 2019 attain-
ments in the  data domain  across cycles despite the 
already high performance in 2015, likely limiting larger 
increases in 2019. In contrast, the curriculum pro-
duced  a much smaller positive effect on the 10th per-
centile Singaporean students.

Fig. 5  Mathematics attainments of Singapore and East Asian countries in TIMSS 2003–2019. Grade 4 (equivalent to Primary 4) scale scores for 
A numbers, B measurement and geometry and C data domains. Lower quartile, median and upper quartile define each box. Lower and upper 
whiskers represent 10th and 90th percentile, respectively. Rep. of Korea did not participate in 2003 and 2007
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For RQ3b, Singaporean students in the current 2019 
cycle were compared to East Asian students in the same 
2019 cycle. 50th percentile Singaporean students statisti-
cally significantly outperformed East Asian students in 
the current 2019 cycle in the data domain (all corrected 
p-values < 0.001) with medium effect sizes (d = 0.18 to 
0.70). Similar results were obtained for other content 
domains comparing Singaporean to East Asian students 
(all p-values < 0.001, with medium to large effect sizes; 
Table 3). However, the picture for 10th percentile Singa-
porean students was less positive for the data domain. 
10th percentile Singaporean students only statistically 
outperformed peers from Hong Kong and Chinese Tai-
pei at the same percentile in the data domain (corrected 
p-values < 0.001) with small effect sizes (d = 0.03–0.13). 
10th percentile Singaporean students did not statistically 
outperform students from Rep. of Korea and Japan in 
the same 10th percentile. This result for the data domain 
contrasted with a more positive picture for numbers 
domain in which 10th percentile Singaporean students 
generally outperformed East Asian peers in the same 
percentile (all corrected p-values < 0.05 except for one, 
with small to medium effect sizes). See Tables 1, 2, 3 for 
detailed statistics.

We further examined the percentage of TIMSS assess-
ment items that matched the national curriculum. The 
numbers, and measurement and geometry domains had 
higher percentage of overlap with respective national cur-
ricula compared to the data domain (Fig. 6). Importantly, 
Singapore did not stand out as having a much larger test–
curriculum overlap than East Asian countries in all of the 
content domains, including in data (Fig. 6; RQ3c). Taken 
together with detailed statistical analyses for RQ3a and 

RQ3b, overall, the average Singaporean students gener-
ally attained very high levels of achievement relative to 
past cycles and relative to their East Asian peers in all 
content domains including in data. However, weaker Sin-
gaporean students underperformed particularly in the 
data domain despite the rigorous intended national data 
curriculum.

Discussion
Acquiring data skills has become increasingly impor-
tant for the 21st century. Given that early formal learn-
ing about data is taught within mathematics, we used a 
curriculum approach to examine the intended, assessed, 

Table 1  Related to RQ3a, comparing attainments of 2019 Singaporean students to Singaporean students in other cycles

Comparisons are made to 2019 as reference. Negative d represents lower performance compared to the 2019 cycle

Numbers Measurement and geometry Data

p-value Cohen’s d p-value Cohen’s d p-value Cohen’s d

50th percentile

2003  < 0.001 − 0.27  < 0.001 − 0.55  < 0.001 − 0.60

2007  < 0.001 − 0.30  < 0.001 − 0.37  < 0.001 − 0.25

2011  < 0.001 − 0.21  < 0.001 − 0.32  < 0.001 − 0.40

2015  < 0.001 − 0.07  < 0.001 − 0.18  < 0.001 − 0.17

2019 Reference

10th percentile

2003  < 0.001 − 0.13  < 0.001 − 0.26  < 0.001 − 0.05

2007  < 0.001 − 0.10  < 0.001 − 0.18  < 0.001 − 0.11

2011  < 0.001 − 0.04  < 0.001 − 0.11  < 0.001 − 0.08

2015  < 0.001 − 0.05  < 0.001 − 0.09  < 0.001 − 0.08

2019 Reference

Table 2  Related to RQ3a, comparing cycle-on-cycle changes for 
the data domain of Singaporean students

The 2nd year is the reference cycle, e.g., 2003–2007 compares 2003 to 2007 with 
2007 as a reference. Negative d represents an improvement in performance from 
the 1st year to the 2nd year

Data

p-value Cohen’s d

50th percentile

2003–2007  < 0.001 − 0.38

2007–2011  < 0.001 0.18

2011–2015  < 0.001 − 0.20

2015–2019  < 0.001 − 0.17

10th percentile

2003–2007  < 0.001 0.10

2007–2011  < 0.001 − 0.23

2011–2015  < 0.001 − 0.11

2015–2019  < 0.001 − 0.08
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and attained mathematics curriculum. This approach is 
further motivated by the increasing emphasis of cur-
riculum-related research in science, technology, engi-
neering, and mathematics (STEM) education (Li et al., 
2020). The Singapore elementary school system was 
used as a case study for intended and assessed curricula 
with detailed multi-country statistical comparisons for 
attained curriculum. Related to RO1, results indicated 
that traditional mathematics content domains strongly 
dominated the elementary mathematics content cover-
age in Singapore (RQ1a). It is also anecdotally known 
that Singapore teachers spend less classroom time on 
data compared to other content domains deemed to be 
more important such as numbers and measurement. 
Interestingly, despite the limited content coverage of 
the data domain, the cognitive skills assessed for data 
domain were high (RQ2a). Overall, both intended and 

assessed data curricula placed greater emphasis on 
higher-order skills such as applying and reasoning com-
pared to the other mathematics content domains, espe-
cially at higher primary levels (RQ1b, RQ2b).

A number of observations further support our claim 
of more demanding data curriculum compared to other 
content domains at Primary 4 specifically, when stu-
dents were tested for actual attainment in TIMSS. First, 
at Primary 4, higher cognitive domains of reasoning and 
applying contributed  a greater combined percentage of 
assessed items in data domain compared to numbers 
and algebra, though similar in proportion to measure-
ment and geometry (Fig.  3C). Second, just as impor-
tantly, the proportion of assessed items in data domain 
was very small, 3–4 times smaller compared to other 
content domains at Primary 4. Based on previous large-
scale classroom studies in Singapore, assessments in 
Singapore generally constrain enacted curriculum in the 
classroom in terms of what and how content is taught, 
and the opportunities to learn and practice (Hogan et al., 
2013). Thus, our summative assessments data provided 
a window into the very limited instructional emphases 
and opportunities to learn about data. Third, about 10% 
of the assessed data items in schools at Primary 4 were 
mixed visualizations (Fig.  4A), generally quite challeng-
ing. Related to this point, TIMSS international assess-
ment indeed classifies mixed data visualizations as a 
reasoning cognitive domain, which we also did. Over-
all, our observations indicated fewer opportunities to 
learn, practice and be assessed in data domain compared 
to other domains yet what were assessed consisted of 
quite high cognitive expectations. This rigorous data 

Table 3  Related to RQ3b, comparing attainments of Singaporean students in 2019 to East Asian students in 2019

Comparisons are made to Singapore as a reference. Negative d represents lower performance of comparison country to Singapore

Numbers Measurement and Geometry Data

p-value Cohen’s d p-value Cohen’s d p-value Cohen’s d

50th percentile

Hong Kong  < 0.001 − 0.86  < 0.001 − 0.31  < 0.001 − 0.18

Rep. Korea  < 0.001 − 1.46  < 0.001 − 0.49  < 0.001 − 0.42

Chinese Taipei  < 0.001 − 1.16  < 0.001 − 0.42  < 0.001 − 0.70

Japan  < 0.001 − 1.83  < 0.001 − 0.73  < 0.001 − 0.39

Singapore Reference

10th percentile

Hong Kong  < 0.001 − 0.16 0.04 0.02  < 0.001 − 0.03

Rep. Korea  < 0.001 − 0.29 1  < 0.01 0.26 0.02

Chinese Taipei  < 0.001 − 0.10 0.003 0.03  < 0.001 − 0.13

Japan  < 0.001 − 0.31  < 0.001 -0.15 1  < 0.01

Singapore Reference

Fig. 6  Match between TIMSS 2019 assessment items and national 
curriculum
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curriculum seemed to translate to very good attainments 
of the average Primary 4 Singaporean student in interna-
tional assessments compared to East Asian countries in 
the 2019 cycle (RQ3a). Prior to 2019, the average Singa-
porean students did not top East Asian countries in the 
data domain, suggesting a demanding curriculum that 
might be more recent (RQ3b). Thus, Singapore provides 
an interesting case study of how learning intentions 
and assessments can remain challenging despite much 
smaller content coverage of data domain.

Previous work has examined how students understand 
data and its visualization, with a focus on learning about 
graphs, which tend to be the most common data visu-
alization in K-16 education (Aksoy & Bostan, 2021; Friel 
et al., 2001). A graph is made up of many different types 
of symbols: geometric such as lines and points, linguistic 
such as words and numerals, and pictorial such as icons 
(Börner et al., 2019). These symbols are spread across a 
relatively large spatial layout, all of which must be inte-
grated cognitively for the task at hand. According to Car-
penter and Shah (1998), graph comprehension is made 
up of 3 stages: pattern recognition stage to chunk infor-
mation (e.g., x-axis vs. y-axis), a stage involving inter-
pretation of the relationship in graph data (e.g., trends 
in a line graph) and another interpretative stage involv-
ing referents (e.g., axes labels). These stages are cyclically 
and incrementally integrated instead of being a strictly 
serial process, with more complex graphs requiring more 
time for cycles of integration. More complex reasoning 
skills such as predicting the next data point in the graph 
likely also involve more cycles of integration for a coher-
ent understanding. In summary, developing data literacy 
skills can be challenging as it places higher levels of cog-
nitive skills on the reader. When coupled with the lack of 
content emphasis in formal mathematics curriculum, it is 
not surprising then that even educated adults can exhibit 
difficulties in reading and understanding data (Börner 
et al., 2016; Kaplar et al., 2021).

Our results suggest that lower-achieving Primary 4 
Singaporean students underperform in the data domain. 
While the average Singaporean student outperformed 
the average East Asian student at Primary 4, the TIMSS 
data also suggested that weaker Singaporean students 
were not benefiting from the curriculum as much, thus 
not ranking as favorably compared to weaker East Asian 
students (RQ3a). One hypothesis is that the demanding 
data curriculum, while significantly enhancing the per-
formance of the average Singaporean student, is not able 
to meet the learning needs of the weaker students who 
fall farther behind. The skills demanded of data literacy 
as elaborated above may not be sufficiently developed 
in weaker students. Our hypothesis is supported by a 
recent study that used item response theory, finding that 

data-related items in a science inference instrument were 
particularly difficult for lower-track Singaporean students 
compared to other items (Teo & Goh, 2019). Our results 
are also relevant to recent debates over equity–excellence 
trade-off which posits that higher average performance 
necessitates a more unequal educational system (Van de 
Werfhorst & Mijs, 2010). The extent to which this trade-
off is empirically supported has been questioned (Parker 
et al., 2018). Yet, at least in the case of Singapore, the high 
average performance does seem to come at the price of a 
much wider distribution of scores such that the tail end 
of the distribution for Singaporean students is lower than 
for East Asian countries. Our study provides motivation 
to further compare the learning experiences involving 
average and weaker students in the context of a seem-
ingly rigorous data curriculum. A hypothesis based on 
the above model of cognitive integration is that weaker 
students, while able to identify the disparate symbols and 
elements of data visualization, fail to engage in repeated 
cognitive integrative cycles required to form a fuller 
understanding in order to solve the problem at hand. Fur-
ther studies of the learning processes, especially among 
lower-performing students, would be useful.

Our comparative cross-content domain approach is 
also pertinent to current efforts in data science and sta-
tistics education. We observed two seeming trends in 
this area. First, many have argued that statistical think-
ing is quite distinct from mathematics. Real-world con-
texts, variation in data, chance, and uncertainty all play 
prominent roles in statistical meaning-making but these 
are abstracted away in mathematical thinking as they 
obscure pure mathematical structures (Cobb & Moore, 
1997). This approach has led to success in growing the 
field of data science and statistics education as a field of 
inquiry worthy of its own standing (Ben-Zvi et al., 2017; 
Leavy et  al., 2018). The other trend we observed is that 
STEM frameworks have incorporated data and visualiza-
tions as key pillars for an integrated STEM learning expe-
rience (Kelley & Knowles, 2016). While these trends are 
welcomed as they make data science more prominent in 
K-12 education in a manner that cuts across traditional 
academic subjects, the reality is that students first for-
mally learn about data via the subject of mathematics in 
many countries (Davies & Sheldon, 2021; Groth, 2018). 
This situation has major implications. It can make learn-
ing about data subservient to the broader mathemat-
ics curriculum dominated by other content domains as 
found in this study. Moreover, students may be influenced 
to think about data in ways that highlight mathematical 
focus on algorithms, abstraction and problem-solving 
with deterministic answers (Bargagliotti & Groth, 2016). 
Further, Davies and Sheldon (2021) shared an anecdote 
of a mathematics assessment meeting in which an item 
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about normal distribution had a grading scheme that 
rewarded both “yes” and “no” answers as long as correct 
justifications were given. Mathematics teachers protested 
such uncertainty, which is not typically tolerated in tradi-
tional mathematic content domains (p. S59). Our study 
is limited by the nature of the curriculum documents 
and data that were not explicitly aimed at addressing 
clashes between statistical and mathematical thinking. 
Nonetheless, we have identified differences in learning 
expectations and assessment between data and other 
mathematical domains that can be useful when further 
comparing different educational systems.

While many promote data science as cutting across 
disciplines, a complementary effort is to examine how 
to apply skills associated with data within mathemat-
ics itself. Cross-content domain learning was found to 
be very limited in this study as very few items assessed 
multiple content domains (6.4%), even fewer involv-
ing the data domain. This finding is consistent with a 
previous study on textbook curriculum (Jones et  al., 
2015). Thus, students would potentially have missed 
out on important opportunities to learn the useful 
cross-applicability of data, a key aspect of data science, 
suggesting the need to further integrate data skills and 
competencies into the mathematics curriculum. There 
are different strategies to do so. For example, in meas-
urement and geometry, elementary school children are 
taught how to measure areas deterministically via for-
mulas. However, Monte Carlo methods using random 
numbers exist to estimate areas, particularly useful on 
odd shapes. A older study emphasized how students 
can discover value of π using Monte Carlo methods 
(Easterday & Smith, 1991) and now such learning expe-
riences can be easily incorporated using modern sta-
tistical software (e.g., Fitzallen & Watson, 2010). Other 
examples include using data presented in various forms 
to enhance student’s representational fluency in math-
ematics content domains such as functions (Ceuppens 
et al., 2018). Students can be taught, within mathemat-
ics, how to think in a data-driven manner, graphically 
visualize the data, and make links to traditional math-
ematical solutions (often via formulas). We consider 
such cross-content domain learning to be analogous 
to near transfer within mathematics in contrast to far 
transfer when applying data science across traditional 
disciplines (Roehrig et  al., 2021). Our proposed call 
for near transfer efforts agree with previous views that 
emphasize the enriching role of data and statistics in 
mathematics (Davies et al., 2012; Goldstein, 2007).

The present study has limitations. There is always a 
risk in taking a comparative approach. First, we devel-
oped a framework for comparing the intended and 

assessed curriculum across very different mathemat-
ics content domains. One might argue it is difficult 
to compare cognitive skills for topics as distinct as, 
for example, bar graphs in data and angles in geome-
try. Nonetheless, we believe that our approach, based 
upon previous work on the thinking curriculum, fur-
ther used by the TIMSS assessment framework, is gen-
eral enough to be applicable across content domains. 
Second, in taking multi-country comparisons, there 
are issues in comparing attainments across quite dif-
ferent educational systems and contexts. Curriculum 
coverage is one issue. Here, it did not appear that test–
curriculum match played a major role in determining 
broad patterns of national attainments, a result con-
sistent with more detailed TIMSS research (Mullis 
et  al., 2020). However, we cannot rule out more sub-
tle relationships between test–curriculum overlap and 
attainments as scores of individual test items could 
not be analyzed. Moreover, our study was limited to 
intended, assessed, and attained curriculum. Future 
studies can examine enacted curriculum as well as 
hidden aspects of curriculum involving attitudes and 
values when learning about data within the context of 
mathematics.

Conclusion
One of the emerging forms of literacies is data literacy, 
important in an increasingly data-driven world. Stu-
dents first formally learn about data within the ele-
mentary mathematics curriculum but there is a gap in 
knowledge on how they learn so in relation to other 
foundational mathematics content domains. Using 
a curriculum framework, we analyzed the intended, 
assessed, and attained curricula in the data domain 
compared to other mathematics content domains such 
as numbers, algebra, measurement, and geometry 
using Singapore as a case study. Findings suggested 
that, despite very limited coverage, the data domain 
required a greater proportion of higher-order cognitive 
skills than other content domains in both intended and 
assessed curricula. Moreover, this data curriculum was 
associated with high performance by the average Singa-
porean student compared to East Asian students using 
international large-scale assessment data. However, 
lower-achieving Singaporean students lagged behind 
their East Asian peers, especially in the data domain, 
with implications on current equity issues in STEM 
education. Moreover, the very limited cross-domain 
applications of data highlight the need for elementary 
school students to be exposed to learning experiences 
that emphasize the cross-applicability of data, espe-
cially in the mathematics curriculum.
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