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Abstract 

Purpose of the study: Previous literature has examined the relationship between high school students’ postsecond‑
ary STEM major choices and their prior interest and perceived ability in mathematics. Yet, we have limited understand‑
ing of whether and how perceived ability and interest in science and mathematics jointly affect students’ STEM major 
choices.

Results: Using the most recent nationally representative longitudinal cohort of U.S. secondary school students, we 
examine the degree to which students’ perceived mathematical and scientific abilities and interests predict their STEM 
major choices, employing logistic regression and a series of interaction analyses. We find that while both mathemat‑
ics and science perceived ability positively influence STEM major selection, academic interest in these subjects is a 
weaker predictor. Moreover, across a series of analyses, we observe a significant gender gap—whereby women are 
less than half as likely to select STEM majors—as well as nuanced distinctions by self‑identified race. The relationships 
among perceived ability, interest, and STEM major choice are not found to meaningfully vary by race nor consistently 
by gender. However, perceived ability has a more positive effect for men than women who are pursuing Computing/
Engineering majors and a more positive effect for women than men who are pursuing other STEM majors, including 
less applied Social/Behavioral, Natural, and Other Sciences.

Implications: These findings suggest potential opportunities to enhance their perceived mathematical and scientific 
abilities in high school, positioning them to potentially enter STEM fields. School sites with more resources to support 
the ambitions of STEM students of all backgrounds may be better positioned to reduce postsecondary disparities in 
STEM fields. Given existing opportunity gaps and resource differentials among schools, corresponding recommenda‑
tions are suggested.
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Introduction
Science, technology, engineering, and mathematics 
(STEM) fields are growing in demand and pay twice as 
much as non-STEM occupations (Fayer et  al., 2017). 
Accordingly, U.S. high schools offer more advanced 
mathematics and science opportunities to better posi-
tion students for postsecondary STEM degrees. Nota-
bly, while we have decades of research on mathematical 
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ability and interest as predictors of postsecondary STEM 
outcomes, limited research has directly assessed the 
interplay and distinctions between these predictors. Even 
less is known about science ability and interest, after dec-
ades of research focused particularly on mathematics.

Early exposure to STEM-related courses can awaken 
students’ interests and lead them to postsecondary 
STEM majors (Bottia et al., 2015). Advanced mathemat-
ics and science courses in high school have been found 
to be essential to students’ opportunities to study STEM 
subjects in college (Dalton et  al., 2007; Schneider et  al., 
2013). Psychological factors, including interest, have been 
found to influence students’ pathways into these courses 
(Milesi et  al., 2017; Perez-Felkner et  al., 2017). Often 
regarded as a motivational variable and/or an affective 
component in educational psychology, interest has been 
widely studied as a mechanism that stimulates students’ 
learning and academic achievement (Renninger & Hidi, 
2011; Renninger et  al., 1992). However, we know less 
about how academic interests influence students’ post-
secondary degree field. Self-assessed mathematics abil-
ity has also been found to affect students’ STEM major 
choices, even when students’ self-assessments of ability 
are biased by sociocultural norms around who belongs in 
these fields (Beyer, 1990; Correll, 2001). Interest is simi-
larly socially conditioned (Watt et al., 2012). Complicat-
ing these educational metrics of self-assessed ability and 
interest in science and mathematics are the complex 
socioeconomic, racial, and gender dynamics currently at 
play in secondary and postsecondary education. Socio-
economic inequality by race and gender remains a major 
social problem, even among college graduates (Doren & 
Lin, 2019; Pais, 2011). Since STEM degrees can lead to 
highly paid jobs, one would expect STEM professions to 
attract underrepresented students and women who are 
increasingly the primary earners in their family. How-
ever, racial and gender disparities continue to persist 
in these fields (Carter et  al., 2019; Saw et  al., 2018; Xie 
et  al., 2015). Importantly, gender differentials in post-
college earnings appear to be meaningfully explained in 
part by postsecondary degree field (Bobbitt-Zeher, 2007; 
Xu, 2015; Zhang, 2008). Whether this is also the case for 
racial disparities remains unclear.

Given the persistent gender and race disparities in 
White- and male-dominant STEM fields, despite exten-
sive investment in broadened access and a changing 
economy, we examine a contemporary cohort comprising 
a full range of socioeconomic, racial, and gender demo-
graphics with a focus on both mathematics and science 
predictors of STEM postsecondary education. Using the 
National Center for Education Statistics’ most recent lon-
gitudinal data, High School Longitudinal Study of 2009 
(HSLS: 09), this study investigates (1) the distinct effects 

of mathematical and scientific interests and ability beliefs 
on STEM major choice; (2) whether interests or abilities 
have stronger effects on students’ STEM major choice; 
(3) specific effects by students’ self-reported gender and 
racial identity, and (4) whether these patterns differ in by 
STEM major cluster, with specific attention to Comput-
ing/Engineering majors.

Literature review
Disparities in U.S. postsecondary STEM education 
and beyond
There are clear gender and racial disparities in STEM 
postsecondary educational outcomes (e.g., Griffith, 2010; 
Huang et al., 2000; Shapiro & Sax, 2011). Riegle-Crumb 
and Peng (2021) found that gender differences in post-
secondary major choice can be shaped by societal stereo-
type and self-beliefs about mathematics ability. Students’ 
pathways to STEM degrees may differ among students by 
gender and race (Ireland, et al., 2018). Using an intersec-
tional approach, Nix and Perez-Felkner (2019) found that 
Black women and men experience especially strong gains 
from positive mathematics ability beliefs and—after con-
trols—are the most likely to declare mathematics-inten-
sive STEM majors and earn degrees in these fields.

Historically,  Black, Latina/o/x, and Native American 
students have been characterized as underrepresented 
groups in STEM disciplines (Estrada et  al., 2016; Mal-
tese & Tai, 2011). Yet, racially minoritized students such 
as Black and Latina/o/x youth were more likely to major 
in certain STEM disciplines than their White peers when 
using multivariate analyses to account for explanatory 
factors such as secondary school course preparation and 
postsecondary enrollment (Nix & Perez-Felkner, 2019), 
and racial differences are effectively null when focus-
ing on the population of students who enroll in college 
(e.g., Riegle-Crumb & King, 2010). This is not the case for 
gender, where disparities remain among the U.S. post-
secondary student population. Such research supports 
the value of ongoing investigation into the mechanisms 
which might explain STEM postsecondary major selec-
tion, as it varies by gender and race (see Garrison, 2013; 
Riegle-Crumb, King, et al., 2019; Riegle-Crumb, Morton, 
et al., 2019; Xu, 2016).

Studies using nationally representative, longitudi-
nal data on U.S. cohorts of students have advanced our 
understanding of these patterns; these data follow stu-
dents from secondary school through postsecondary 
education and workforce entry. In Griffith’s (2010) anal-
ysis of National Education Longitudinal Study of 1988 
(NELS: 88) and National Longitudinal Study of Freshmen 
data, White and male students comprised higher shares 
of those persisting in STEM disciplines when compared 
to underrepresented groups and women. Secondary 
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STEM course completion can explain much of the race 
gap in STEM postsecondary outcomes, including STEM 
major choice (Tyson et al., 2007) and entry into specific 
mathematics-intensive STEM major clusters (see e.g., 
Riegle-Crumb & King, 2010; Perez-Felkner et  al., 2014) 
such as Computing and Engineering fields.

These studies did not however assess the effects of sci-
ence ability beliefs nor closely attend to interest in sci-
ence. This is now possible with the newest U.S. national 
cohort: the High School Longitudinal Study of 2009 
(HSLS: 09), which traces students from secondary school 
through postsecondary degrees. To reduce demographic 
inequality of opportunity to enter STEM career fields, it 
is crucial to understand the factors that may affect stu-
dents’ STEM major choices, which may lead them to a 
STEM career.

Contextual factors influencing selection of STEM 
and Computing/Engineering majors
In recent years, a steady flow of research has highlighted 
factors that may affect students’ STEM major selection 
(Shapiro & Sax, 2011; Wang, 2013a). In addition to the 
demographic characteristics discussed above, socioeco-
nomic characteristics such as parental occupation and 
educational background also positively predict post-
secondary STEM outcomes (Wagner et  al., 2002). For 
instance, Oguzoglu and Ozbeklik (2016) found in the 
1979 National Longitudinal Study of Youth that girls 
whose fathers who were employed in a STEM profes-
sion were more likely to choose a STEM major in college, 
if they had no male siblings. In addition, family income 
was one of the components of family socioeconomic sta-
tus that was used in predicting students’ STEM major 
choices (Niu, 2017). High-demand and high-earning 
fields such as Computing and Engineering may be espe-
cially attractive to students from less socioeconomically 
advantaged families, as compared to less applied and 
high-earning scientific fields.

Looking further into specific major fields such as Com-
puting and Engineering vs. applied and non-applied 
Humanities and Social Science fields, Wiswall and Zafar 
(2015) found that  variations in individual beliefs about 
ability in each major affect students’ major  intentions, 
exacerbating the gender gap in major choices. Differ-
ent majors tend to have distinct associations with  abili-
ties. Focusing on mathematics-intensive majors, Nix and 
Perez-Felkner (2019) found that 12th grade girls’ percep-
tions of their ability with difficult mathematics increased 
their likelihood of choosing mathematically intensive 
majors such as engineering and computer sciences over 
biology and social/behavioral science majors. Dika and 
D’Amico (2016) also found that students’ perceived 
preparation in math could significantly predict students’ 

persistence in these majors. Notably, in the fields of Com-
puting and Engineering, women have remained distinctly 
underrepresented (Corbett & Hill, 2015). Thus, this study 
digs further into these fields specifically.

The demographic characteristics of students’ schools 
are also commonly included as covariates in statistical 
models in prior research that examine students’ STEM 
major choices, such as high school type (e.g., Wang, 
2013a) and urbanicity (e.g., Legewie & DiPrete, 2014). 
Quadlin (2017) used the 1997 National Longitudinal 
Study of Youth cohort and found that students from 
less economically advantaged family backgrounds had 
a higher probability of majoring in applied non-STEM 
fields such as business, communications, and educa-
tion disciplines as compared to higher-income families. 
Generally, private high schools offer more advanced 
mathematics and science courses and have a higher soci-
oeconomic and college preparatory profile (Lee et  al., 
1998).  As such, students in private schools are better 
positioned for postsecondary STEM majors and STEM 
careers (Ketenci et  al., 2020). School urbanicity mat-
ters as well. Rural students have been found less likely to 
complete advanced science courses than those in urban 
schools (Perez-Felkner et  al., 2014). Bottia et  al. (2018) 
found that rural high schools were less likely to have 
STEM-focused programs, which could positively affect 
students’ postsecondary major intentions.

In sum, it seems important to consider these contex-
tual factors which may affect students’ pathways into 
STEM disciplines, during and beyond high school. Wang 
(2013b) found a stronger effect of math self-efficacy on 
2-year college students’ STEM interests than on 4-year 
college students. Phelps et al. (2018) found that students’ 
STEM major enrollments differed at 2-year and 4-year 
colleges (e.g., mechanical technologies vs. engineering 
and engineering technology, respectively), within if not 
between major clusters such as Computing/Engineering 
fields. Gender differences in U.S. students’ attainment of 
Natural/Engineering Sciences and Life Sciences majors 
has also been found to vary by college type, after control-
ling for additional characteristics such as college STEM 
GPA and academic and social integration (Perez-Felkner 
et  al., 2019). Following these discussions of the value of 
explaining disparities in postsecondary STEM major 
selection and contextual explanations, we turn to devel-
opmental and social psychological frameworks, which 
are the focus of our study.

Theorizing postsecondary STEM major choice
Psychological theories have been adapted to explain stu-
dents’ pathways from earlier educational experiences 
through postsecondary STEM outcomes, including 
major selection. This manuscript focuses especially on 
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students’ perceived abilities and interests in mathematics 
and science. We also considered complementary theory 
which attends to the motivational relationships between 
students’ (1) expectations for success and (2) subjective 
task values; expectancy task-value theory postulates that 
individuals’ achievement-related choices (such as post-
secondary majors) are associated with their confidence 
in specific subject domains, such as mathematics and 
science (Eccles & Wigfield, 2002). Subjective task value 
has been further categorized into four subcomponents 
including intrinsic value—the enjoyment obtained from 
participating in these tasks (Eccles & Wigfield, 2002).

In turn, college students may be more likely to choose 
the majors in which they feel more efficacious and inter-
ested. This may be especially true for students from 
underrepresented backgrounds who typically receive less 
encouragement and support in their pursuit of STEM 
degrees. Using an older cohort of U.S. longitudinal data, 
Perez-Felkner et  al. (2017) also found that perceived 
mathematical ability affects science course enrollment 
in secondary school, which in turn has consequences for 
postsecondary major choice. Measures for science ability 
were not available in their study. However, students with 
higher perceived mathematical abilities were found more 
likely to declare STEM postsecondary majors. Perceived 
mathematical abilities had particularly positive effects 
on the probability of Black girls’ and boys’ selection of 

mathematics-intensive STEM majors and completing 
degrees in these fields (Nix & Perez-Felkner, 2019).

There has been more limited attention to how math-
ematics and science interest may affect students’ STEM 
major choice, despite academic interest being an impor-
tant concept in educational psychology (Renninger et al., 
1992). Therefore, this study examines whether interest—
in conjunction with other established factors—predicts 
the likelihood of majoring in STEM fields and demo-
graphic disparities in these outcomes. This study will 
also assess students’ perceived ability in mathematics—
already shown to affect postsecondary STEM pathways—
and science, a crucial but under-examined domain.

Conceptual framework
This study develops a framework which integrates Ban-
dura’s (1977) self-efficacy, Hidi and Renninger’s (2006) 
interest development model, and Eccles et  al. expec-
tancy-value theory (Eccles, 1983; Eccles & Wigfield, 
2002), while accounting for prior literature on factors 
predicting students’ STEM major choices. In this model 
(see Fig. 1), students’ intent to choose a STEM major is 
influenced by their perceived mathematical and/or sci-
entific abilities, mathematical and/or scientific interests, 
parental education and occupations, high school and 
classroom characteristics, which may stimulate students’ 

Fig. 1 The conceptual model for this study
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STEM motivation. This study presents a detailed expla-
nation of the model’s theoretical grounding.

Ability‑related perceptions and beliefs
Postsecondary STEM majors require strong foundational 
knowledge of mathematics and science. High school 
advanced mathematics and science courses can signal 
preparedness to enter college in general and to enter 
postsecondary gateway courses to STEM majors spe-
cifically (Schneider et al., 2013; Tyson et al., 2007). These 
courses also have implications for students’ perceived 
mathematical ability, including how girls and underrep-
resented students’ self-assessments of their ability may be 
shaped by in these gendered course and school contexts, 
with implications for entry to STEM majors (Correll, 
2001; Perez-Felkner et al., 2014).

Bandura’s (1977) self-efficacy model emphasized an 
individual’s belief in their innate capacity to achieve a 
particular goal. When individuals realize that their abili-
ties may not enable them to accomplish certain goals, 
they may give up. The concept of self-efficacy has been 
widely used in education research. Zimmerman et  al. 
(1992) found that students’ perceived academic self-effi-
cacy significantly affects their educational goal setting. 
Bandura (1993) illustrated that self-efficacy could be 
functioning in the academic field through four major pro-
cesses, including motivational and selection processes. 
Students’ beliefs in their efficacy played an important 
role in regulating their academic activities and aspira-
tions, as well as their motivation directly. Later, Bandura 
et  al. (2001) demonstrated that children’s self-efficacy 
could be more decisive in shaping their occupational 
decisions than actual academic achievement, which in 
turn indirectly influences students’ major choices. There-
fore, self-efficacy is connected to goal setting as well as 
motivation and/or aspiration, thereby influencing stu-
dents’ STEM-related experiences in secondary school. 
In turn, building on Bandura’s concept of self-efficacy, 
perceived mathematical and scientific abilities may each 
shape high school students’ pursuit of STEM degrees in 
college towards the particular goal of majoring in STEM 
fields. We assess students’ perceived abilities holistically 
as described further in the methodology, encompassing 
self-assessments of ability on specific tasks (tests, assign-
ments, difficult textbook material) and with their math-
ematics/science course and the discipline more generally, 
during their first high school year of study in these cru-
cial subjects for future STEM majors.

Interest development
Hidi and Renninger’s (2006) Four-Phase Interest Devel-
opment Model illustrates how a person’s interest influ-
ences their attentions, goals, and levels of learning, 

which may contribute to academic motivation and/or 
aspiration. Hidi and Harackiewicz (2000) identify inter-
est as a crucial motivational variable that affects students’ 
academic performance. Thus, if students have stronger 
interest in mathematics and science, they may be more 
likely to have better mathematics and science perfor-
mance and/or ability, potentially influencing their STEM 
choices.

According to Hidi and Renninger’s model, interest is 
categorized as situational or individual. Situational inter-
est is a temporary interest aroused by specific activities, 
while individual interest is a relatively stable interest 
(Schiefele, 2009). Situational interest can develop into 
individual interest, where a person’s subsequent deci-
sions/behaviors are associated with this well-developed 
interest. Notably, scholars have argued that individual 
interest is not exclusively generated by the individual 
(Csíkszentmihályi et  al., 1993); School actors such as 
peers and teachers may affect the formation of well-
developed individual interest. Frenzel et al. (2010) found 
students’ development of mathematics interest was 
positively associated with classroom characteristics like 
mathematics teacher enthusiasm. Therefore, students’ 
classroom experiences with their mathematics and sci-
ence teachers may also affect their interests in these 
areas.

Research questions and hypotheses
Guided by prior literature and the conceptual frame-
work above, this study examines the influence of per-
ceived abilities and interest in mathematics and science 
on students’ STEM major choice. Specifically, this study 
addresses the following four research questions:

1. What is the relationship between postsecondary stu-
dents’ STEM major choice and their perceived abili-
ties and interests in science and mathematics in high 
school?

2. To what extent do perceived abilities and academic 
interests in science and mathematics distinctly pre-
dict students’ STEM major choice?

3. To what degree do these relationships vary by gender 
and/or race?

4. To what extent do these patterns differ in predicting 
students’ choice of Computing/Engineering, Other 
STEM majors, vs. non-STEM majors?

Students with higher perceived mathematical/scien-
tific abilities may be more likely to choose STEM disci-
plines in college. Similarly, students who have higher 
math/science interests are more likely to choose STEM 
disciplines. It is unclear whether perceived abilities or 
academic interests are the stronger predictor of STEM 



Page 6 of 26Zhao and Perez‑Felkner  International Journal of STEM Education            (2022) 9:42 

major choice. Research on perceived abilities and aca-
demic interest discussed above suggest that both could 
positively affect students’ corresponding choices. Given 
interest in developing interventions to enhance students’ 
opportunities to enter and complete STEM majors, we 
are interested in which is a more effective predictor of 
students’ selection of STEM majors. Additionally, we 
evaluate whether these relationships vary by gender and 
race. Finally, we consider whether the analytic models are 
sensitive to alternate specifications of the dependent var-
iable. We assess these relationships on a more nuanced 
dependent variable, which parses high-growth and high-
earning applied majors in technological fields (Comput-
ing and Engineering) as compared to other STEM and 
non-STEM fields.

Methods
Data source, declarations, and participants
We used restricted-use data from the newest nationally 
representative longitudinal U.S. cohort, the High School 
Longitudinal Study of 2009 (HSLS: 09). The National 
Center for Education Statistics (NCES) followed incom-
ing ninth-grade students through secondary and post-
secondary education, beginning in fall 2009. Students 
completed follow-up surveys in spring 2012 when the 
majority were in eleventh grade and at the transitory 
point from secondary to postsecondary education in 
2013, to collect information like college plans and choices 
after high school completion (Duprey et al., 2018; Ingels 
et al., 2014). An additional follow-up survey was admin-
istered in spring 2016. Beyond these surveys, federal data 
from other sources was incorporated into the restricted-
use HSLS dataset by NCES and is acknowledged where 
appropriate in the table source information we report 
in the main paper and appendix. Public use access to 
these data is available through the NCES website, as is 
the application for restricted-use data, such as we used 
for these analyses: https:// nces. ed. gov/ surve ys/ hsls09/ 
hsls09_ data. asp. Statistical code generated to analyze 
supporting the findings of this study are available from 
the corresponding author upon request.

The base-year sample includes ninth graders from 940 
high schools across the country. Here and throughout, 
descriptive information is rounded to the nearest tenth in 
accordance with NCES restricted-data licensing regula-
tions. Parents, teachers, school administrators, and coun-
selors were also surveyed. The base-year student survey 
asked questions related to students’ perceived math-
ematical/scientific abilities and math/science interests as 
well as their feelings about math/science teachers. The 
base-year parent survey collected information about stu-
dents’ family characteristics. Students’ first-declared col-
lege major was gathered in the postsecondary follow-up 

student survey (see detailed variable descriptions Table 7 
in Appendix).

The analytic sample represents the students who were 
ninth graders in Fall 2009 and were still college students 
in spring 2016. We restricted the sample to those who 
attended postsecondary institutions. Because there are 
missing cases associated with each analytic variable, we 
used multiple imputation to reduce nonresponse bias. 
After imputation, our final analytic sample yielded 11,560 
cases. To ensure generalizability to the U.S. student popu-
lation and enhance external validity, we used panel strata 
and survey weights (w4w1stup1) and provided by HSLS: 
09 to address the complex stratified sampling design, and 
to adjust for unequal selection probabilities of sub-popu-
lations, consistent with the recommendations by Duprey 
and colleagues (2018) for appropriate weights when ana-
lyzing multi-wave HSLS data.

Measures
This section summarizes all the variables used in the 
hypothesized model (Fig. 1).

STEM major The primary dependent variable in this 
study represents whether a student chooses a STEM 
major, a dichotomous variable (1 = first major is STEM; 
0 = not STEM). According to the HSLS: 09 codebook, 
the source variable (X4RFDGMJSTEM) represents the 
respondent’s major or field of study as of February 2016. 
STEM designations follow the U.S. Department of Edu-
cation’s (2010) Classification of Instructional Programs. 
We also developed and investigated an alternate three-
category specification drawn from related source variable 
X4RFDGMJ14Y, that breaks into STEM major clusters: 
(1) Computing/Engineering fields, (2) Social/Behavioral, 
Natural, and Other Sciences, and (3) non-STEM fields. 
Past research has shown Computing and Engineering 
function distinctly from other scientific areas given the 
high earnings and growth associated with these applied 
and mathematically intensive technological fields (see 
Corbett & Hill, 2015; Scott, et al., 2015). The non-STEM 
category is identical across both groups, as indicated later 
in Table 2 and Table 7 in Appendix.

Perceived mathematical/scientific ability Multiple 
items in the base-year student survey measured students’ 
perceived ability. We identified seven items that include 
ability self-assessments and their reflection in their per-
ceptions of themselves as a mathematics/science “per-
son”; this scale is intended to richly and robustly reflect 
students’ perceived mathematical/scientific abilities (see 
Table  8 in Appendix). Original items were all 4-point 
Likert scale items, ranging from 1 (strongly agree) to 4 
(strongly disagree), which we reverse-coded for inter-
pretability such that the items range from strongly disa-
gree to strongly agree as they increase from 1 to 4. The 

https://nces.ed.gov/surveys/hsls09/hsls09_data.asp
https://nces.ed.gov/surveys/hsls09/hsls09_data.asp
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Cronbach’s reliability α for our perceived mathematical 
and scientific ability scales are 0.89 and 0.87, respec-
tively, indicating strong internal consistency among these 
seven items (see Kline, 2013). As an additional robust-
ness check, we assessed the correlations between our 
original scales for students’ perceived mathematical and 
scientific abilities and the NCES-provided measures of 
mathematics self-efficacy (r = 0.92, p < 0.001) and science 
self-efficacy (r = 0.70, p < 0.001).1 More detailed informa-
tion about these and subsequently discussed survey items 
is provided in Table 8.

Math/science interest Similarly, mathematics and sci-
ence interests were also measured by a series of items 
(details Table  9 in Appendix). Again, the original score 
on each item ranged from 1 to 4 (strong agreement) 
and 4 (strong disagreement). Two negatively worded 
items were found. We therefore reverse-coded these 
measures, such that four indicates “strongly agree”, to 
be consistent with high values meaning high interests. 
The Cronbach’s reliability α for the scales we generated 
to represent mathematics and science interests are 0.78 
and 0.81, respectively. These three items thus represent 
math/science interest reasonably well, as reliability scores 
of α > 0.75 are in the acceptable range of internal consist-
ency (Kline, 2013).

Student characteristics We included students’ demo-
graphic characteristics, include dichotomous variables 
coded 1/0 for students’ self-reported gender and race/
ethnicity: White, Asian, Black, Latina/o/x, and Multiple/
Other race. We also account for students’ family socio-
economic status, as designated by parental education and 
family income. Parental education was distinguished by 
whether at least one parent had a 4-year college degree. 
Family income is an ordinal scale representing family 
income from all sources in 2008, the year prior to ninth 
grade, and is the most detailed family income variable 
included the HSLS restricted-use data; income ranges 
from 1 = less than or equal to $15,000 and 13 = greater 
than $235,000. We also account for parental occupation, 
designated as whether students’ fathers and/or moth-
ers were employed in STEM fields. Previous research 
indicates that students’ academic performance matters 
(e.g., Wang et al., 2013). Therefore, we included students’ 
high school mathematics and science course grade point 
averages (GPA) to measure students’ observed ability, in 
distinction to their perceived abilities. Finally, as indica-
tors of high school preparation for STEM coursework in 

college, we also include indicators of highest mathemat-
ics and science courses taken. Detailed coding informa-
tion is provided Table 7 in Appendix.

High school and college characteristics High school 
characteristics may affect students’ STEM plans in col-
lege (Legewie & DiPrete, 2014). Therefore, we controlled 
for high school characteristics by using variables repre-
senting high school types and urbanicity, as shown in 
Table 7. High school types include public, Catholic, and 
other private high schools. Urbanicity indicates whether 
the school is an urban, suburban, town, or rural area.

Classroom teachers likely have direct influence on their 
students’ STEM ambitions as well. Aaronson et al. (2007) 
found math teacher quality was positively associated with 
students’ math scores. Additionally, since academic inter-
est is one of the main independent variables and previ-
ous research (Frenzel et  al., 2010) indicates interest can 
be influenced by students’ relationships with teachers, we 
include students’ ratings of their experiences with their 
math/science teachers in our analyses. In the base-year 
student survey, these two variables were measured by 
nine items. Similar processes for generating these vari-
ables were conducted by testing Cronbach’s reliability for 
students’ experiences with their mathematics (α = 0.89) 
and science (α = 0.89) teachers (see details Table  10 in 
Appendix). Higher values of each variable are associated 
with students having better experiences with their math/
science teacher.

Previous studies have found that postsecondary institu-
tions matter (e.g., Phelps et al., 2018; Wang, 2013b). We 
included students’ first college type to account for post-
secondary characteristics. This variable is a dichotomous 
variable, coded as 1 = 2-year or less and 0 = 4-year.

Limitations
Academic interests may be situational, Hidi and Ren-
ninger note (2006), affected by external environments. 
It is possible that during the period of the base-year sur-
vey, students were interested in mathematics and science, 
but then lost interest before entering college, influencing 
their major choice. Our measures may not fully represent 
students’ true academic interests at the point they were 
making college major decisions, which could bias the 
estimated effects of academic interests on STEM major 
choice. Indeed, research suggests deep engagement and/
or passion in a STEM subject could be transformative to 
sustaining interest (e.g., Eccles & Wigfield, 2020; Schnei-
der et  al., 2016). Our assessment of this variable is lim-
ited to the effect of self-reported interest at the start of 
high school, which indeed may be malleable to change 
in accordance with the variables we measure and control 
for, including subsequent course taking and school con-
text variables.

1 As another test of our scales, we report at the end of the results section on a 
sensitivity analysis, substituting the NCES items for our own scales; this series 
of models less effectively predicted our dependent variables than the scales we 
use and report on in the text, further confirming the appropriateness of our 
design.
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Another limitation is the nature of secondary self-
reported large-scale data. Our measure of student gender 
is drawn from a measure of biological sex (male/female) 
without options beyond this binary during the first three 
study waves. We note this again later in reporting out the 
results. In addition, both perceived abilities and academic 
interests were self-reported by adolescents, which may 
influence the survey accuracy. Additionally, HSLS: 09 is 
not explicitly designed for the measure of psychologi-
cal constructs and therefore may not be able to measure 
perceived abilities and academic interests fully. However, 
we argue that the choice of dataset allows us to combine 
reliable measures (as noted by the scores reported above) 
and a nationally representative longitudinal cohort, to 
assess how interests and perceived ability in mathematics 
and science affect STEM choices over time.

Analytic approaches
We addressed our research questions and hypoth-
eses through logistic regression due to the categori-
cal nature of our dependent variables—binary logistic 
regression when predicting “STEM” major choice and a 
multinomial logistic regression with our more detailed 
categorical dependent variable. Regression equations 
and corresponding hypotheses are described below. For 
the first research question, the dependent variable is stu-
dents’ college STEM choices. The main independent vari-
ables were perceived mathematical and scientific abilities 
and interests, while adjusting for other demographic, 
high school, and classroom characteristics. Two main 
hypotheses were proposed for the first research question:

H1a: Students with high perceived mathematical/
scientific abilities are more likely to choose a STEM 
major.
H1b: Students with high interest in mathematics/
science are more likely to choose a STEM major.

To test H1a, we started with an initial model that only 
included students’ STEM major choice as the dependent 
variable and perceived mathematical/scientific abilities as 
the independent variable. Then, we added student char-
acteristics, high school/college characteristics, and class-
room characteristics one by one to test our hypotheses. 
For simplification, we present the final model as follows:

where STEM = whether student choose a college major 
in STEM fields; PMAi = the perceived mathematical abil-
ity of student i; PSAi = the perceived scientific ability of 
student i; STCi = a vector of student i’s demographic 

(1)

logit
PSTEM

1− PSTEM i

=β0 + β1PMAi + β2PSAi

+ β3STCi + β4SCi + β5CCi,

information such as gender, race/ethnicity, parental edu-
cation, parental occupation, family income, student prep-
aration and observed ability in math and science in high 
school; SCi = a vector of student i’s high school/college 
information including school type, school’s urbanicity, 
and college type; and CCi = a vector of student i’s class-
room experiences with their mathematics/science 
teachers.

The procedure of testing H1b is similar to the process 
when examining the effect of perceived abilities on stu-
dents’ STEM major choice. The only difference is substi-
tuting perceived ability variables for interest variables. 
Thus, our final model for H1b was:

where MIi = student i’s mathematics interest; and SIi = 
student i’s science interest.

The second research question assesses whether per-
ceived abilities or interests could be more predictive of 
students’ STEM major choice. To address this research 
question, we added both sets of perceived abilities and 
interests into one model:

Though the scale used for perceived abilities and inter-
est is the same, we reported regression coefficients and 
odds ratios to compare the relative effects of mathemat-
ics and science perceived ability and interest variables 
on the dependent variable. In addition, we reported 
the model statistic (F-test) to compare overall model 
strength. We additionally assessed whether perceived 
abilities and interest were too highly correlated with 
each other or otherwise linearly related. Specifically, we 
estimated an ordinary least squares model to check the 
variance inflation factor (VIF) for multicollinear relation-
ships among our variables, before entering them into the 
logistic regression.

The third research question seeks to examine whether 
the relationships between perceived abilities and inter-
ests and STEM major choices vary by gender and race/
ethnicity. We generated multiple interaction terms2 to 

(2)

logit

(

PSTEM

1− PSTEM

)

i

=β0 + β1MIi + β2SIi + β3STCi

+ β4SCi + β5CCi,

(3)

logit

(

PSTEM

1− PSTEM

)

i

=β0 + β1PMAi + β2PSAi + β3MIi

+ β4SIi + β5STCi + β6SCi + β7CCi.

2 Specific interaction variables between gender/race and perceived abilities/
interests were generated. They are: Gender * PMA, Gender * PSA, Gender * 
MI, Gender * SI, White * PMA, Latino * PMA, Black * PMA, Asian * PMA, 
Other/Multi * PMA, White * PSA, Latino * PSA, Black * PSA, Asian * PSA, 
Other/Multi * PSA, White * MI, Latino * MI, Black * MI, Asian * MI, Other/
Multi * MI, White * SI, Latino * SI, Black * SI, Asian * SI, Other/Multi * SI.
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see whether these intentional relationships vary by gen-
der and race (Kaufman, 2018). We also estimated a model 
with state fixed effects, controlling for unobserved fac-
tors at the state level such as STEM employment oppor-
tunities and access to 4-year colleges. This model did 
not improve upon the prior model’s explanatory power, 
nor did it change the trajectory of the results. Therefore, 
to conserve space and focus on key findings, we do not 
report them here.

To answer our last research question, we estimated 
multinomial logistic regression models using the same 
covariates used to answer research questions 2 and 3, 
but using a three-category rather than a binary depend-
ent variable, where Non-STEM is the reference group, 
and we assessed how the results vary between the (aggre-
gated) STEM results reported on in Table  4 and STEM 
major clusters reported on in Table  6: Computer/Engi-
neering Sciences and Social/Behavioral, Natural, and 
Other Sciences.

In summary, RQ1 is assessed using Eqs.  (1) and (2), 
and RQ2 is evaluated using Eq. (3). RQ3 is subsequently 
investigated with the use of interaction terms added to 
Eqs.  (1) and (2). RQ4 is examined by changing the ana-
lytic approach used for RQ2 and 3 to a multinomial logis-
tic regression rather than a binary logistic regression 
while retaining the predictors, and changing the depend-
ent variable to the recoded three-category major variable 
in Eq. (3).

Results
Descriptive results
Table 1 reports the descriptive statistics for control vari-
ables for the weighted analytic sample. Approximately 
53.6% of sampled students identify as women. White stu-
dents accounted for 54.6% of the analytic sample, while 
Latina/o/x, Black, Asian, and Multiple/Other Race were 
20.3%, 12.2%, 4.5%, and 8.5%, respectively. Notably, there 
was less than a one percentage point difference between 
the share of students’ fathers (15.3%) and mothers (14.5%) 
working in STEM occupations. While on average  most 
students completed Intermediate and many completed 
Advanced Math, most students had not completed a year 
of physics by the time they entered postsecondary school 
(as the mean of 0.5 is halfway between 0 = No Physics 
and 1 = General Physics). Even among students in our 
analytic sample of postsecondary degree declarers, this 
is a striking indicator of U.S. students’ under-preparation 
in Physics, a key gateway course for most postsecond-
ary STEM majors. With respect to school character-
istics, 90.3% of students in the sample attended public 
high schools, and 23.9% of schools were in rural areas. 
In addition, students reported that they had good expe-
riences with their mathematics and science teachers; the 

Table 1 Descriptive statistics of control variables for the analytic 
sample with multiple imputation

The analytic sample size is n = 11,560. S.E. refers to Standard Error. Survey 
weights (w4w1stup1) are applied to account for students and parents’ 
nonresponses to enhance the external validity. This table is using percentage 
(0–100 scale) to describe the dichotomous variables defined in Table 7 in 
Appendix to ease interpretation. In the analysis, this study still uses the actual 
scale (0–1). In addition, the means were rounded to the nearest tenth decimal 
to comply with NCES restricted‑data regulations. Missing data figures reported 
were generated from Stata 16’s “misstable” command prior to imputation

Source: U.S. Department of Education, National Center for Education Statistics, 
High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 
2009; Parent Survey, 2009; Second Follow‑up, Student Survey, 2016; Common 
Core of Data 2005–06, Private School Survey, 2005

Mean S.E Min Max % Missing

Student characteristics

 Gender

  Male 46.4% 0.0 0.0 100.0 0.2%

  Female 53.6% 0.0 0.0 100.0 0.2%

 Race/ethnicity

  Asian 4.5% 0.0 0.0 100.0 3.8%

  Black 12.2% 0.0 0.0 100.0 3.8%

  Latina/o/x 20.3% 0.0 0.0 100.0 3.8%

  Multiple/Other Race 8.5% 0.0 0.0 100.0 3.8%

  White (Reference) 54.6% 0.0 0.0 100.0 3.8%

 Family characteristics

  Family income 4.61 0.1 1.0 13.0 19.8%

  Father’s occupation (STEM) 15.3% 0.1 0.0 100.0 34.6%

  Mother’s occupation (STEM) 14.5% 0.1 0.0 100.0 26.3%

  Parental education

  4‑year college degree (Refer‑
ence)

44.1% 0.0 0.0 100.0 19.7%

  No 4‑year college degree 55.9% 0.0 0.0 100.0 19.7%

 Student preparation and performance

  Highest math course taken 1.61 0.0 0.0 2.0 4.4%

  Highest science course taken 
(Physics pipeline)

0.5 0.0 0.0 2.0 4.4%

  HS math course GPA 2.6 0.0 0.0 4.0 4.7%

  HS science course GPA 2.7 0.0 0.0 4.0 4.9%

High school and college characteristics

 School types

  Public (Reference) 90.3% 0.0 0.0 100.0 0.0%

  Catholic 5.1% 0.0 0.0 100.0 0.0%

  Other private 4.7% 0.0 0.0 100.0 0.0%

 School location

  Urban (Reference Group) 31.9% 0.0 0.0 100.0 0.0%

  Suburban 34.7% 0.0 0.0 100.0 0.0%

  Town 10.1% 0.0 0.0 100.0 0.0%

  Rural 23.2% 0.0 0.0 100.0 0.0%

 Type of college first attended

  Four‑year (Reference) 63.0 0.9 0.0 100.0 1.0%

  Two‑year 37.0 0.9 0.0 100.0 1.0%

Classroom characteristics

 Experiences with math teacher 3.1 0.0 1.0 4.0 15.7%

 Experiences with science 
teacher

3.1 0.0 1.0 4.0 20.9%
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weighted means were both 3.1 on a scale where 4 means 
“strongly agree” and 1 means “strongly disagree”.

STEM disparities by gender and race
Postsecondary major outcomes
Table 2 reports on the dependent variables for Research 
Questions 1–4, as they vary by gender and race. We 
included Chi-square tests to assess significant differ-
ences in the distribution of STEM/Non-STEM (RQ1-3) 
and Computer/Engineering vs. Other Sciences (RQ4) 
major selection among students. First, with respect to 
the aggregated STEM variable, we observed signifi-
cant differences by gender (χ2 = 438.7, p < 0.001) and 
to a lesser extent by race (χ2 = 301.2, p < 0.001). Specifi-
cally, we found that only 15.5% of women chose STEM 
majors as compared to 32.0% of men. With respect 
to students from race groups not historically under-
represented in STEM, 21.6% of White students and 
42.5% of Asian students chose STEM majors. Among 
STEM underrepresented race groups, the percent-
age of Latina/o/x, Black, and Other/Multiracial stu-
dents choosing STEM were 19.5%, 16.2%, and 22.3%, 
respectively. Asian students were the only group with 

a meaningful—and positive—difference as compared to 
their peers.

Next, we turned to our review of disparities in Com-
puting/Engineering vs. Other Science major selection, 
which we found—similar to the pattern above—varies sig-
nificantly by gender (χ2 = 375.9, p < 0.001) and (less so) by 
race (χ2 = 12.8, p < 0.01). Here, we filtered out non-STEM 
students to compare Computing/Engineering majors 
to those in the Natural Sciences (e.g., Biology, Physics), 
Social/Behavioral Sciences, and often applied Other Sci-
ences (e.g., Agriculture, Architecture). We found that 2/3 
of boys in STEM fields selected Computing/Engineering 
majors, as compared to just over 1/4 of girls. With respect 
to race, we found limited differences between groups in 
who selects Computing/Engineering, such that variation 
did not exceed a 13-percentage point difference (between 
Multiple/Other at 44.0% and Latina/o/x at 56.5%). 55.0% 
of White students, 51.5% of Black students, and 50.4% of 
Asian students select Computing/Engineering vs. Other 
STEM fields. Across these analyses, we found that race 
disparities existed but were less severe than the gender 
disparities.

Table 2 Dependent variable distribution in the analytic sample with multiple imputation, by gender and race (N = 11,560)

Total Number refers to the total number of observations in each gender and/or race group. The survey weight (w4w1stup1) was applied to account for nonresponse 
and the stratified sampling design, to enhance the external validity. The N in each subgroup was rounded to the nearest ten and the percentages rounded to the 
nearest tenth decimal, to comply with NCES restricted‑data regulations. The total number of cases in each subgroup may not be exactly equal to that of the analytic 
sample because of this rounding. Statistical significances within each gender and race group were assessed using Chi‑square tests, with the test statistic and p‑value 
reported for each variable

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009; 
Second Follow‑up, Student Survey, 2016

Research Questions 1–3: Predicting STEM Major Selection

Gender X2 = 438.7, 
p < 0.001

Race X2 = 301.2, p < 0.001

Boys Girls Asian Black Latina/o/x Multiple/Other White

STEM 1680 980 500 170 310 230 1440

32.0% 15.5% 42.5% 16.2% 19.5% 22.3% 21.6%

Non‑STEM 3560 5340 680 890 1280 820 5230

68.0% 84.5% 57.5% 83.8% 80.5% 77.7% 78.4%

Total 5240 6320 1180 1060 1590 1050 6670

Research Question 4: Predicting Computing/Engineering vs. Other Sciences

Gender X2 = 375.9, 
p < 0.001

Race X2 = 12.8, p < 0.01

Boys Girls Asian Black Latina/o/x Multiple/Other White

Computing/Engineering 1130 280 250 90 170 100 790

67.5% 28.6% 50.4% 51.5% 56.5% 44.0% 55.0%

Social/Behavioral, Natural, and 
Other Sciences

550 700 250 80 140 130 650

32.5% 71.4% 49.6% 48.6% 43.6% 56.0% 45.0%

Total 1680 980 500 170 310 230 1440
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Gender and race intersections: Differences in key 
psychological predictors
To better understand gender and race differences in 
students’ perceived abilities and interests in mathemat-
ics and science, we constructed a series of gender–race 
subgroups such as White male and Black female to con-
duct the Hedges’ g effect size test of mean differences.3 
Hedges’ g is appropriate when the sizes of subgroups 
are different (Kemp and colleagues, 2010). Using White 
male as the reference group, results reported in Table 3 
showed that White females had significantly lower per-
ceived mathematical and scientific abilities, which was 
consistent with the Riegle-Crumb, King, et al. (2019) and 
Riegle-Crumb, Morton, et al. (2019) findings that males’ 
math and science self-efficacies were statistically signifi-
cantly higher than that of females. It might be that nega-
tive gender stereotypes socialize many girls to believe 
they were not good at mathematics and science (Marti-
not & Désert, 2007). Notably, Latino males’ mathematics 
interest and Black males’ interest in mathematics and sci-
ence were significantly higher than that of White males, 
in line with Riegle-Crumb et al. (2010).

However, Latino and Black males reported lower per-
ceived scientific ability than their White male counter-
parts. This suggests that racially minoritized students 
may have strong interest but low self-efficacy in these 
STEM-related subjects. Similarly, Black females reported 
lower perceived scientific ability than White males (2.7 
vs. 2.9; 0.43 SD difference). However, their mathemati-
cal interests were significantly higher than White male 
peers (3.0 vs. 2.9; 0.26 SD difference). Our descriptive 
findings—not yet adjusting for other factors—were con-
sistent with previous findings that descriptive gender and 
racial-ethnic gaps exist in STEM fields, prior to adding 
controls and covariates as we did in the next steps of our 
analysis.

Effects of perceived abilities and academic interests 
on postsecondary STEM major
RQ1: Do perceived abilities and academic interests predict 
STEM major choice?
To measure the longitudinal relationship and poten-
tial interaction between students’ postsecondary STEM 
major selection and their earlier perceived abilities and 
academic interests, we tested multiple models. Initial 

models included only the outcome variable and perceived 
mathematical and scientific abilities. Next, we added stu-
dent characteristics, and then high school/college and 
classroom characteristics. Across all models, perceived 
mathematical and scientific abilities both positively 
influenced STEM major choice. For simplicity, Table  4 
shows only the full models, which included student, high 
school/college, and classroom characteristics. Unstand-
ardized coefficients were reported in addition to odds 
ratios, which indicated the effect of the predictor on the 
dependent variable (STEM major choice), such that the 
relative effect on the odds of the event occurring (choos-
ing a STEM major) could be compared across the predic-
tors, irrespective of the units of each predictor variable.

Beginning with Model 1, we found a one unit increase 
in students’ perceived mathematical ability scale was 
associated with a 62% increase in the odds of choosing 
STEM disciplines, holding other variables constant. Sim-
ilarly, a one unit increase in students’ perceived scientific 
ability scale was associated with an 61% increase in the 
odds of majoring in STEM fields. The odds of choosing 
STEM majors were 0.59 times lower for HSLS cohort 
girls than for otherwise similar boys. Asian students were 
1.49 times more likely than White students to major in 
STEM fields.

Students’ high school physics course completion could 
significantly and positively predict STEM major choice, 
with OR = 1.72, p < 0.001. A significantly negative rela-
tionship was found between private schools and STEM 
degrees. Our results showed that the odds of choos-
ing STEM majors were lower for students from pri-
vate schools than those of students from public schools 
(OR = 0.61, p < 0.001).

Next, we examined the effects of mathematics and sci-
ence interest in high school on STEM major choice. The 
results of Model 2 in Table 4 show that both mathemat-
ics and science interests significantly and positively pre-
dicted students’ STEM choices, with OR = 1.23, p < 0.05 
and OR = 1.30, p < 0.05, respectively. A one unit increase 
in mathematics interest was associated with a 23% 
increase in the odds of majoring in STEM, all else con-
stant. Gender remained significant and even more nega-
tive in this model, as girls see a decrease of 64% in the 
odds of choosing STEM majors (p < 0.001). A one unit 
increase in science interest was associated with a 30% 
increase in the odds of choosing STEM majors. In addi-
tion, high school physics course completion was posi-
tively associated with STEM major choice (OR = 1.78, 
p < 0.001) as is, to a lesser degree, high school science 
GPA (OR = 1.34, p < 0.05). Again, attending a private 
school was (even more) negatively associated with STEM 
major choice (OR = 0.51, p < 0.001).

3 In discussing these analyses, we use “female” and “male” as terms because of 
the focused attention on students’ experiences from adolescence into young 
adulthood. Students’ ability and interest ratings are measured in high school 
and are assessed in relation to their entry to STEM majors in postsecondary 
school, when they are adults. We recognize the limitations of female/male 
as terms that have been associated with binary notions of biological sex, in 
distinction to gender, and intentionally use girl/woman and boy/man in the 
majority of the manuscript.
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Table 4 Logistic regression results for perceived abilities and academic interests on STEM major choice

*p < 0.05, **p < 0.01, ***p < 0.001. Standard errors are shown in parentheses. OR represents odds ratios, where numbers greater than zero represent a positive increase 
in the odds an event will occur. N was rounded to the nearest ten to comply with NCES restricted‑data regulations

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009; 
Parent Survey, 2009; 2013 Update, Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005

Perceived abilities only (1) Academic interests only (2) Perceived abilities and 
academic interests (3)

b OR b OR b OR

Dependent variable

 STEM degree attainment

Perceived abilities

 Perceived mathematical ability 0.48*** (0.11) 1.62 0.46*** (0.12) 1.58

 Perceived scientific ability 0.47*** (0.10) 1.61 0.43*** (0.10) 1.53

Academic interests

 Math interest 0.21*(0.08) 1.23 0.07 (0.10) 1.07

 Science interest 0.29* (0.11) 1.30 0.12 (0.12) 1.12

Student characteristics

 Gender (Reference = Boys)

  Girls − 0.89*** (0.10) 0.41 − 1.00*** (0.09) 0.36 − 0.90*** (0.10) 0.041

 Race/ethnicity (Reference = White)

  Asian 0.58** (0.18) 1.49 0.39* (0.19) 1.47 0.39* (0.18) 1.48

  Black 0.06 (0.15) 1.04 0.03 (0.17) 1.03 0.03 (0.16) 1.03

  Latina/o/x 0.22 (0.12) 1.24 0.20 (0.13) 1.22 0.20 (0.13) 1.23

  Multiple and other race 0.08 (0.14) 1.22 0.18 (0.14) 1.19 0.12 (0.15) 1.13

 Family characteristics

  Family income − 0.01 (0.02) 0.99 − 0.00 (0.02) 1.00 − 0.01 (0.15) 0.99

  Parental college degree 0.10 (0.10) 1.10 0.12 (0.09) 1.12 0.07 (0.09) 1.11

  Father’s occupation (STEM) 0.16 (0.09) 1.18 0.20* (0.09) 1.22 0.16 (0.09) 1.18

  Mother’s occupation (STEM) 0.10 (0.10) 1.11 0.13 (0.10) 1.14 0.11 (0.10) 1.11

 Student preparation and observed ability in high school

  Highest HS mathematics course 0.16 (0.11) 1.17 0.17 (0.11) 1.19 0.16 (0.11) 1.17

  Highest HS science course 0.54*** (0.07) 1.72 0.57*** (0.07) 1.78 0.54*** (0.07) 1.71

  HS math course GPA 0.06 (0.12) 1.07 0.14 (0.10) 1.15 0.07 (0.12) 1.07

  HS science course GPA 0.23 (0.13) 1.26 0.30* (0.13) 1.34 0.23 (0.13) 1.26

School characteristics

 High school type (Reference = Public)

  Catholic − 0.13 (0.11) 0.87 − 0.19 (0.11) 0.82 − 0.14 (0.11) 0.87

  Other private − 0.61*** (0.12) 0.54 − 0.68*** (0.12) 0.51 − 0.62*** (0.12) 0.54

 College type first attended

  Two‑year college − 0.16 (0.11) 0.85 − 0.17 (0.11) 0.85 − 0.16 (0.11) 0.85

 High school location (Reference = Urban)

  Suburban − 0.04 (0.10) 0.96 − 0.04 (0.10) 0.96 − 0.04 (0.10) 0.96

  Town 0.08 (0.15) 1.09 0.05 (0.15) 1.05 0.08 (0.15) 1.09

  Rural − 0.17 (0.11) 0.85 − 0.20 (0.11) 0.82 − 0.17 (0.11) 0.85

Classroom characteristics

 Math teacher − 0.04 (0.09) 0.96 − 0.01 (0.10) 0.99 − 0.09 (0.11) 0.93

 Science teacher − 0.02 (0.11) 0.97 − 0.15 (0.10) 0.94 − 0.10 (0.11) 0.91

Constant − 0.01*** − 3.91*** − 6.02***

 F test 26.11*** 19.09*** 24.26***

 Sample N 11,560 11,560 11,560

 Population N 2,713,260 2,713,260 2,713,260
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RQ2: Comparison testing: Perceived abilities or academic 
interests?
Research Question 2 examined whether perceived abili-
ties or interests more strongly predict students’ STEM 
major choice, associated with the results of Table  4’s 
Model 3. Multiple tests yielded the same answer. Look-
ing across our three models—perceived abilities only (1), 
interests only (2), and abilities + interests (3)—the F-tests 
all showed a significant predictive relationship on STEM 
major choice. However, the perceived abilities only model 
was the strongest (F = 26.1), and the interests only model 
was the weakest (F = 19.1). Next, the independent vari-
ables’ t-test results also favored perceived abilities over 
interests as predictors of STEM major choice. When 
both perceived abilities and interests were examined 
together in Model 3, only perceived mathematical/sci-
entific abilities remained significant, positively predict-
ing STEM degree major fields. Adding mathematics and 
science interests to the model only slightly diluted the 
predictive power of perceived mathematics and scientific 
ability in Model 3 as compared to the simpler Model 1. In 
both cases, the ability measures were significant beyond 
the p < 0.001 level, with changes being less than 0.05 in 
magnitude for the slope coefficient and less than 0.10 for 
odds ratios. In summary, the limitations of these meas-
ures notwithstanding, we found that perceived abilities 
mattered more than interests as predictors of students’ 
STEM degrees, all else equal.

Before closing our discussion of the independent 
effects of abilities and interests on STEM major choice, 
we added an additional analysis to confirm this find-
ing and assessed the degree to which perceived abilities 
and interests might be highly correlated or non-linear in 
their relationship. The correlations between perceived 
mathematical/scientific abilities and math/science inter-
ests were both 0.51, moderate correlations as suggested 
by Evans (1996). Next, we estimated an OLS regression 
model to obtain the variance inflation factors (VIF), 
to rule out any potential multicollinearity. As seen in 
Table 5, all the VIFs were less than 3, therefore multicol-
linearity was not a concern (Thompson et al., 2017).

Having ruled out such concerns, we could then infer 
with confidence that perceived abilities were stronger and 
more important predictors of students’ STEM majors 
than academic interests. This finding recalled our ear-
lier descriptive finding, that there was more significant 
race–gender variation on perceived than academic inter-
est (Table 3). Altogether, we found that perceived abilities 
played a more crucial role than academic interests when 
students chose their college majors.

RQ3: Do these relationships vary by gender and race?
To examine whether these relationships between per-
ceived abilities, interests, and STEM major choice varied 
by gender and race, we added interaction terms into the 
respective models. All other variables’ predictive rela-
tionships with STEM degree fields remained consistent 
with Model 1 and Model 2 as reported earlier in Table 4. 
After estimating these two models with gender and race 
interaction terms, significant interaction terms were 
found for gender only. Specifically, we found a positive 
main effect for male (b = 3.19, p < 0.001) and perceived 
science ability (b = 0.71, p < 0.001), and a negative inter-
action term (b = − 0.04, p < 0.05). This indicated that the 
nature of these relationships varied to a degree by gen-
der (favoring boys) but not by race. We investigated fur-
ther gender and race interactions in response to research 
question #4.

RQ4: Assessing Computing/Engineering major choice vs. 
other STEM fields
Given the heterogeneity of disciplinary fields represented 
within “STEM”, we examined how sensitive our ear-
lier findings were to an alternative specification, which 
examined a three-level dependent variable. Multiple 
logistic regression was used to assess the effects of math-
ematical/scientific perceived abilities and interests on the 
choices of postsecondary degrees in Computing/Engi-
neering fields, Other STEM fields, and non-STEM fields 
(the reference group. We reported the findings from the 
full model in Table 6, using Model 3 from Table 4 (abili-
ties + interests) to investigate differences between the 
predictive patterns.

Table 5 Correlations and multicollinearity between perceived abilities and interests

N = 11,560. Variance inflation factor (VIF) was obtained from OLS regression to test for potential multicollinearity. N was rounded to the nearest ten, to comply with 
NCES restricted‑data regulations

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009

Variable names 1 2 3 4 VIF Tolerance

1. Perceived mathematical ability 1.00 1.53 0.65

2. Perceived scientific ability 0.37 1.00 1.53 0.65

3. Math interest 0.51 0.19 1.00 1.42 0.70

4. Science interest 0.18 0.51 0.27 1.00 1.42 0.70
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The primary findings held in this more nuanced anal-
ysis. Academic interest did not reach significance for 
either STEM major cluster. Perceived ability remained 
highly significant as a predictor of students’ attainment 
of Computing/Engineering degrees (RRR math ability = 1.63, 
p < 0.01; RRR science ability = 1.50, p < 0.001) and other STEM 
fields (RRR science ability = 1.50, p < 0.001). We could see how 
the gender disparity in STEM varied widely and indeed 
flipped depending on which STEM cluster we examined, 
as girls’ probability of majoring in Computing/Engineer-
ing was strongly negative (RRR = 0.25, p < 0.001) but their 
probability majoring in other STEM fields that were gen-
erally less applied and less sex-segregated was highly pos-
itive, all else equal (RRR = 2.35, p < 0.001). Race matters 
differently in each, and only in part. Identifying as Latina/
o/x as compared to white was positively associated with 
Computing/Engineering major choice (RRR = 1.48, 
p < 0.05), and identifying as Asian was positively associ-
ated with STEM major choices in the comparatively less 
applied Other STEM category (RRR = 1.65, p < 0.001). 
Private schools remained a significant and negative pre-
dictor, but only with Computing/Engineering majors 
(RRR = 0.68, p < 0.01). High school science GPA was pre-
dictive only of the non-Computing/Engineering STEM 
cluster (RRR = 1.25, p < 0.01), and course taking was 
insignificant across categories.

Returning to Research Question #3, we reported on 
interaction models with figures for clearer demonstration 
of the predictive and in some cases intersecting relation-
ships between demographic characteristics, abilities, and 
interests, across these major clusters. More specifically, 
we used the postestimation margins command in Stata 
16 to estimate from the interaction model students’ pre-
dicted probabilities of choosing a STEM major. Figures 2 
and 3 show whether the relationships between perceived 
abilities/interests and STEM major choice varied for men 
and women. The slopes did not vary by mathematics/
science interest but do vary in perceived mathematical 
and scientific abilities. In other words, the relationship 
between mathematics/science interests and STEM major 
choice (specifically, Computing/Engineering and Other 
Sciences) did not differ for boys and girls. However, 
perceived mathematical and scientific ability signifi-
cantly moderated the relationship between gender and 
the choice of Computing/Engineering (vs. Non-STEM) 
degrees, whereby higher perceived ability had a greater 
effect on boys than girls (p < 0.05 for each). The interac-
tion with Social/Behavioral, Natural, and Other STEM 
fields (vs. non-STEM) was significant in the other direc-
tion, where perceived mathematics ability had a more 
positive effect on girls than boys (p < 0.05).

Figures  4 and 5 in Appendix show predicted prob-
abilities by race, by degree field cluster. These lines 

consistently had similar trends and slopes. These figures 
supported our null finding: the predictive relationship 
between perceived abilities and interests on STEM major 
choice was stable across students’ self-identified race 
categories.

We added one additional robustness check on our find-
ings, adding a final full re-analysis of our models with 
the NCES-generated scales for perceived abilities and 
interests, to assess the merits of our predictors as com-
pared to those made freely available to users of the HSLS 
dataset (mathematics and science self-efficacy, respec-
tively: x1mtheff, x1scieff; mathematics and science inter-
est, respectively: x1mthint, x1sciint). We did so to add 
further transparency for any studies that might employ 
these measures for replication or cross-cohort compari-
sons. The core findings aligned, but our predictor- and 
model-level statistics were stronger than those using the 
NCES constructs. For instance, Table 4’s full model with 
perceived abilities and interests had an F-test of 24.3 as 
compared to its counterpart in the NCES-variable anal-
ysis, with an F-test of 19.3. Similarly, Table  6’s F-test of 
19.5 was stronger than the comparative model which had 
the same N but a probability of 17.3. Accordingly, we did 
not report these findings here given the already extensive 
series of tables and figures included in the manuscript 
and its supplement. These checks did enhance our confi-
dence in this study’s design.

In summary, across our analyses, we found that per-
ceived abilities and interests could significantly and posi-
tively predict students’ STEM major choice. Notably, 
perceived mathematical and scientific abilities seemed 
to be a better predictor than mathematics and science 
interests. Finally, we found that these relationships did 
not vary by race. However, the relationship between 
perceived mathematics and science ability and STEM 
major choice did vary by gender, and with distinct effects 
depending on how STEM was defined and categorized.

Discussion
Given persistent disparities in STEM postsecondary 
majors and degrees, it is imperative to identify malle-
able factors that may welcome rather than deter students 
from majoring in these key fields. Our descriptive anal-
yses of U.S. students reported in Tables 1 and 2 show a 
clear gender gap and more nuanced racial disparities in 
STEM major choice. The effect size analysis suggests that 
while Black and Latino male students reported higher 
mathematics and/or science interest as compared to 
White male peers, women and some racially minoritized 
groups still represent a small share of STEM majors. Fur-
ther exploration of the data reveals that besides perceived 
abilities and academic interests, students’ observed math-
ematics and science abilities (grades) and father’s STEM 
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Table 6 Predictive relationships between perceived abilities, interests, and STEM major clusters

^ p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001. Standard errors are shown in parentheses. Multinomial logistic regression results are reported. RRR represents relative risk 
ratios, where numbers greater than zero represent a positive increase in the relative probability of an event occurring. N was rounded to the nearest ten to comply 
with NCES restricted‑data regulations

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009; 
Parent Survey, 2009; 2013 Update, Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005

Computing and engineering 
sciences

Social, behavioral, natural, and 
other sciences

Non‑STEM (Reference)

RRR SE RRR SE RRR SE

Dependent variable

 STEM degree attainment (Specific)

Perceived abilities

 Perceived mathematical ability 1.63** 0.31 1.08 0.09

 Perceived scientific ability 1.50*** 0.19 1.50*** 0.13

Academic interests

 Math interest 1.22 0.17 1.15^ 0.08

 Science interest 0.94 0.13 0.99 0.09

Student characteristics

 Gender (Reference = Boys)

  Girls 0.25*** 0.04 2.35*** 0.23

 Race/ethnicity (Reference = White)

  Asian 1.24 0.27 1.65*** 0.25

  Black 1.00 0.21 1.03 0.14

  Latina/o/x 1.48* 0.26 1.37 0.20

  Multiple and other race 0.83 0.15 1.20 0.14

 Family characteristics

  Family income 0.97^ 0.02 0.99 0.01

  Parental college degree 1.12 0.14 0.87^ 0.07

  Father’s occupation (STEM) 1.12 0.15 0.94 0.12

  Mother’s occupation (STEM) 1.19 0.15 1.14 0.11

 Student preparation and observed ability in H.S

  Highest H.S. math course 1.07 0.13 1.19^ 0.11

  Highest H.S. science course 2.02 0.17 1.08 0.09

  H.S. math course GPA 0.98 0.16 0.94 0.07

  H.S. science course GPA 1.23 0.21 1.25** 0.10

School characteristics

 High school type (Reference = Public)

  Catholic 0.78 0.13 1.11 0.13

  Other private 0.68** 0.10 0.86 0.10

 College type first attended

  Two‑year college 1.08 0.15 0.92 0.11

 High school location (Reference = Urban)

  Suburban 0.98 0.13 1.00 0.12

  Town 1.10 0.22 1.28 0.22

  Rural 0.80 0.13 1.20 0.17

Classroom characteristics

 Math teacher 0.82 0.11 0.85 0.08

 Science teacher 0.96 0.15 1.04 0.11

Constant 0.01*** 0.05***

 F test 19.45***

 Sample N 11,560

 Population N 2,713,260
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occupation also predict their STEM major choices. Two 
policy recommendations emerge from these findings.

First, we find that the gender gap in STEM fields 
remains severe. The results reported in Table 3 indicate 
that every female subgroup had lower perceived math-
ematical and scientific abilities than their correspond-
ing same-race male peers (e.g., Black girls had lower 
perceived abilities than Black boys). This is in line with 
extant research showing girls’ self-ratings are lower even 
when test scores are identical to those of boys (Perez-
Felkner, et  al., 2017). Traditional social norms such as 
“girls are not as good as boys at math” may continue to 
influence girls’ cognitive development (Harro, 2000). 
In our analytic model results, girls are less than half as 
likely as boys to major in STEM, 3/4 less likely to major 
in Computing/Engineering fields, and more than twice as 
likely to major in other STEM fields.

Notably, the moderating effect we observe with our sig-
nificant interaction terms—where perceived mathematics 
and scientific ability change the nature of the relation-
ship between gender and major choice—we see the status 
quo enhanced, not lessened. More positive perceptions 
of one’s ability promotes STEM, Computer/Engineering, 
and Other STEM major choice for both girls and boys, as 
we see in Tables  4, 6, and Fig.  2. However, boys see the 
greatest gains in STEM and Computer/Engineering major 
choice (as compared to non-STEM fields), even though 

they are already overrepresented in these fields. Girls 
experience greater gains than boys in the relationship 
between perceived scientific ability and Social/Behavio-
ral, Natural, and Other STEM fields (see Fig. 2). But while 
these patterns support individual students, at the aggre-
gate level, they reinforce rather than undo existing gen-
der distinctions. It may be that gendered (and racialized) 
social norms mute the potential effect of academic inter-
est and perceived abilities for students who do not regu-
larly encounter reinforcing motivational forces in their 
secondary and postsecondary schooling environments.

Socializing contexts in schools, families, and broader 
culture could be sites to undo the status quo, to allow 
girls to believe (as boys seem to) that they are positioned 
to be successful in mathematics and science classrooms 
and careers that employ these skills. This may be espe-
cially important in public schools who enroll most U.S. 
students, as shown in our descriptive results. Our find-
ings indicate the chances of majoring in STEM are con-
siderably stronger in public high schools, even after 
controlling for state fixed effects as we did in an earlier 
analysis. Public high schools appear especially poised 
for potential interventions to increase STEM interest, 
which may also foster higher perceived mathematics 
and science ability in high school and subsequent post-
secondary STEM majors. Given the positive association 
between higher levels of (and indeed any) high school 

Fig. 2 The relationships between perceived ability and STEM major choice, by gender. Source: U.S. Department of Education, National Center for 
Education Statistics, High School Longitudinal Study of 2009 (HSLS: 2009–16), Base Year, Student Survey, 2009; Parent Survey, 2009; 2013 Update, 
Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005
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physics course taking, making these foundational courses 
available to students—irrespective of demographic back-
ground—appears essential to allow them the opportunity 
to enter and complete STEM majors across disciplines. 
Studies of 2-year colleges also suggest both opportu-
nities and challenges for STEM equity in this sector, as 
gender gaps remain in mathematics-intensive STEM 
fields (Perez-Felkner et al., 2019) and research attending 
to gender and race together find additional challenges for 
racially minoritized women transferring from 2-year to 
4-year college STEM programs (Allen et al., 2022).

Our second policy recommendation focuses on finan-
cial support for STEM-aspiring students. With respect to 
socioeconomic challenges that disproportionately affect 
students of color, St. John and Asker (2003) illustrated that 
many students with academic preparation cannot enter col-
lege because of financial constraints. Quadlin (2017) found 
that students without financial burdens were more likely 
to choose liberal arts majors in college, while low-income 
students may be motivated to pursue college majors associ-
ated with higher paying careers, including STEM. However, 
STEM majors may require additional time and course-
work for students whose high schools did not offer as 
many opportunities, which may present a financial burden. 
Public and institutional policy interventions can address 
such challenges by enhancing access to financial aid for 

underrepresented students to pursue STEM careers, with 
benefit for larger economic opportunity.

Conclusion
Using the most recent nationally representative data-
set, this study examines the longitudinal effects of 
self-assessed perceived ability and academic interest in 
mathematical and scientific domains on high students’ 
postsecondary STEM major choice. Major findings 
include that (1) perceived mathematical and scien-
tific abilities positively predict students’ STEM major 
choice; (2) higher mathematics and science interests 
increase the likelihood of majoring in STEM fields, but 
less so than perceived mathematical and scientific abili-
ties, and (3) these relationships vary by gender but do 
not consistently vary by race/ethnicity. Together, these 
findings suggest that high school educators ought to 
focus more on encouraging students in mathematics 
and science courses and activities, to enhance their per-
ceived mathematical and scientific abilities, ultimately 
positioning them to potentially enter STEM fields. 
Additionally, public schools organized to support the 
ambitions of STEM students of all backgrounds may be 
better positioned to reduce postsecondary disparities 
in STEM major choice.

Fig. 3 The relationships between academic interest and STEM major choice, by gender. Source: U.S. Department of Education, National Center for 
Education Statistics, High School Longitudinal Study of 2009 (HSLS: 2009–16), Base Year, Student Survey, 2009; Parent Survey, 2009; 2013 Update, 
Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005
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Appendix
See Figs. 4, 5 and Tables 7, 8, 9, 10.

Fig. 4 Predicted probability of selecting specific STEM Majors, by perceived ability and race. Source: U.S. Department of Education, National Center 
for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 2009–2016), Base Year, Student Survey, 2009; Parent Survey, 2009; 2013 
Update, Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005

Fig. 5 Predicted probability of selecting specific STEM Majors, by academic interest and race. Source: U.S. Department of Education, National 
Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 2009–2016), Base Year, Student Survey, 2009; Parent Survey, 2009; 
2013 Update, Second Follow‑up, Student Survey, 2016; Common Core of Data, Private School Survey, 2005
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Table 9 Reliability for math and science interests

Items 2 and 3 were negatively worded. All other items were coded as 1 = strongly agree, 4 = strongly disagree. For interpretability, we recoded items 1 and 2 as 
1 = strongly disagree, 4 = strongly agree. Due to the missing data, 18,960 and 17,440 observations are tested for math and science interests, respectively

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009

Items Strongly disagree Strongly 
Agree

1. You are enjoying this math/science class very much 1 2 3 4

2. You think this math/science class is a waste of your time 1 2 3 4

3. You think this math/science class is boring 1 2 3 4

Reliability Cronbach’s Alpha (α)

Math Interests Science Interests

0.78 0.81

Table 10 Reliability for students’ feelings towards their math and science classroom teachers

Originally, Item 6 and Item 8 are negatively worded, all other items are coded as 1 = strongly agree, 4 = strongly disagree. In this study, we recoded these as 
1 = strongly disagree, 4 = strongly agree. Due to the missing data, 18,880 and 17,420 observations were tested for students’ feeling about math and science teachers, 
respectively

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009

Items Strongly disagree Strongly agree

1. Math/science teacher values and listens to students’ ideas 1 2 3 4

2. Math/science teacher treats students with respect 1 2 3 4

3. Math/science teacher treats every student fairly 1 2 3 4

4. Math/science teacher thinks every student can be successful 1 2 3 4

5. Math/science teacher thinks mistakes are okay as long as all students 
learn

1 2 3 4

6. Math/science teacher treats some kids better than other kids 1 2 3 4

7. Math/science teacher makes math/science interesting 1 2 3 4

8. Math/science teacher treats males and females differently 1 2 3 4

9. Math/science teacher makes math easy to understand 1 2 3 4

Reliability Cronbach’s Alpha (α)

Feeling about math teacher Feeling about science teacher

0.89 0.89

Table 8 Reliability for perceived mathematical/scientific abilities

Item 3 was negatively worded, all other items were coded as 1 = strongly agree, 4 = strongly disagree. For interpretability, we recoded item 3 as 1 = strongly disagree, 
4 = strongly agree. To more precisely generate the Cronbach’s reliability measure, we included the full dataset rather than just the analytic sample. Due to item‑level 
missing data, 18,580 and 17,380 observations were tested for perceived mathematical and scientific abilities, respectively

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS: 09), Base Year, Student Survey, 2009

Items Strongly 
disagree

Strongly 
agree

1. You see yourself as a math/science person 1 2 3 4

2. Others see you as a math/science person 1 2 3 4

3. You really understand math/science assignment 1 2 3 4

4. You are confident to do an excellent job on math/science test 1 2 3 4

5. You are certain that you can understand the most difficult material presented in the textbook in the 
math/science course

1 2 3 4

6. You are certain that you can master the skills being taught in the math/science course 1 2 3 4

7. You are confident that you can do an excellent job on assignments in the math/science course 1 2 3 4

Reliability Cronbach’s Alpha (α)

Perceived Math Ability Perceived Science 
Ability

0.89 0.87
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