
Ye et al. 
International Journal of STEM Education            (2023) 10:3  
https://doi.org/10.1186/s40594-023-00396-w

REVIEW

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

International Journal of
STEM Education

Integration of computational thinking 
in K-12 mathematics education: a systematic 
review on CT-based mathematics instruction 
and student learning
Huiyan Ye1  , Biyao Liang2  , Oi‑Lam Ng1*   and Ching Sing Chai1   

Abstract 

There has been substantial research undertaken on the integration of computational thinking (CT) in K‑12 mathemat‑
ics education in recent years, particularly since 2018 when relevant systematic reviews were conducted on the topic. 
Many empirical studies in this area have yet to elaborate clearly and explicitly on how CT may support mathematics 
learning, or otherwise, in CT‑based mathematics activities. Addressing this research gap, we conducted a systematic 
review on the integration of CT in K‑12 mathematics education with a focus on CT‑based mathematics instruction 
and students learning under such instruction. The Web of Science database was searched for in terms of studies 
published from 2006 to 2021, from which 24 articles were selected to provide illustrations of CT‑based mathematics 
instruction and related student learning, and they were further analyzed according to education levels and contexts, 
programming tools, learning outcomes in CT and mathematics, and the mutual relationship between CT and math‑
ematics learning. Among the results, this review found that geometrized programming and student‑centered instruc‑
tional approaches were facilitators of productive learning in CT and mathematics. Moreover, CT‑based mathematics 
learning entails an interactive and cyclical process of reasoning mathematically and reasoning computationally, 
which can occur when: (1) applying mathematics to construct CT artefacts; (2) applying mathematics to anticipate 
and interpret CT outputs; and (3) generating new mathematical knowledge in parallel with the development of CT. 
The findings contribute to an in‑depth understanding of what, and how, CT‑based mathematics instruction impacts 
student learning in K‑12 contexts.
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Introduction
In the last two decades, considerable literature has grown 
around the theme of computational thinking (CT), 
namely, “the thought processes involved in formulating 

problems and their solutions, so that the solutions are 
represented in a form that can be effectively carried out 
by an information-processing agent” (Wing, 2011, p. 20). 
First to coin the term, Wing (2006, 2008) emphasized that 
CT is a fundamental skill required in daily life and a kind 
of analytical thinking that shares close connections with 
mathematical thinking, engineering and scientific prac-
tices. Research on CT has received increasing attention, 
especially regarding its integration into K-12 educational 
contexts (e.g., Feldhausen et al., 2018; Jocius et al., 2021; 
Sırakaya et al., 2020; Swaid, 2015). One kind of such inte-
gration that has obvious connection, yet little is known 
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about, is CT’s integration in mathematics instruction and 
its associated learning outcomes (e.g., Barr & Stephen-
son, 2011; Sneider et al., 2014; Weintrop et al., 2016).

Using CT and programming tools to learn mathemat-
ics can be traced back to Papert’s Logo programming 
(1980) and further developed by Weintrop et  al. (2016), 
who illustrate the resemblance of CT practices and those 
of science and mathematics practices, i.e., data handling, 
modelling and simulation, computational problem-
solving, and systems thinking. With CT-based math-
ematics instructional approaches becoming more widely 
adopted in K-12 contexts in recent years (e.g., Miller, 
2019; Pei et al., 2018; Shumway et al., 2021), a number of 
design-based research have been conducted to improve 
the conceptual basis and practice of a “computationally 
enhanced mathematics education” (Ng & Cui, 2021, p. 
848). Related studies have also advanced the instructional 
design, including the programming tasks to facilitate stu-
dents’ mathematics learning. These studies encompass 
Kotsopoulos et al.’s (2017) pedagogical framework for CT 
activities, designing for unplugged, tinkering, making, 
remixing in K-12 mathematical problem-solving in the 
domains of combinatorics (e.g., De Chenne & Lockwood, 
2022), algebra (Bråting & Kilhamn, 2021), number theory 
and mathematical modelling (e.g., Ng & Cui, 2021) and 
geometry (e.g., Miller, 2019). Significantly, these studies 
evidence the reciprocal relationship between computer 
science and mathematical concepts, in the sense that 
the application of CT deepens mathematical discipli-
nary knowledge, while the context of CT-based math-
ematics learning improves one’s CT skills (Pei et  al., 
2018). However, as argued by Lockwood and De Chenne 
(2020), while programming seems to be effective in learn-
ing certain mathematical topics, it cannot be concluded 
that it would be superior to paper-and-pencil, nor that 
all domains of mathematics are generally suitable for 
integration with computing. In addition, students were 
found to experience various challenges due to potential 
differences between the two types of thinking (i.e., com-
putational and mathematical) when solving mathemati-
cal problems in programming contexts (Cui & Ng, 2021). 
Thus, there remains a lack of consensus in the interre-
lationship and components of overlap between CT and 
mathematics, especially surrounding the K-12 education 
contexts in which strong emphasis has been placed on 
CT development in age-appropriate and interdisciplinary 
ways (Hong Kong Curriculum Development Council, 
2020; International Society for Technology in Education, 
2016; National Research Council, 2013). An important 
question to be further explored is to clarify how comput-
ing can be effectively used to foster K-12 mathematics 
thinking and learning (Hickmott et  al., 2018), and vice 
versa.

While existing reviews have explored the multi-fac-
eted linkage of CT and K-12 education (Barcelos et al., 
2018; Grover & Pea, 2013; Hickmott et  al., 2018; Hsu 
et al., 2018; Tang et al., 2020), a scarcity of reviews has 
discussed the linkage or interplay between CT and 
K-12 mathematics thinking and learning (Shumway 
et  al., 2021). The most recent and relevant review was 
conducted by Hickmott et al. (2018), which was a scop-
ing review of how CT has been applied in K-12 math-
ematics classrooms broadly. The categories of analyses 
were mainly descriptive, including implicit or explicit 
connections to domains of mathematics, activity 
approaches, and evidence of impact on student learning 
(by quantitative methods of studies). Hickmott et  al. 
(2018) highlighted the need for “studies that explicitly 
linked the learning of mathematics concepts with com-
putational thinking were uncommon in the reviewed 
literature” (p. 65). In response, this paper aims to pro-
vide an in-depth examination of extant studies of 
K-12 practices that explicitly link CT with mathemat-
ics thinking and learning. In this way, we contribute 
toward understanding and synthesizing the interplay 
between CT and mathematics learning as evident in 
empirical studies, especially given the vast number of 
studies that have been published since Hickmott et al.’s 
(2018) review.

In this paper, we report on a systematic review with 
the dual purpose of reviewing broadly the characteris-
tics of CT-based mathematics instruction and student 
learning under such environment, and then provide 
an in-depth analysis and discussion of the interplay 
between CT and mathematics learning outcomes from 
extant empirical studies. To do so, we conducted a 
review of studies that detail both teaching and learn-
ing processes in CT-based mathematics activities. It 
addresses the research gap regarding the impact of CT-
based mathematics instruction on student learning, 
and also more clearly and explicitly identify the inter-
play between CT and mathematics learning. To achieve 
our dual foci, we pose the following four research ques-
tions (RQs):

1. In what educational contexts is CT integrated in 
K-12 mathematics education?

2. What tools and instructional approaches are used in 
CT-based mathematics activities?

3. What theoretical constructs or conceptual frame-
works have been used, and what students’ learning 
outcomes are characterized in CT-based mathemat-
ics activities?

4. What kinds of interplay between CT and mathemat-
ics thinking and learning are observed?
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Methodology
We used the PRISMA systematic review method (Page 
et al., 2021a, b) to review the impact of CT-based math-
ematics instruction on student learning. In what follows, 
we describe the search process, selection process and 
method of data analysis.

Search process
The Web of Science (WOS) database was used as the 
source for literature search. We used “computational 
thinking” AND “math*” AND (“school*” OR “educat*”) 
AND (“primary” OR “elementary” OR “secondary” OR 
“middle” OR “high” OR “K-12”) as the search terms to 
search in “topic”, which included searching in titles, 
abstracts, author keywords, and keywords plus. In con-
sistent with other systematic reviews on CT (Barcelos 
et  al., 2018; Hsu et  al., 2018), we limited our search to 
the publication date starting from 2006, when Jeannette 
Wing first introduced the term CT; as such, the date 
range of the publications searched was between 2006-01-
01 and the date we performed the search, i.e., 2021-11-
15. With WOS automatically removing duplicate articles, 
we obtained 290 articles in total for further screening.

Selection process
The overall goal of the selection process was to improve 
relevance of the searched articles as pertaining to the 
goals of the current review. Our selection process con-
sisted of three stages, and the procedures are summa-
rized in Fig. 1. In the following, we discuss each stage in 
detail.

At Stage 1, non-English articles and non-journal arti-
cles (e.g., Conference Papers/Abstract/Unpublished 
papers) were removed to ensure language accessibility 
and quality of research of the literature pool, resulting 
in 164 remaining papers. We excluded unpublished arti-
cles because of the need for peer review to ensure qual-
ity. Consistent with similar review (Tang et al., 2020), our 
decision to exclude conference papers and abstract was 
based on the following reasons: (a) according to Brad-
ford’s Law (Testa, 2009), the majority of noteworthy sci-
entific findings have been disclosed in journal articles. 
Conference papers in this situation would present find-
ings that were similar to those in journal publications. (b) 
Our systematic review aimed to examine detailed teach-
ing process or student learning process. In general, con-
ference papers did not report such information due to the 
limited space.

In the next two stages, we developed screening crite-
ria as aligned with our research purpose to investigate 
the integration of CT in K-12 mathematics education. 
Although we included keywords of “K-12”, “CT”, and 
“math” in the search terms, there was no guarantee 

that the search records were relevant to those terms, as 
we only limited the search in titles, abstracts, and key-
words. Therefore, at Stage 2, we further reviewed the 
title, abstract, and full text (when necessary) holistically 
to eliminate studies that were not conducted in K-12 con-
texts (e.g., at collegiate levels) or were not focused on CT 
and/or mathematics education. For example, some arti-
cles only mentioned the term “STEM (Science, Technol-
ogy, Engineer and Mathematics)”, “mathematics”, or “CT” 
in the abstracts, but the primary focus of the studies was 
neither CT-related nor mathematics education-related, 
i.e., these articles are not about the teaching, learn-
ing, and affect issues of CT and mathematics. After the 
screening of this stage, we removed 111 articles, and the 
remaining 53 articles entered the full-text screening at 
the next stage.

At Stage 3, we aimed to screen for those studies that 
provide adequate descriptions of the teaching and learn-
ing processes to shed light on the relationship between 
CT-based mathematics instruction and student learning 
outcomes in CT and mathematics. First, the articles must 
report on empirical studies, so that the quality of student 
learning with reference to the instructional design can be 
empirically investigated. As such, we excluded theoretical 
papers, reviews, and articles that described provisional 
activities without implementation. Second, we identi-
fied studies that analyzed student learning processes 
and outcomes upon engaging in some form of CT-based 
mathematics instruction. This means we excluded studies 
that did not offer insight into features of student learn-
ing, such as research focusing only on teachers’ learning 
(e.g., Bouck et al., 2021), and articles that only described 
the process of implementation or design of a course, task, 
or learning program, without explicitly reporting on stu-
dent learning (e.g., Matsumoto & Cao, 2017). Regarding 
the third and final criterion, we continued to determine 
whether the article explicitly described any features of 
the CT-based mathematics instructional process (e.g., 
tools, tasks, instructional approaches); this inclusion cri-
terion directly relates to our research questions. The first 
author and the second author independently conducted 
screening against these criteria. For discrepant screen-
ing results, the authors discussed each one until mutual 
agreement. This screening stage was concluded with 24 
articles that constituted the final collection of review 
articles.

Data analysis
Although our research questions seem to be more 
inclined to retain the studies using qualitative research 
methods, the numerical results (Fig.  2, left) does not 
show significant difference in the use of the three 
research methods (qualitative at 42%, quantitative at 
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33%, mix method at 25%). We further categorized the 
data collection methods (Fig.  2, right) and found that 
observation and test are the two most frequent ways for 
assessing and having access to student learning.

Upon completion of the screening process, the first and 
the third author initially proposed a set of codes which 
addressed the RQs upon their reading of the 24 articles. 
For example, in response to answer RQ1 (educational 

Fig. 1 Paper selection process
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context), the deductive codes included education level 
(grade), educational setting (school education or after-
school activity), and disciplinary context (multidisci-
plinary or CT-based mathematics context). Likewise, in 
response to RQ2 and RQ3, the authors prescribed codes 
that addressed the programming tools and instructional 
approach adopted, as well as learning outcomes (associ-
ated with CT or mathematics).

To arrive at the second- and third-level codes, the first 
and third author performed constant comparative analy-
sis (Strauss & Corbin, 1990) to identify and refine the 
codes that adequately describe the methods and results 
highlighted in the empirical studies until saturation of 
categories. Specifically, the authors independently coded 
six of the articles (or 25% of the selected articles) and 
discussed the coding results to (1) operationalize the 
meaning of each code; and (2) delete, add, and synthesize 
coding items that were helpful to answer the RQs. This 
process yielded the second- and third-level codes, and 
a finalized coding scheme with code definitions as pre-
sented in Table  1. In the case of RQ4, the authors used 
constant comparative analysis (Strauss & Corbin, 1990) 
to obtain new findings regarding the interplay between 
CT and mathematics. Open coding was first used to cre-
ate initial codes by extracting information from the lit-
erature that was pertinent to student learning. Then, the 
authors practiced axial coding and selective coding to 
create a core category to connect them and achieved the 
final codes.

Upon completion of the coding scheme, the authors 
coded another eight articles independently, and the inter-
rater agreement exceeded 90%. At last, the first author 
coded all the remaining articles, and when encountering 
uncertain coding, all authors discussed until agreement. 
We report on the coding results in the next section.

Result
In this section, we first describe the educational con-
text, where CT-based mathematics teaching and learn-
ing activities are implemented (section "Educational 
context of CT-based mathematics instruction"); this 
includes reporting on the education level, educational 
setting, and disciplinary context of the reviewed studies. 
Then, we discuss the pedagogical aspects of the articles 
(section "Pedagogical aspects of CT-based mathematics 
instruction"), which include the tools and instructional 
approaches used during CT-based mathematics instruc-
tion. Finally, we review students’ learning outcomes 
in relation to CT and mathematics (section "Interplay 
between CT and mathematics learning outcomes"), both 
in terms of the diverse constructs used to characterize 
student learning, as well as the interplay between CT 
and mathematics learning outcomes as evident in the 
reviewed literature. We discuss the results along with our 
further insights in each sub-section.

Educational context of CT‑based mathematics instruction
To begin, we use Fig.  3 to summarize the literature 
count regarding the education level in which the studies 
are conducted. Notably, more researchers have carried 
out studies in primary educational contexts, followed 
by lower secondary education. This may be related to 
researchers’ attention to the importance of students’ 
early exposure to CT (Jurado et  al., 2020; Sáez-López 
et  al., 2019) alongside the emergence of child-friendly 
programming tools for easy CT experimentation dur-
ing a critical cognitive developmental period for CT 
learning (Rodríguez-Martínez et  al., 2020). Among the 
24 reviewed articles, five included research partici-
pants across education levels; these studies highlight the 

Fig. 2 Research methods and data collection methods undertaken by the reviewed studies
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feasibility of conducting CT-based mathematics activities 
to students with varying knowledge bases and skill lev-
els. The cross-grade activities used among these studies 
are afforded by the spiral mathematics curricula across 
K-12 education, such as the recurrent arithmetic topics 
in kindergarten and lower primary education (Sung et al., 
2017), the relevant transition from arithmetic to algebraic 
thinking in the middle school grades (Ng & Cui, 2021), 
and the interrelated 2D geometry topics across second-
ary education (Wilkerson-Jerde, 2014). In addition, these 
studies commonly provided an open-ended construc-
tionist learning environment which involved the students 
creating CT artefacts with little direct instruction (Papert 
& Harel, 1991), during which the students could explore 
and develop non-prescribed learning outcomes in both 
mathematics and CT. As argued by Muñoz et al. (2020) 
and Ng et al. (2021), CT-based mathematics activities are 
suitable for cross-grade teaching and learning, because 
they support non-traditional curricula learning, with the 
former study showing that mathematics learning could 
take on a range of domains with little prior mathemat-
ics knowledge necessary, and the latter study concluding 
that the developmental sequence of learning mathemat-
ics maybe altered by the use of computational tools. In 
particular, Ng et al. (2021) highlights the conceptual con-
nection between skip counting and geometric sequences, 
which takes roughly 7 years to learn in traditional cur-
ricula; but in the Scratch programming environment, it 
is as straightforward as replacing the symbol for opera-
tion. In summary, we synthesize from the reviewed stud-
ies the potential for CT-based mathematics instruction 
to achieve cross-grades mathematics learning. At the 

same time, they also stimulate questions regarding the 
constraints of disciplinary mathematics learning within 
a highly structured curricula which is predominantly 
intended for using paper-and-pencil as the medium of 
learning. As such, we also draw attention to the con-
straints of research and practice in CT-based mathemat-
ics instruction given the current curricula structure.

As part of educational context, we analyzed the educa-
tional settings to understand whether CT-based mathe-
matics instruction has been applied in formal or informal 
education, with the former being compulsory and the lat-
ter being voluntary. We found that 17 reviewed studies 
were conducted within a formal schooling environment, 
and 7 studies were conducted outside of formal educa-
tion settings (of which 4 were in primary education and 3 
were in secondary education). In particular, the 7 studies 
were contextualized in after-school programs or summer 
camps, which are also considered as non-formal educa-
tion, since they are intentional and structured when com-
pared to spontaneous and unstructured activities in daily 
informal settings (Eshach, 2007). We also investigated the 
disciplinary context of CT-based mathematics instruc-
tions to examine whether a single or multiple disciplines 
were involved in the learning activities. We found that a 
minority of studies (n = 7) aimed to develop or support 
students’ CT and mathematics learning in an interdisci-
plinary or multidisciplinary way (e.g., STEM, STEAM, 
Math + Science). For example, the study of Gilchrist et al. 
(2021) was situated in a pandemic awareness STEM out-
reach curriculum focused on medicine, mathematics 
and technology, where students developed an epidemic 
outbreak simulator using the Python programming 

Fig. 3 Literature count of each education level



Page 9 of 26Ye et al. International Journal of STEM Education            (2023) 10:3  

with CoCalc. In another study, students were asked to 
use KIBO robots to solve STEAM-related problems in 
designing and engineering a real-life artefact (Jurado 
et al., 2020).

The remaining 17 articles reported on students’ CT and 
mathematics learning in the context of solving CT-based 
mathematical problems (see more discussion in section 
"Interplay between CT and mathematics learning out-
comes"). For example, Wilerson-Jerde (2014) explored 
how secondary students create and analyze fractal struc-
ture with Categorizer, while Psycharis and Kallia (2017) 
posed a statistical problem for students to solve with 
MATLAB programs. At the primary education level, stu-
dents used Scratch to learn geometric figures by drawing 
squares and spirolaterals (Miller, 2019). It is evident that 
most practices of CT-based mathematics instruction are 
situated in mathematical (disciplinary) problem-solving 
contexts rather than in STEM (multidisciplinary) con-
texts. The lack of studies which address multidisciplinary 
learning in CT-based mathematics instructions is likely 
associated with our earlier findings that most studies 
were conducted in formal education context. Moreover, 
it has been well-documented in literature that STEM 
integration is difficult to practice, especially when the 
focus of STEM integration is on achieving mathematics 
learning (English, 2016). Together, the findings surround-
ing educational levels and settings prove that CT-related 
research in both STEM and mathematics education is at 
a beginning point, and that more empirical research is 
needed to inform effective integration of CT in formal 
K-12 curricula context.

Pedagogical aspects of CT‑based mathematics instruction
In this section, we focus on the pedagogical tools and 
approaches that have been developed and utilized to 
support CT-based mathematics instruction and student 
learning.

Tools
While CT is generally related to computer science and 
programming tools, CT learning activities are not limited 
to plugged activities (implemented with the use of com-
puters). Our review shows that unplugged CT activities 

(implemented without the use of computer) are often 
carried out by researchers as precursory activities for 
plugged CT activities, such that students would experi-
ence some target CT concepts and practices in advance, 
and this is conducive to students’ adaptation to program-
ming (plugged) activities (Bouck & Yadav, 2020; Sung 
et al., 2017). In Bouck and Yadav’s (2020) study, for exam-
ple, an unplugged game of moving plastic cups on a sur-
face was used to help students gain a better appreciation 
for what it is algorithms and debugging before students 
began coding to move a robot. In terms of plugged activi-
ties, we identified 18 different tools and platforms used 
in CT-based mathematics activities across the literature, 
with some being conventional tools for programming 
and technology instruction (e.g., Python, Scratch, Robot 
Dash), and some being more commonly used in mathe-
matical practices (e.g., Sketchpad, GeoGebra, MATLAB). 
Based on the programming platform interface, we divide 
these tools into two categories: screen-based program-
ming and tangible programming (Table 2).

Under screen-based programming, by which users pro-
gram within a screen (e.g., computer screen), we identi-
fied three sub-categories of programming languages: 
text-based programming, block-based programming, and 
geometrized programming. We define text-based pro-
gramming tools as those requiring strict, precise, and 
complex syntactic rules to code, thereby often requiring a 
keyboard to input text (Horn & Jacob, 2006), such as Pro-
cessing, Python, Matlab, and MaLT2 (Fig.  4a). In block-
based programming environment (e.g., Scratch, ViMAP), 
students can drag and drop the visual script blocks 
on the screen with a mouse or their hands to program. 
These script blocks constitute more natural and intui-
tive ways to operate a program while providing useful 
visual cues on how and where to use program commands 
(Fig. 4b). Unique to CT-based mathematics instruction is 
a geometrized programming language, which, as Sinclair 
and Patterson (2018) proposed, is a third screen-based 
programming language whose elements are geometric 
objects rather than texts or blocks. One typical example 
is the Geometer’s Sketchpad, and another example is Lat-
tice Land (see Pei et  al., 2018), whose interface enables 
users to interact directly with dots to construct segments 

Table 2 Tools used in CT‑based mathematics instruction

Note: [N] denotes total literature counts of each tool

Types of Tools Example

Screen‑based Programming [18] Text‑based programming [6] CoCalc with Python; Processing; spreadsheet [2]; MATLAB; MaLT2

Block‑based programming [9] Arduino [3]; ViMAP; Scratch [3]; iPad‑based Scratch Jr; mBot with mBlock; Robot Dash

Geometrized Programming [3] Sketchpad; Lattice Land; Moodle-G platform with GeoGebra functions integrated

Tangible Programming [3] KIBO robot 18 Kit; Bee-Bot robot; Botley; Cubetto
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and polygons and investigate lattice geometry as a form 
of geometrized programming (Fig. 4c).

Tangible programming requires coders to use hardware 
objects with physical user interface to build programs, 
as opposed to “write” or “drag-and-drop” on the com-
puter screen. With tangible programming, young coders 
can create procedural syntax to perform physical actions 
such as moving between two locations by scanning a 
code sequence (KIBO Robot), pressing command buttons 
on the machine (Bee-bot Robot; Fig.  4d), entering com-
mands with an external remote (Botley), and placing the 
desired tiles on the programming board (Cubetto).

Our review provides insights into the features of 
the programming tools and their implications for stu-
dent learning, not only in terms of CT development 
in age-appropriate ways but also the quality of con-
nections with learning content in mathematics. Often, 
the choice of programming tool in relation to students’ 
characteristics, such as developmental stage, prior 
knowledge, and experience with the programming tool, 
were considerations taken by researchers in design-
ing CT-based mathematics activities. For example, the 

study by Sáez-López et al. (2019) acknowledged the use 
of block-based programming as attempts to instigate 
CT without tedious coding. As such, they support kin-
dergarten and primary students to exercise CT through 
activities with embedded computational concepts, such 
as variable, sequence, iteration (or loops), conditional 
statements and event handling (Miller, 2019; Ng & Cui, 
2021; Sáez-López et  al, 2019). These studies also cau-
tion that if the CT concepts and practices involved 
are not made explicit, it may be difficult to tell if stu-
dents could transfer their knowledge gained to other 
problem-solving contexts. Text-based and geometrized 
programming demand high requirements on the pro-
grammer, such as understanding the programming 
syntax and having adequate mathematical knowledge, 
which were used frequently in secondary education. In 
turn, it also demands the instructor to be knowledge-
able in these aspects when integrating CT into math-
ematics instructions, evident in mathematics teachers 
often needing to collaborate with computer program-
ming teacher on CT-based mathematics instruction 
(Psycharis & Kallia, 2017).

Fig. 4 a Interface of text‑based programming tool MaLT2 (Grizioti & Kynigos, 2021, p. 10); b a block‑based programming tool mBot (Sáez‑López 
et al., 2019, p. 1414); c segments and a polygon drawn in a geometrized programming tool Lattice Land (Pei et al., 2018, p. 78); d a Bee-bot robot, a 
form of tangible programming used in Muñoz et al., (2020, p. 7)



Page 11 of 26Ye et al. International Journal of STEM Education            (2023) 10:3  

Although extant studies have considered the cog-
nitive demand required on the programming tool in 
age-appropriate ways during CT-based mathematics 
activities, few researchers have explicitly communi-
cated the affordances of the programming tool in sup-
porting the target mathematics learning content. In 
response, we aim to generate further understanding 
from the reviewed empirical studies on this question. 
First, the reviewed studies suggest that the physicality 
of tangible programming is supportive to the learning 
of number, measurement, geometric shapes and spatial 
concepts and skills (Jurado et  al., 2020; Muñoz et  al., 
2020; Shumway et  al., 2021). Sáez-López et  al. (2019) 
further recommended the use of block-based program-
ming and robots for learning number concepts in CT-
based mathematics activities, saying “there are many 
advantages to teaching computational concepts, coordi-
nates, values and integer numbers as motivation for the 
student to learn how to operate the robot. The imme-
diate feedback and response of the robot when operat-
ing with numbers is a powerful and highly motivational 
tool for students” (p. 1422). Conversely, text-based pro-
gramming requires higher level of abstraction; these 
features make it suitable to deal with more advanced 
number topics, such as statistics (Gilchrist et al., 2021; 
Psycharis & Kallia, 2017), number sequence (Chan 
et  al., 2021), and algebraic relationships (Kaufmann & 
Stenseth, 2021). We note that although the spreadsheet 
(e.g., Excel) is not generally defined as a CT tool, it exe-
cutes some statistical functions and output upon input-
ting text-based formulae, and thus, it was considered 
as a text-based CT tool in both studies of Chan et  al. 
(2021) and Valovičová et al. (2020).

Uniquely in a geometrized programming environment, 
the grammar and rules for execution are the properties 
of geometric objects; only when the properties of geo-
metric objects are satisfied can the correct structure of 
geometric figure be constructed. Studies which adopted 
geometrized programming would take a “point” (in a 
Euclidean sense) as the most basic programming ele-
ment or input, from which one can generate a more 
complex output, such as constructing a segment by 
joining two points or further formed a quadrilateral by 
constructing four segments. As Sinclair and Patterson 
(2018) described, applying actions on geometric objects 
(e.g., dragging a point) is like executing a program, and 
the actual behavior of the objects provides feedback that 
helps the coder to debug or proceed to program. In sum-
mary, geometrized programming tool as a form of com-
puting tool is especially congruent to the learning of 
geometry. If future development in CT tools can be spe-
cialized to be strongly associated with a particular form 
or learning content at the tool level, it will open a new 

venue of educators to support mathematics learning in 
CT contexts.

Instructional approaches
Regarding CT-based mathematics instruction, we iden-
tified several common instructional approaches, and we 
further sub-categorized them by task structure (i.e., the 
organization of learning tasks and learning processes): 
problem-based learning (Gilchrist et  al., 2021; Kauf-
mann & Stenseth, 2021; Ng & Cui, 2021), inquiry-based 
learning (Gilchrist et al., 2021; Pei et al., 2018), and pro-
ject-based learning (Sinclair & Patterson, 2018). While 
reviewing the studies, we also note other learning modes, 
such as embodied learning (Sung et  al., 2017), game-
based learning (Grizioti & Kynigos, 2021), and pair- or 
group-learning (Echeverría et  al., 2019; Grizioti & Kyni-
gos, 2021; Kaufmann & Stenseth, 2021; Muñoz et  al., 
2020). In the present review, we focus on analyzing the 
characteristics of problem-based learning, project-based 
learning, and inquiry-based learning, since they are more 
dominant in the literature.

In general, the studies adopting one of these task struc-
tures share the common characteristic of implement-
ing student-centered approaches, thereby positioning 
students as active mathematics learners, computational 
thinkers and problem solvers. They are also construc-
tivist- or constructionist-oriented, revealing the epis-
temological underpinning the movement of CT for 
mathematics. While sharing in common the goal of con-
structionist or “learning-by-making” (Papert & Harel, 
1991, p. 1), we note that the kinds of “making” vary 
among the three task structures: “making” stands for cre-
ating a programmable solution in problem-based learn-
ing, constructing a CT artefact in project-based learning, 
and formulating complex explanations through explora-
tions in inquiry-based learning. In the following, we first 
provide an example of how each task structure manifest 
under CT-based mathematics activities to illuminate 
patterns within and across them, followed by discussing 
their implications for advancing the integration of CT 
and mathematics in K-12 contexts.

To begin, our review points to the high compatibil-
ity of problem-based learning in CT-based mathemat-
ics activities, given the central connection that CT is a 
mode of problem solving and a kind of analytical think-
ing in common with mathematical problem solving and 
reasoning (Baldwin et al., 2013; Wing, 2008). In this con-
text, the main objective is to apply CT and mathemati-
cal knowledge and skills—as they are developed—during 
the course of problem solving. An example is provided in 
Kaufmann and Stenseth (2021), who utilized problem-
based learning by first introducing the computational 
tool, then providing a default program as the starting 
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problem for the students. Without providing any other 
scaffoldings, students grouped in pairs were asked to 
propose solutions to rectify the coding, so that the wheel 
can rotate at a constant speed and the size of the wheel 
can vary without affecting how the wheel rotates. This 
approach facilitates “autonomy and active learning expe-
riences, to promote uncertainty and active methodolo-
gies centred on the student” (Sáez-López et al., 2019, p. 
1406).

Different from problem-based learning, the goal of pro-
ject-based learning is to produce CT artefacts with some 
project specifications; typically, the students encoun-
ter multiple problems related to CT or mathematics 
and need to make clear plans and reasonable decisions 
within their knowledge to satisfy the requirements of the 
project. Sinclair and Patterson (2018) illustrated a study 
adopting project-based learning, where a teacher first 
shared some examples of machines created with Sketch-
pad, led the class to brainstorm similar machines they 
could make, and provided instructions for the “Machine 
Project” with specific features (e.g., it should have ani-
mated features and involve trigonometry in some way). 
After students made a project proposal, they worked on 
their projects independently over the next 2 months and 
finally created a working machine with Sketchpad (see an 
example in Fig. 5).

Akin to the other two task structures, inquiry-based 
learning unfolds with an open question with no obvious 
solutions in CT-based mathematics context. Uniquely, 
this form of learning often led to new insights or discov-
ery about mathematics by students upon being guided 
by a series of exploration and teacher scaffolding (Savery, 
2015). This approach was adopted by Pei et  al. (2018), 
who designed an activity in Lattice Land and asked stu-
dents to explore the area of triangles. The teacher scaf-
folded students’ inquiry-based learning by generating 
different shapes of triangles, so that students can move 

the vertices of triangles to identify relationships between 
triangular area and perimeter.

Of interests to our review is also to understand how 
specific task structure (problem-based, project-based, 
and inquiry-based) and programming tool (text-based, 
block-based, geometrized, and tangible) combine to offer 
opportunities for productive CT-based mathematics 
learning. We provide evidence to this question in several 
ways. First, problem-based learning is well-suited with 
screen-based programming to facilitate CT-based math-
ematics activities. This context situates the students as 
designing computer programs that execute the desirable 
solution to a problem which is usually open-ended, and, 
therefore, complementary to the open-ended character-
istics of programming practices (Ng et  al., 2021; Rod-
ríguez-Martínez et al., 2020). Even if the desirable result 
is fixed, such as a numerical value, the programming 
environment often allows the student to take on differ-
ent programming pathways and computational means to 
achieve the desirable result (Ng et  al., 2021), as aligned 
with Papert’s notion of computing tools as “flexible mate-
rial” and “objects-to-think-with”. Second, the affordances 
of non-text and multimodal programmable elements in 
some screen-based programming tools have proven to 
be powerful for students to present their artefacts dur-
ing project-based learning. As in the case of mBlock, 
the students in Sáez-López et al.’s (2019) studies have the 
freedom utilize block-based programming to design what 
actions (“Motion”, such as direction, speed) and sensory 
input (“Sensing”, such as keyboard, obstacle detecting) to 
incorporate in the project. Third, geometrized program-
ming enabled geometrical objects to be shown and visu-
alized dynamically onscreen, thereby conveying a sense 
of temporality in students’ thinking that is not available 
by paper-and-pencil (Sinclair & Patterson, 2018). Finally, 
another dimension of project-based learning is the aes-
thetics of expressing one’s project, since the CT artefact 

Fig. 5 Fan and Lightbulb Rube Goldberg machine (Sinclair & Patterson, 2018, p. 61)
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can be programmed to appear in different colours, sizes, 
and arrangements (for example, Scratch has its own paint 
editor and sound editor built-in to enhance the presen-
tation of a program). These are important features of 
block-based and geometrized programming that support 
creative expressions in how the students’ projects could 
be presented.

Interplay between CT and mathematics learning outcomes
When implementing CT-based mathematics activities, 
one assumption educators have been adopting is that the 
integration of computer science and mathematics educa-
tion can generate affordances that a sole focus on one may 
not have. Naturally, a central question researchers have 
been inquiring is: how do students’ CT and mathemat-
ics learning interact when they are involved in CT-based 
mathematics instruction, and what are the consequences 
of such interactions? While an intuitive and straightfor-
ward answer to this question is that the influences are 
bi-directional and beneficial for student learning, our 
analysis reveals non-trivial results—that there exist com-
plex interplays and even mismatches when coordinating 
computational and mathematical modes of thinking. In 
the following sub-sections, we first review the theoretical 
constructs and conceptual frameworks used to charac-
terize students’ computational concepts and practices as 
associated with their CT-based mathematical activities. 
Then, we discuss the ways in which mathematics is used 
and learned in such contexts.

Computational concepts and practices associated 
with CT‑based mathematical activities
Since the introduction of the notion of CT, researchers 
have put forward different views on the definition and 

components of CT (e.g., Brennan & Resnick, 2012; Hoy-
les & Noss, 2015; Weintrop et  al., 2016). Among the 24 
reviewed articles, 11 articles specified the CT definitions 
or frameworks used, as summarized in Table  3. Among 
these frameworks, Brennan and Resnick (2012) proposed 
one of the most influential framings of CT for K-12 edu-
cation that consists of three dimensions: computational 
concepts, computational practices, and computational 
perspectives. We focus our following discussion on the 
first two dimensions as they are addressed more often in 
the literature.

Computational concepts We use Table 4 to summarize 
the CT concepts studied by prior researchers. In addi-
tion to providing the definitions commonly accepted in 
computer science and adopted in the reviewed literature, 
we offer our interpretations of how each computational 
concept is operationalized and illustrated in CT-based 
mathematics context. In doing so, we set out to create a 
theoretical tool for mathematics education researchers 
to integrate CT in their research and teaching, and more 
importantly, to continually enrich and refine the defini-
tions in future research.

One prevalent CT concept mentioned in the litera-
ture is variable. In working with CT-based mathematics 
tasks, students often need to define a variable and estab-
lish its initial value, and then this variable should take 
on subsequent values when the program is run. Besides 
representing a quantity, the use of variables may also be 
extended to represent an algebraic expression (e.g., result 
of operating with two or more variables; Ng & Cui, 2021), 
or geometric location (e.g., locus of a point having a vari-
able location; Sinclair & Patterson, 2018) which could be 
stored, retrieved and operated on. The observed range of 

Table 3 Different frameworks of CT used in the reviewed articles

Framework CT components References

Weintrop et al. (2016) Data practices, modeling and simulation practices, computational 
problem solving practices, and systems thinking practices

Cui and Ng (2021); Echeverría et al. (2019); 
Gilchrist et al. (2021); Ng and Cui (2021); Pei et al. 
(2018)

Rich et al. (2020) Programming: sequence, repetition, conditionals Cui and Ng (2021)

Brennan and Resnick (2012) Computational concepts; computational practices; computational 
perspective

Ng and Cui (2021); Ng et al. (2021)

Bocconi et al. (2016) (1) Abstraction (2) algorithmic thinking (3) automation (4) decompo‑
sition (5) debugging (6) generalization

Valovičová et al. (2020)

Román‑González et al. (2017) Computational concepts: sequences, iteration or loop, event han‑
dling, conditionals

Rodríguez‑Martínez et al. (2020)

Hoyles and Noss (2015) CT practices: abstraction, algorithmic thinking, decomposition, pat‑
tern recognition
CT concepts: variable; conditions; subroutines; loops/iteration

Sinclair and Patterson (2018)

Berland and Wilensky (2015) Computational perspectives Sung et al. (2017)

Ho et al. (2021) Decomposition, pattern recognition, abstraction, algorithmic design Chan et al. (2021)
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manifestation of variables provides the empirical bases 
for future research to learn and expand on the diverse 
ways taken up by the use of variables in CT-based math-
ematics activities.

In addition, we highlight two other important CT con-
cepts, conditionals and loops. A conditional is a state-
ment needed to be tested in a program, upon which 
further actions would take place. A student’s use of con-
ditionals often requires their knowledge of number prop-
erties (e.g., remainder of a division is non-zero; Ng & Cui, 
2021), algebraic properties (e.g., when a parametric equa-
tion determines the amount of rotation of the wheels; 
Ng & Cui, 2021; Sinclair & Patterson, 2018) or geometric 
properties (e.g., when a draggable point determines how 
much a given shape is scaled by; Sinclair & Patterson, 
2018). In particular, Sinclair and Patterson (2018) noted 
the frequent applications of conditionals in conjunction 
with the signum function, sgn(x) = {− 1, 0, 1} to cre-
ate conditions in a geometrized programming context, 
which “worked as a checkpoint of sorts, operating as an 
if–then statement in a block of computer code” (p. 68). 
A loop is a code structure that enables a repetition of a 
certain mathematical procedure. In the case of Miller’s 
(2019) study, the students formulated mathematical pro-
cedures to draw a square using Scratch. This involved 
considering what actions (e.g., moving and turning) were 
repeated, how they were repeated (e.g., constant dis-
tance and angle), and how many times to repeat (e.g., 4 
times). Furthermore, Sinclair and Patterson (2018) con-
ceptualized the concept of loops as being closely related 
to the notions of iteration and infinity. They considered a 

triangle construction by joining the midpoints of the line 
segments which formed the triangle in the previous itera-
tion. This process of constructing line segments between 
the midpoints (of the previous iteration) and generating 
new midpoints (of the current iteration) would yield an 
infinite number of triangles whose area would approach 
zero. Other researchers have considered the productive 
relationship between iterations and infinity in CT-based 
mathematical activities (Arnon et al., 2014; Weller et al., 
2003); however, limited mathematical topics have been 
studied regarding the interplay between the concepts of 
infinity and loops in K-12 contexts. We suggest that there 
is high potential for CT-based mathematics tasks to take 
up these concepts in topics, such as sequences and series 
with infinite terms as well as fractal geometry.

Computational practices In terms of CT practices, we 
found that researchers have adopted diverse constructs 
and frameworks from extant literature (Bocconi et  al., 
2016; Brennan & Resnick, 2012; Hoyles & Noss, 2015; 
Weintrop et al., 2016), and there has been a lack of con-
sensus about what each practice means and their relation-
ship with each other. Here, we synthesize and organize 
these CT practices into different levels (see Fig. 6), hoping 
to offer a coherent and systematic understanding of how 
these CT practices manifest during the course of problem 
solving in CT-based mathematical activities.

First, we identify systems thinking to be one of the CT 
practices at the first level. Systems thinking entails ana-
lyzing the problem systematically by investigating a com-
plex system as a whole, understanding the relationships 

Fig. 6 Hierarchal relationship of computational practices in CT‑based mathematics activities
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within a system, thinking in levels, communicating infor-
mation about a system, defining systems and managing 
complexity (Weintrop et al., 2016). We further categorize 
systems thinking into three sub-practices: decomposition, 
abstraction, and algorithmic thinking.

Decomposition refers to breaking down a complex 
problem into many small problems; it can also be applied 
in a mathematical sense of “decomposing numbers, 
shapes, or problems in mathematics” by “considering the 
part-whole relationships” (Shumway et  al., 2021, p. 4). 
As illustrated in Pei et al.’s (2018) study, a student named 
Alice attempted to solve a problem of finding the area of 
an irregular polygon by breaking it down into sub-areas 
of triangles and rectangles. Besides decomposing a com-
plex problem into smaller, manageable sub-problems, 
abstraction in the sense of abstracting key information 
and identifying patterns of the problem can also facili-
tate a solution process. A typical example of this prac-
tice is the reasoning process called pattern recognition, 
that is, looking for similarities between and within prob-
lems, e.g., to “see patterns, recognis[e] the unit of repeat, 
deduce the pattern and abstract the general structure” 
(Miller, 2019, p. 924). Pei and colleague’s (2018) study 
demonstrated pattern recognition between problems; 
they described a group of students abstracting a general 
mathematical formula from a set of data, so that they 
could calculate the area of any lattice polygon regardless 
of its shape or size.

If decomposition and abstraction serve to simplify a 
complex problem at the thinking level, then algorithmic 
thinking serves to enact the simplification at the practice 
level through designing a concise algorithm to solve the 
problem. The reviewed studies commonly defined algo-
rithmic thinking as the systematic means of articulating 
a problem’s solution by well-defined rules, with logical, 
ordered, and discrete steps to be executed by a process-
ing agent (Kaufmann & Stenseth, 2021; Ng & Cui, 2021; 
Valovičová et  al., 2020). An important feature of algo-
rithmic thinking is automation, which offers efficiency 
in problem solving by introducing automatic steps to be 
taken (Valovičová et al., 2020). After completing the algo-
rithmic design for each sub-problem, it is necessary to 
combine these small parts to form a more complex algo-
rithm, which is called modularizing (Ng & Cui, 2021).

While systems thinking has mainly to do with prob-
lem solving in general, its relevance to mathematical 
content is not particularly apparent. Our review identi-
fies another first-level CT practice, data practices, with 
stronger mathematical connections, since they relate to 
collecting, creating, manipulating, analyzing, and visual-
izing data (Weintrop et al., 2016). Under data practices, 
we further characterized two inter-related practices, sim-
ulation and modelling (Dickes et al., 2020; Gilchrist et al., 

2021). Often, CT-based mathematical problems require 
one to construct a model, represent the data from an 
experiment (e.g., simulating the spread of a disease; Gil-
christ et al., 2021; modeling the calculation of a footprint 
problem; Dickes et al., 2020), and predict the future trend 
of the simulated problem (e.g., address problems related 
to disease transmission through the generated compu-
tational model; Gilchrist et al., 2021; generated and dis-
cussed the modeling graphs, made predictions related to 
footprint size using ViMAP’s grapher; Dickes et al., 2020). 
Besides, data practices can serve the purpose of learning 
a mathematical concept during inquiry-based learning. 
In Pei et  al.’s (2018) study, students used microworld to 
explore and derive the Pick’s Theorem through gathering 
data, and recording, sorting, and examining the data set 
to look for and generalize relationships. This study was 
an example in which “students used computational tools 
to facilitate these data-driven computational thinking 
practices” (p. 85).

The remaining two categories of practices (i.e., Bren-
nan & Resnick’s [2012] reusing and remixing, testing and 
debugging) are specific to computational problem solving, 
in the sense that mathematical problem solving is neces-
sarily situated in the programming environment and tool 
use. Reusing and remixing involve the coders building on 
and extending some existing codes and ideas to create a 
new or more complex program (Ng & Cui, 2021). Test-
ing and debugging are necessary to ensure the solution 
can solve the tasks successfully (Cui & Ng, 2021). Testing 
often occurs before debugging, which is to “ensure that 
things work” (Ng & Cui, 2021, p. 6). If not, then debug-
ging will follow to recognize, locate and fix errors or mis-
takes when they arise (Bouck & Yadav, 2020; Ng & Cui, 
2021).

To summarize, our contribution is toward a systematic 
organization of the set of computational practices evident 
in the literature. It is worth noting that these practices 
can occur simultaneously to facilitate problem solving; 
meanwhile, they are the very CT learning outcomes co-
developed with mathematics learning outcomes during 
the course of problem solving. An illustrative example 
was given by Sinclair and Patterson (2018), who dis-
cussed a variety of other CT concepts and practices evi-
dent when students constructed a complex machine in 
Sketchpad (see an example in Fig. 5). First, they decom-
posed the machine into components and actions into 
smaller movements and animations (decomposition). 
When creating small animations, they needed to under-
stand the sequence of the steps to link them together into 
a complete operation (algorithmic thinking). To create 
these decomposed steps, students also needed to trans-
form real phenomena (e.g., to create a parabolic trajec-
tory) into mathematical objects (e.g., trigonometric or 
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quadratic curve) (abstraction and pattern recognition). 
There were also multiple CT concepts involved in the 
activity: algebraic or geometric parameters that deter-
mine the characteristics of a machine (variable), the use 
of functions as conditions to control certain motions 
(conditionals), and the concept of subroutines and loop 
were used to operate programs controlled by certain but-
tons and to repeat certain actions. The vast examples 
provided in this section show that CT concepts and prac-
tices can fruitfully support mathematical meaning-mak-
ing and representations of mathematical relationships 
when situated in the task of constructing a meaningful 
CT artefact. Thus, mathematical explorations can serve 
as a site for students to engage in CT in explicit ways, 
where the mathematical operations change what appear 
on the interface.

Mathematical learning outcomes demonstrated 
in computational contexts
Besides the aforementioned CT learning outcomes, the 
reviewed literature also conveys a range of mathemati-
cal ideas covered in CT-based mathematics instruction 

(see a summary in Table  5). Several studies have also 
researched the associated mathematical processes, such 
as problem-solving (Gilchrist et  al., 2021; Psycharis 
& Kallia, 2017), algebraic thinking (Ng & Cui, 2021), 
modeling (Araya, 2021; Sinclair & Patterson, 2018), 
mathematical reasoning (Kaufmann & Stenseth, 2021), 
and generalization and pattern recognition (Miller, 
2019; Wilerson-Jerde’s, 2014). To further demonstrate 
how students’ mathematical reasoning facilitates and 
emerges from computational contexts, we focus our 
discussion on three aspects. First, we discuss how stu-
dents apply their mathematical knowledge to construct 
CT artefacts, including the challenges they may experi-
ence during the application. Next, we discuss how they 
draw upon their mathematics to anticipate and inter-
pret CT outputs and how these processes are tied to 
their debugging practices. Then, we discuss the recip-
rocal influence in the sense that students’ engagement 
with CT-math integrated tasks are generative to growth 
in their mathematical knowledge, and we identify ways 
through which such learning occurs.

Table 5 Literature counts of each mathematical domain at different education levels

Education level Content Domain (literature counts) Sample topics and literature

Early Childhood & 
Primary Education

Numbers & Algebra (10) ‑ Number concepts and counting (Muñoz et al., 2020; Shumway et al., 2021)
‑ Arithmetic operation and number line estimation (Sung et al., 2017)
‑ Prime and composite number (Cui & Ng, 2021; Ng & Cui, 2021)
‑ Whole numbers and negative numbers (Sáez‑López et al., 2019)
‑ Number sequence (Cui & Ng, 2021; Ng & Cui, 2021)
‑ The greatest common divisor and the least common multiple (Rodríguez‑Martínez 
et al., 2020)
‑ Measurement of distance (Dickes et al., 2020; Valovičová et al., 2020)
‑ Approximation (Dickes et al., 2020)
‑ The steepest descent algorithm (Araya, 2021)

Geometry (9) ‑ Coordinates (Sáez‑López et al., 2019)
‑ Spatial location (Muñoz et al., 2020; Shumway et al., 2021)
‑ Length and angle (Bouck & Yadav, 2020)
‑ Geometric figures (Jurado et al., 2020; Nogueira et al., 2021)
‑ Solid figures (Echeverria et al., 2019)
‑ Structures of fractals (Wilkerson‑Jerde, 2014)
‑ Properties of squares (Miller, 2019)

Statistics & Probability (1) ‑ Data visualization: data ordering and manipulation; Creation and interpretation of 
graphics; Obtaining and interpreting information through data (Nogueira et al., 2021)

Secondary Education Numbers & Algebra (4) ‑ Averaging, addition, and multiplication (Gilchrist et al., 2021)
‑ Similarity, ratio, and measurement (Valovičová et al., 2020)
‑ Parametric equations, functions, and trigonometry (Sinclair & Patterson, 2018)
‑ Number sequence (Chan et al., 2021)

Geometry (6) ‑ Properties of circles (Kaufmann & Stenseth, 2021)
‑ Structures of fractals (Wilkerson‑Jerde, 2014)
‑ Shapes and area of triangles (Pei et al., 2018)
‑ Segments and circles (Sinclair & Patterson, 2018)
‑ Length and angle (Bouck & Yadav, 2020; Grizioti & Kynigos, 2021)

Statistics & Probability (2) ‑ Data practices: collect, create, manipulate, analyze, and visualize data related to 
infectious pathogens (Gilchrist et al., 2021)
‑ Solve a mathematical–statistical problem (Psychairs & Kallia, 2017)

Calculus (0) N/A
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Applying mathematical knowledge to  construct CT arte-
facts Numerous researchers have stressed the impor-
tant role of mathematical knowledge in solving CT-based 
mathematical tasks, and in particular, in constructing 
computer programs to produce certain mathematical 
outcomes (e.g., Bouck & Yadav, 2020; Dickes et al., 2020; 
Grizioti & Kynigos, 2021; Miller, 2019). Influenced by Pap-
ert’s (1980) Logo programming, several studies involved 
students constructing computer programs to generate 
a certain geometric shape (e.g., right triangles, squares, 
rectangles, parallelograms, trapezoids, and rhombuses; 
Bouck & Yadav, 2020; Miller, 2019). In doing so, the stu-
dents necessarily drew on their knowledge of the consti-
tuting elements of the shapes (e.g., number of sides and 
angle size) and the relationship of those elements (e.g., 
parallelism or perpendicularity). A similar task design 
has been extended to the context of atypical shapes. For 
example, in Miller’s (2019) study, a group of second grad-
ers (aged 7–8 years) were asked to use Scratch to draw a 
spirolateral (see Fig. 7a). The students were able to identify 
the structure of the spirolateral which pertained growing 
and repeating patterns (Fig. 7b, c), and then, they trans-
lated their observed structure into Scratch codes (Fig. 7d).

In algebraic contexts, a study was conducted by Dickes 
et al. (2020), in which a group of third graders used the 
command “repeat” to model the relationship between 
total distance and step size (Total Distance = No. of 

Repeats × Step size); this reflected that the students 
had constructed a multiplicative relationship between 
the quantities involved. As another example, Ng and 
Cui (2021) designed the Doubling Machine problem in 
which a bank account balance increased by a doubling 
amount of deposit in each subsequent week (i.e., $3, $9, 
$21, $45…). One pair of students observed that the next 
number always equals to the previous number times two 
plus three (i.e., tn = 2tn + 3 ) and translated this relation-
ship into codes “[set button_value to][button_value * 2]” 
followed by “[set button_value to][button_value + 3].” 
In each of these examples, mathematics was used in an 
applied manner, and the students translated their con-
ceived mathematical relationships and structures to com-
puter languages and programs.

Despite the supporting role of mathematics in the con-
struction of CT artefacts, there have been studies focused 
on the challenges students experience during their enact-
ment of mathematics in computational contexts. As 
argued by Ng and colleagues (2021), these challenges 
were due to the mismatches or contradictions between 
CT and mathematical thinking (Cui & Ng, 2021; Ng et al., 
2021; Sinclair & Patterson, 2018). For example, display-
ing a result requires an additional code during program-
ming (e.g., calculating 5 + 3 = 8 and then displaying 8), 
whereas in mathematics, carrying out an operation auto-
matically leads to a result (e.g., calculating 5 + 3 = 8 is 

Fig. 7 a Spirolateral shown to students, b, c students’ conceived structure of the spirolateral, and d sample Scratch codes (Miller, 2019, pp. 923–924)
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a single operation; Cui & Ng, 2021; Ng et  al., 2021). In 
addition, Jackiw and Finzer (1993) explained how debug-
ging a sketch in dynamic geometry environments might 
differ from debugging in traditional programming envi-
ronments. That is, the former requires “reasoning from 
the manifestation of a bug backwards…towards its cause” 
(ibid, p. 301), while the latter requires identifying the 
manifestation of a bug, locating the source of a bug, and 
re-executing the program circuitously.

The notions of variables and the way they are operated 
on also differ in mathematics and computing contexts. 
For example, in mathematics, the use of a variable in an 
equation already implies that the variable can take on any 
values, but in programming environments, one needs to 
write a line of codes to tell the computer to increase the 
variable by one (Cui & Ng, 2021). Another issue relates 
to the use of equal signs. In mathematics, one way of 
interpreting an equation is that two entities on both sides 
are equal (e.g., y = x ∗ 2 ), but in programming, it means 
“performing some repetitive actions on a single quantity” 
(e.g., Set [variable] to [variable] *2 or [variable] = [vari-
able]*2) (Cui & Ng, 2021, p. 19). As a result, students 
often encountered difficulties translating their conceived 
mathematical relationship from a problem situation into 
its programming equivalent.

To conclude, we highlight the take-away message by 
these empirical findings: despite the fact that mathemati-
cal knowledge plays a supportive role in constructing CT 
artefacts, the differences between CT and mathematical 
thinking may constrain students from understanding or 
practicing specific CT or mathematical concepts. As sug-
gested by many scholars, these discrepancies might lead 
to problems in programming even if the students under-
stand the problem situation and the mathematical rela-
tionships behind. Therefore, it is crucial for mathematics 
education researchers and mathematics educators to 
address these discrepancies to improve the integration of 
CT into mathematics learning.

Applying mathematical knowledge to anticipate and inter-
pret CT artefacts During programming, students may 
apply their mathematical knowledge to anticipate and 
interpret CT artefacts beyond making a workable pro-
gram. We further classify four forms of such application 
based on the literature: (1) making sense of outputs, (2) 
anticipating outputs, (3) mediating debugging, and (4) 
code modeling.

Making sense of outputs One form of such application is 
applying one’s mathematical knowledge to make sense of 
the outputs. In Wilerson-Jerde’s (2014) study, a group of 
middle graders used a fractal construction tool (Fig. 8) to 
construct a collection of fractals. In doing so, the students 

interpreted why the produced fractals looked the way they 
were based on the creation rules (e.g., square-size, rota-
tion-angle, reflection-axis). In a prior lesson, the students 
had already learned about fractals, including different 
types of fractals and how they could be produced. There-
fore, the aim of the current activity was in supporting stu-
dents’ reflection upon features of fractals and in making 
sense of the rules that produce them in a CT context.

Another study by Pei et al. (2018) reported on a student 
making connections between her exploration within the 
Lattice Land environment and the triangle area formula 
she had previously learned. By interacting with Lattice 
Land, the student could see how moving a vertex along 
the line parallel to the base would change the shape of the 
triangle yet keep the area fixed. At first, the student was 
surprised by this observation, but then she recalled the 
area formula for a triangle ( Area =

1

2
× Base ×Height ), 

which explained the conservation of area in the 
geometrized CT environment. Similar to the previous 
theme, the reasoning processes entailed by these two 
examples involve students’ enactment of existing mathe-
matical knowledge; what distinguish them from the prior 
theme is that the students were building novel connec-
tions between their mathematical knowledge and the CT 
outputs. Therefore, mathematics is not merely used in an 
applied manner, and the students deepen and reorganize 
their mathematical knowledge as they recontextualize it 
in a CT environment.

Anticipating outputs Studies observing this theme relate 
to the way students draw on their mathematical knowl-
edge to anticipate the outputs of a computer program. 
The students are aware of the mathematics needed to 
evaluate the program and they compare its outputs to the 
intended goal. In Shumway et  al.’s (2021) study, a group 
of kindergarten students (aged 5–6 years) engaged in an 
activity with the Cubetto robot coding toy, and they were 
asked to create programs to instruct the robot to move 
between two destinations. The robot’s movement pro-
vided students instant feedback about the accuracy of the 
program in terms of the desired movement. When the 
robot moved some steps short of or over the goal, the stu-
dents would revise the program by adding or removing 
some codes. This evidences how the students’ knowledge 
of space, measurement, and number operations facili-
tated their anticipation of the robot movement and the 
associated debugging actions. As Shumway et  al. (2021) 
described, students can “[think] one step ahead of the 
robot in anticipation of evaluating the accuracy of their 
sequence of codes in the program” (p. 20).

Dickes et  al. (2020) offered another example of stu-
dents realizing their program was incorrect due to their 
outputs being inconsistent with their mathematical 
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calculations. Specifically, the students noticed that the 
total distance represented in their graph was 240 units, 
while the total distance calculated using the rate equation 
was 300 units (15 step size × 20 number of steps = 300 
units of total distance). They subsequently revisited the 
program and corrected the programming error to obtain 
a desired result. Similar to the previous example, the 

students’ mathematical thinking guided their evaluation 
of the computer program and motivated their debugging.

Mediating debugging practices We also identify exam-
ples, where mathematical reasoning not only motivated 
students’ debugging practices but also guided and medi-
ated the debugging practices themselves. In a study by 

Fig. 8 Fractal construction interface and resulting computational objects (Wilkerson‑Jerde, 2014, p. 108)



Page 21 of 26Ye et al. International Journal of STEM Education            (2023) 10:3  

Kaufmann and Stenseth (2021), a group of students in 
Grade 8 and Grade 9 (age 13 and 14) were asked to trou-
bleshoot a program, so that a wheel would rotate along 
a line, such that its diameter hits the target markers on 
the line. The students initially used intuition and trial-
and-error to change their codes without any mathemati-
cal basis; eventually, they attended to the circumference 
and its relationship to other quantities to debug the pro-
gram successfully. In this example, mathematics was not 
applied to construct the program per se, but it was used 
for locating and fixing the bugs. Kaufmann and Stenseth 
(2021) further proposed a model to characterize how 
mathematics mediates the complex process of trouble-
shooting; as they shown in Fig. 9, the use of mathemat-
ics is intertwined within the iterative process of testing, 
observing and analyzing, making hypothesis, and chang-
ing program.

Code modeling Code modeling refers to students inter-
preting the mathematics underlying a sequence of codes, 
sometimes during the process of debugging. Ng and Cui 
(2021) described a pair of students who debugged a pro-
gram for generating a prime number detector. They mod-
eled the outcomes of two set of codes, with one having the 
conditions (‘remainder = 0’ and ‘remainder > 0’) within a 
repeat loop and one outside the loop, and they realized 
that they should have placed the conditions within the 
loop to check the remainder before (as opposed to after) 
carrying out the next division. Different from the previ-
ous examples, this instance is illustrative of students using 
their mathematical knowledge to model the behavior of a 

given set of codes. Code modeling allowed them to real-
ize that the codes behaved in a way against the intended 
mathematical operations, and hence to revise the pro-
gram accordingly.

Summary Examples in these four themes commonly 
involve students applying their mathematical knowl-
edge to anticipate or interpret CT artefacts, but there are 
nuances between them. First, using mathematics to make 
sense of CT outputs can engender novel mathematical 
connections that were not present previously. In terms of 
the other three themes which relate directly to debugging 
practices, students can (1) recognize a buggy program by 
comparing the outputs with the anticipated outcomes; (2) 
fix the bugs by reconsidering the mathematical relation-
ships relevant to the situation; or (3) fix the bugs by mod-
eling the mathematical behavior underlying the program. 
We consider it significant to tease out and illustrate these 
nuances across the literature, since they shed light on the 
foundational role of mathematics for CT as well as the 
insights into how mathematics is used in explicit but dif-
ferent ways in CT contexts.

Generating new mathematical knowledge in  parallel 
with  CT development Engaging with CT-based math-
ematical tasks not only requires application of math-
ematical knowledge but also in turn contributes to the 
emergence of novel mathematical knowledge. A number 
of quantitative studies have demonstrated positive cor-
relation between students’ learning of CT and learning 
of mathematics (Echeverría et  al., 2019; Nogueira et  al., 
2021; Rodríguez-Martínez et al., 2020; Sáez-López et al., 
2019; Sung et  al., 2017). Echoing the quantitative find-
ings, researchers adopting qualitative methods have 
confirmed the positive influence of students’ CT experi-
ences on mathematical development, showing evidence of 
how mathematical learning unfolds in CT contexts. We 
identify three avenues through which new mathematical 
knowledge emerges in CT-based mathematics activities.

First, students can construct mathematical ideas and 
relationships by reflecting on CT outputs. For exam-
ple, in Wilerson-Jerde’s (2014) study, the students were 
asked to use the Categorizer tool to create categories 
that reflected certain features about fractals (e.g., density, 
“crispness” or “fuzziness”, twisting structure, branching 
structure, sponging structure, and area reduction). By 
observing a collection of fractals produced by the com-
puter, the students were offered opportunities to “explore 
important mathematical properties of those structures, 
and offered more ways to construct fractals with particu-
lar mathematical properties” (p. 118). In another study by 
Pei et al. (2018), students collected data from a number 

Fig. 9 Iteration cycle (Kaufmann & Stenseth, 2021, p. 1043)
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of polygons in Lattice Land and derived the Pick’s The-
orem1 by reasoning with the data and generalizing pat-
tern from the data. In each of these examples, students 
made use of the affordances of computational tools to 
create numerous examples and outcomes that they could 
reflect upon and generalize from. The rich mathematical 
conversations around those CT outputs facilitated the 
students’ constructions of deep mathematical ideas and 
relationships.

Another avenue through which new mathematical 
ideas are constructed is reflecting on the programming 
processes and code features. In Miller’s (2019) study, a 
group of students created codes for making a square and 
deduced a generalized rule for calculating the perimeter 
of a square by identifying the repeating patterns from 
the codes (i.e., perimeter of a square equals four times its 
length). The author concluded that these primary school 
students “were forming generalizations when writing 
computer codes” (ibid, p. 925), suggesting that teaching 
mathematics through coding may provide opportunities 
for students to “see the mathematics in a deeper way and 
build a more connected understanding” (ibid, p. 923). As 
another example, Pei et al. (2018) described a classroom 
discussion centered on calculating the areas of triangles 
whose side lengths were not whole numbers in the Lat-
tice Land environment (Fig.  10). Using the “draw seg-
ment” tool, the students came up with different ways to 
“box” the triangles and calculate their areas. These novel 
methods were only possible when students used the con-
struction function of the programming tool and reflected 
on the construction processes and products.

Third, CT-based mathematics instruction motivates a 
new form of mathematical knowledge that is represented 
by computational languages and unique to CT con-
texts. For example, Ng and Cui (2021) discussed a group 

of elementary students who had no prior knowledge of 
algebraic expressions and variables, but they could use 
iterations like ‘[set total to] [total + money]’ and ‘[set 
money to] [money *2]’ to model a geometric series. It was 
noteworthy that these students could make use of com-
mands and codes to model mathematical relationships 
whose algebraic forms were not yet accessible to them 
in paper-and-pencil context. Therefore, the authors con-
cluded that mathematical content can be “purposefully 
synergized in a programming context” (ibid, p. 859) to 
make advanced and historically challenging ideas acces-
sible to younger children and “can serve as a bridge for 
children to advance their arithmetic thinking toward 
building coherent and meaningful learning of more 
advanced algebra in later years” (ibid, p. 858). Shumway 
et al. (2021) made a similar claim by showing evidence of 
kindergarten students expressing their emerging knowl-
edge of spatial orientation, spatial movement, measure-
ment, and numbers by imitating a robot toy’s motion, 
suggesting their mathematical knowledge is embedded in 
their programming activities. The author also argued that 
those activities afforded students coordinating intercon-
nected domains of mathematical knowledge (i.e., simul-
taneously using their spatial reasoning and knowledge 
of numbers) and constructing dynamic perspective of 
relevant concepts, which went beyond the kindergarten 
standards.

In summary, this group of literature provides rich evi-
dence that confirms the affordances of CT-math inte-
gration in K-12 education. Such integration supports 
students’ abstraction of a variety of mathematical ideas 
(e.g., geometric properties, formulas, theorems). Through 
interacting with the CT environment, students are 
offered opportunities to explore a variety of mathemati-
cal contents through reflecting upon the CT construc-
tion processes and products. Furthermore, the CT-math 
integration opens up new possibilities of learning math-
ematics, ultimately transforming traditional views of the 
nature of mathematics and mathematics learning. As the 
literature showed, the integration increases accessibility 

Fig. 10 Student discovered strategies for calculating the area of a triangle in Lattice Land (Pei et al., 2018, p. 81)

1 The Pick’s Theorem states that suppose that a polygon has integer coordi-
nates for all of its vertices. Let I be the number of integer points that are inte-
rior to the polygon, and let B be the number of integer points on its boundary 
(including vertices as well as points along the sides of the polygon). Then, the 
area A of the polygon is: A = 0.5B + I − 1.
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of mathematical ideas to young kids and allows more 
mathematical connections made. It also contributes to 
the emergence of a new form of mathematical knowl-
edge and reasoning mode that bear characteristics of 
computing (e.g., syntax representations of algebraic rela-
tionships), which leave seeds for students’ future math-
ematical abstraction and development.

Discussion and future research directions
CT is the thought process entailing abstracting, algorith-
mic thinking, and computational modeling in combina-
tion with the use of programming tools to solve a series 
of complex problems (Wing, 2006). When engaging CT-
based mathematical activities, students not only produce 
CT artefacts and programmable solutions in a physical 
sense, but also construct meanings for various CT and 
mathematical concepts. Despite positive findings about 
the impact of CT-based mathematical activities on stu-
dent learning, consensus has not been reached regarding 
how to integrate the two fields in coherent and mean-
ingful ways. This systematic review has clarified, with 
concrete examples, the topics, education levels, peda-
gogical arrangements including learning resources, and 
the degree of integration among other STEM disciplines 
in which recent studies have investigated in relation to 
CT-based mathematics learning. Together, these studies 
have shown that no matter which descriptor of learning 
context is concerned, CT should not be introduced as an 
add-on to mathematics learning, but considerations for 
research and practice is warranted at a conceptual level 
to fully understand and maximize the ways CT may sup-
port mathematics learning.

Our study sets out to review the impact of CT-based 
mathematics instruction on student learning through 
four aspects: educational context, pedagogical approach, 
theoretical construct related to CT and mathematics 
learning outcomes, and the interplay between CT and 
mathematics in CT-based mathematical activities. From 
each of these aspects, our review suggests several affor-
dances of CT which can foster and enrich mathematics 
learning: first, we observe that programming activities 
afford non-prescribed mathematics learning in unstruc-
tured ways and with little prior knowledge necessary. 
Second, problem-based learning and project-based learn-
ing are particularly compatible with CT-based mathe-
matics instruction. Third, CT integration in mathematics 
education has proven to be supportive in the content of 
algebra and geometry across education levels. Finally, CT 
can serve as both the means (when applying mathemati-
cal knowledge to anticipate or interpret CT artefacts) and 
goals (when applying mathematical knowledge to con-
struct CT artefacts) of learning in CT-based mathemat-
ics activities. That is, CT-based mathematical activities 

afforded students to develop and apply their CT along-
side their mathematical knowledge. In particular, we evi-
denced students’ CT development by their ability to use 
diverse commands, flexibility in sequencing codes, and 
efficiency in debugging (Dickes et al., 2020; Kaufmann & 
Stenseth, 2021; Ng & Cui, 2021); simultaneously as the 
students’ CT concepts and practices emerged, the CT-
based mathematics activities also became progressively 
more mathematically grounded and rigorous.

Altogether, these characteristics have important impli-
cations to how we organize mathematics learning activi-
ties in computationally enhanced ways, and if taken up, 
can be highly transformative in the way we structure the 
mathematics curricula and instruction. Wilkerson-Jerde 
(2014) posits that, “computational ideas provide new and 
powerful ways of thinking about math and science phe-
nomena” (p. 101); specifically, we highlight the re-orien-
tation of sequencing of mathematical topics as well as the 
pedagogical aspects of mathematics instructions that are 
made possible in CT environments (Ng et al., forthcom-
ing). In addition, we draw attention to the mutual support 
and affordance of CT and mathematical activities, and in 
turn, highlight the potential of designing CT instruction 
around mathematical inquiry for co-developing CT and 
mathematical understandings (Pei et al., 2018).

Overall, this systematic review corroborates with pre-
vious findings that computing reflexively develops along-
side mathematical (and more broadly, STEM) practices 
(Dickes et al., 2020; Kafai & Harel, 1991). As Kaufmann 
and Stenseth (2021) asked at the end of the article: “Have 
we designed a problem that utilizes programming to give 
a better understanding of mathematics, or are we using 
mathematics to improve the problem-solving skills in 
programming” (p. 1045)? We propose that the answer is 
“both”. That is, CT-based mathematics instruction entails 
an interactive and cyclical process of reasoning math-
ematically and reasoning computationally. Likewise, 
Sinclair and Patterson (2018) claim that CT and math-
ematics are closely overlapping and are parallel in many 
aspects. Pei et al. (2018) thus suggested blended curricula 
that make use of the close connection between CT and 
disciplinary learning, saying:

One way forward […] is through the creation of 
blended curricula that infuse computational think-
ing practices into topics from other domains. In 
doing so, the destination domain can serve as a con-
text for developing and using computational think-
ing practices while also presenting learners with 
new, computationally facilitated approaches for 
exploring disciplinary ideas. (p. 76)

Besides, we conclude that research on the following 
areas is currently lacking:
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1. CT-based mathematics instructions taking place in 
formal and interdisciplinary education settings. This 
also implies that teachers’ professional development 
concerning the emergent competency of CT-based 
mathematics thinking is indispensable.

2. design experiments within geometrized program-
ming environments, and more generally, the role of 
different computing tools in supporting mathematics 
learning;

3. empirical studies highlighting the different ways in 
which CT and mathematics learning co-develop, 
including the potential of integrating CT in other 
domains of mathematics (e.g., calculus and statis-
tics), and what can be learned from CT-based math-
ematics instructions in these contexts, both in terms 
of how CT support mathematics learning, and vice 
versa.

In conclusion, this study lays the groundwork for future 
research into more coherent and effective integration 
of CT in K-12 mathematics education. We encourage 
more research on the integration of child-friendly pro-
gramming instructional designs and tools for adoption 
in primary education or lower to begin integration of 
CT concepts early in mathematics teaching and learn-
ing. Regarding undergraduate mathematics education, 
we suggest that, due to the nature of the mathemati-
cal content, the integration of CT in this context seems 
to be more natural and common than K-12 education. 
Different than K-12 mathematics teaching that often 
rely on paper-and-pencil, it is not uncommon to find an 
undergraduate mathematics class that includes CT com-
ponents. However, despite the predominate CT-math 
integration at the collegiate level, there has been few 
research that provides fine-grained analysis of the inter-
play between CT and mathematics learning, although 
recent work by Lockwood, Sand, and colleagues have 
paid explicit attention to this research line (Lockwood, 
2022; Lockwood & De Chenne, 2020, 2021; Sand et  al., 
2022). In addition, more interestingly, these scholars’ 
findings echo the types of interplay we have identified in 
the current review, and future research can continue to 
gain insights into how the interactions between CT and 
mathematical thinking may manifest differently or simi-
larly in both contexts (Lockwood & Mørken, 2021; Lock-
wood, et al., 2019).

Notably, although most studies provide empirical 
evidence in the mutual relationship between CT and 
mathematics learning outcomes, authors of two articles 
conveyed that students’ CT engagement did not support 
their mathematical learning (Chan et al., 2021; Psycharis 
& Kallia, 2017). Given the contradictory claims of these 
two studies with other studies reviewed, there remains 

future work in understanding how to maximize the effec-
tive role of CT in students’ mathematical learning and 
vice versa. Specifically, to offer an explanation for these 
discrepant results, researchers need to not only focus 
on students’ learning outcomes and their correlations 
with CT engagement, but also focus on the qualitative 
nuances in the students’ learning processes and iden-
tify and compare the essential features of the tasks and 
instructional approaches that generate the discrepant 
learning outcomes.
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