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Abstract 

Background:  Functional thinking is characterized as a specific way of thinking in relationships, dependencies, and 
changes. Hence, beyond mathematics, it is also crucial for other (STEM) disciplines as well as for everyday situations. In 
particular, dealing with different representations of functions and changing between them are core function-related 
competencies, which are correspondingly needed for the formation of appropriate concepts and flexible problem-
solving in various situations. Therefore, this study investigated students’ (N = 856) competencies related to represen-
tational changes of elementary functions and, in particular, assessed which changes are especially easy or difficult for 
students. Moreover, possible school track and gender differences were investigated by performing DIF analyses within 
the framework of Rasch modeling. The data were gathered using a paper–pencil test administered after the students 
had completed the teaching unit on linear functions in their mathematics lessons.

Results:  Altogether, students were found to have limited competencies related to representational changes of 
elementary functions. There was no clear pattern regarding the types of representational change that were dif-
ficult or easy for them. Moreover, girls performed better on purely mathematical tasks, whereas boys did better at a 
complex modeling and problem-solving task. Classes from the academic track produced better results in tasks with a 
situational context compared to their peers from non-academic tracks, who performed relatively strongly on purely 
mathematical tasks.

Conclusions:  These findings imply that various representations and representational changes should be included 
in lessons on functions to support students in building a rich concept of function and flexible problem-solving skills, 
thus fulfilling curricular requirements and responding to didactical considerations. In particular, the teaching of 
functions should be more balanced by mixing tasks with and without a situational context and the corresponding 
representational changes. These findings should motivate teachers, in particular those teaching non-academic tracks, 
to give a more prominent role to situational contexts in their lessons on functions in order to foster their students’ 
learning and build a bridge between mathematics and real-world situations.

Keywords:  Representational changes of elementary functions, Students’ competencies, School track differences, 
Gender differences, DIF analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Being able to (mentally) deal with functions is funda-
mental for the learning of mathematics (Eisenberg, 
1992; Selden & Selden, 1992). This is not only because 
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the concept of function is central for the discipline of 
mathematics (Büchter & Henn, 2010), but also because 
functional thinking1 is characterized as a specific and 
meaningful way of thinking in relationships, interde-
pendencies, and changes (Vollrath, 1989). Hence, func-
tional thinking is needed—beyond mathematics—in 
other (STEM) disciplines and, in particular, in everyday 
situations where two quantities are connected (Günster & 
Weigand, 2020; Vollrath, 1989; Wittmann, 2008). There-
fore, functions play an important role throughout stu-
dents’ schooling—also in Germany (e.g., KMK, 2004). To 
develop a sustainable concept of functions (Niss, 2014) 
and flexibly use mathematical objects, such as functions 
for problem-solving (Heinze et al., 2009), students learn 
to change between different representations of functions 
(e.g., KMK, 2004). As an example beyond the mathemat-
ics classroom (a focus on the mathematics classroom will 
be provided in the following), experiments in science les-
sons require students to be able to adequately deal with 
and change between function representations when they 
document and analyze relationships between at least two 
quantities (for an overview of the relevance of represen-
tations and representational changes in STEM subjects, 
see, e.g., Gilbert & Treagust, 2009; Treagust & Fischer, 
2017; Treagust & Tsui, 2013).

However, there is vast empirical evidence showing that 
students have problems with the content area of func-
tions, especially with changes between different func-
tion representations (e.g., Bossé et al., 2011a; McDermott 
et al., 1987; Moschkovich, 1999; Nitsch, 2015; Sproesser 
et  al., 2020; Vogel, 2006). A first step for counteracting 
such learning difficulties is to identify which kind of tasks 
is particularly easy or difficult for students. Although 
various characteristics of a task might influence its dif-
ficulty (e.g., the concrete context, linguistic complex-
ity, or the required mental concepts and processes; see, 
e.g., Jordan et al., 2006, for an overview), this study refers 
specifically  to the representational changes and (men-
tal) activities that are required for a particular task (see 
also Bossé et  al., 2011a; Geiger, 2020). In this regard, it 
is necessary to determine the kinds of tasks for which 
(specific groups of ) students need support, e.g., in the 
form of teaching–learning material or teachers’ profes-
sional development activities. Therefore, this study ana-
lyzes students’ competencies related to representational 
changes of functions. As powerful concepts taught at 
the beginning of instruction on functions are crucial for 
further learning, the present study focuses on students’ 

first formal contact with functions. This first contact 
often takes place when students work on the teaching 
unit on linear functions, as is the case in the teaching–
learning context of this study (KMK, 2004; Land Baden-
Wuerttemberg, 2004a, 2004b, 2012, 2016). Beyond linear 
functions, in this teaching unit, students are usually 
confronted with empirical functions,2 which, e.g., might 
require them to describe the speed of a skier when s/he 
skis down a mountain. In this paper, we summarize the 
functional relationships described above under the term 
elementary functions.

Beyond investigating students’ competencies in mak-
ing representational changes in the whole sample, this 
study analyzes whether there are differences in the com-
petencies of specific groups of students. Like in many 
other school systems, the school system in the teaching–
learning contexts of this study is split into several school 
tracks with differing curricular requirements. Thus, we 
will assess possible differences in competency between 
students from academic and non-academic tracks. 
Moreover, we will evaluate potential gender differences, 
as gender effects are well documented in mathematics 
education.

In the following, we will first present the theoretical 
and empirical background related to (elementary) func-
tions and to gender differences in mathematics education. 
Afterwards, the methods of the study will be introduced 
before the results are presented and discussed.

Theoretical and empirical background
Functions and their representations in mathematics 
education
A function is a specific relation between two non-empty 
sets which associates each element of set A (the domain) 
to exactly one element of set B (range) (Büchter & Henn, 
2010; Niss, 2014). Because of the curricular focus in the 
teaching–learning context of this study, in the following, 
we will relate particularly to functions from real numbers 
to real numbers. As can be seen from the above defini-
tion, functions are abstract and difficult to grasp, like 
other mathematical objects. However, learners can access 
functions and communicate about them using differ-
ent representations (Duval, 2006; Vogel et  al., 2007; see 
also Rolfes et al., 2021). Function representations that are 
commonly used in school contexts are situational rep-
resentations (e.g., descriptions, pictures), tables, graphs, 

1  We follow Vollrath’s (1989, p. 6) definition of functional thinking, i.e., the 
type of thinking typically involved in dealing with functions (translated by the 
authors).

2  Empirical functions are understood as functions that result from observing 
or measuring real-world phenomena. As these phenomena are mostly com-
plex, they often cannot be easily mathematized using a global function equa-
tion. Moreover, their interpretation is clearly related to the given context. In 
the mathematics classroom, they are often referred to in a qualitative way and 
represented using a sketched graph (see, e.g., Fig. 3).
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and equations (KMK, 2004; Land Baden-Wuerttemberg, 
2004a, 2004b, 2012, 2016; see also Büchter & Henn, 
2010). In the following, we will illustrate such represen-
tations related to the linear function with the equation3 
y = 2x + 3 . The graph of this function is a straight line 
with the Slope 2, which intersects the vertical axis at the 
y-Intercept 3 (see Fig.  1a). Both parameters, the slope 
and y-intercept, can be detected in the corresponding 
function equation y = 2x + 3 as well as in the table (see 
Fig.  1b). If we relate the positive part of this function’s 
domain to the context price of a taxi ride (see Fig.  1c), 
these parameters also express relevant situational 
features.

Changes between representations of functions
Changes between different representations are crucial for 
concept formation as well as for cognitive flexibility and 
adaptivity when solving (mathematics-related) problems 
(Duval, 2006; Heinze et  al., 2009). This general consid-
eration also applies to the domain of functions, as differ-
ent representations highlight specific characteristics of 
a function and might be more or less adequate for solv-
ing a concrete problem. Moreover, a function should 
not be limited to a single representation, as the inter-
play between several representations can be meaning-
ful for students to grasp all relevant characteristics of a 
real function (Barzel et al., 2005; Niss, 2014; Vogel, 2006). 

Learners might struggle when they consider a represen-
tation in isolation (Duval, 2006) or when they identify a 
function with a single representation (Niss, 2014). In this 
context, Leinhard, Zaslavsky, and Stein (1990, p. 3) point 
out that: “…  algebraic and graphical representations are 
two very different symbol systems that articulate in such 
a way as to jointly construct and define the mathemati-
cal concept of function.” If this citation is extended to 
apply to function representations in general, the extent to 
which an individual is able to (I) read/interpret different 
representations, (II) recognize and use the advantages of 
specific representations, and (III) change between repre-
sentations reveals his or her understanding of functions 
(Adu-Gyamfi, 2007; Barzel et al., 2005; Büchter & Henn, 
2010; Vollrath, 1989).

A closer look at concrete representational changes 
reveals that they require a learner to engage in specific 
(mental) activities (Barzel & Ganter, 2010; Hußmann 
& Laakmann, 2011; Leuders & Prediger, 2005; Lichti, 
2019; see also Vogel, 2006) in addition to mastering the 
source and target representation. On top of other factors, 
such as how often and in what manner the correspond-
ing representational changes are treated in the math-
ematics classroom (some subtleties might be treated and 
acknowledged differently by different mathematics teach-
ers), these specific (mental) activities might influence 
the empirical difficulty of these representational changes 
(Bossé et al., 2011a). In the following, we will describe the 
representational changes in the context of linear func-
tions which are investigated in this study:

•	 When changing from a situational representation to 
a graph, learners have to understand the underlying 
situation in order to determine concrete points or the 

Fig. 1  Graph, table, and situational representation of the function with the equation y = 2x + 3

3  Based on various textbooks, we refer to the equation as y = instead of as 
f (x) = . Please note that in order to provide a brief introduction to these repre-
sentations, we do not go into details, e.g., on the domain and codomain. Such 
details are limited in the presented table (Fig.  1b) and description (Fig.  1c) 
compared to the graph (Fig.  1a). The same applies to the function equation 
(domain and codomain not explicitly addressed).
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y-intercept and slope that they need in order to draw 
the graph.

•	 When changing from a situation to an equation, stu-
dents need to read the characteristics of the situation 
that directly determine the slope and y-intercept or 
to identify pairs of associated values in the situa-
tion which enable them to calculate the slope and 
y-intercept. Moreover, these parameters need to be 
arranged meaningfully in an equation.

•	 When changing from a graph to a situation—
depending on the concrete task—learners need to 
interpret the graph itself (e.g., increasing, decreas-
ing, type of function) or relevant points or parame-
ters thereof. Then, they have to illustrate or verbalize 
these aspects in light of the given situation.

•	 When changing from an equation to a graph, stu-
dents can use conceptual knowledge about the 
parameters; i.e., they identify the slope and y-inter-
cept in the equation and mark them directly or use 
a gradient triangle in the coordinate system. Alter-
natively, students can also calculate the coordinates 
of two or more points (recorded, e.g., in a table) and 
draw a graph using them.

•	 When changing from a graph to an equation, learners 
can also use conceptual knowledge about the param-
eters and directly read the slope (using a gradient 
triangle) and the y-intercept from the graph. Then, 
both parameters have to be arranged in a meaning-
ful way in a function equation. As an alternative, stu-
dents can read specific points of the graph and use 
formulas/a linear equation system to calculate the 
slope and y-intercept.

The procedures outlined for changing between graphs 
and equations using conceptual knowledge about the 
parameters appear to be commonly included in German 
textbooks (e.g., Freudigmann et al., 2016; Maroska et al., 
2006), in particular in the teaching–learning contexts of 
this study. The ability to identify the parameters in these 
specific representations is a prerequisite for changing 
between them.

As described, when changing between particular rep-
resentations of functions, students should draw on con-
ceptual knowledge about these representations; i.e., they 
should understand the meaning of the source and target 
representations as well as know how particular charac-
teristics of the function can be translated to make the 
representational change. Unfortunately, previous studies 
on functions report that students only learn “rules with-
out understanding the underlying concepts to which they 
refer, and this often results in mathematics becoming a 
formal, dull, and virtually unusable subject” (Swan, 1985, 
p. 6; see also Bossé et  al., 2011a; Sajka, 2003). Hence, 

students are able to perform a representational change 
without having any underlying conceptual understand-
ing. This is in line with our prior research (2020), which 
indicates that changes between graphs and equations are 
partly taught and learned in an algorithmic way. In other 
words, students learn to follow rules without under-
standing them. This means that students do not draw on 
conceptual knowledge, but that they follow an algorithm 
such as “doing XY with the first number of the equation 
and YZ with the second number” and vice versa. Fol-
lowing such an algorithm without understanding it can 
be considered purely procedural knowledge, which is 
expected to be prone to error and likely to be forgotten 
(Rittle-Johnson et al., 2015).

An algorithmic approach to functions might be 
reduced by referring to situational representations. Zin-
del (2019) suggests using representational changes that 
include situations, as students can only master these 
changes if they understand the corresponding situational 
representation and its mathematical equivalent. Nathan 
and Koedinger (2000) empirically show that learners 
often work more successfully on tasks with a situational 
context than on purely mathematical tasks (see also 
Sproesser et al., 2020) as they can draw on informal and 
less abstract solution strategies. However, these studies 
also provide empirical evidence that teachers often hold 
a so-called symbol-precedence view; i.e., teachers con-
sider solving purely mathematical tasks as a prerequisite 
for solving tasks with a situational context. Moreover, in 
our previous study (Sproesser et  al., 2020), we reported 
that some teachers tend to neglect tasks with situational 
representations and focus on purely mathematical tasks 
in their lessons on functions (see also Bossé et al., 2011a). 
Despite this focus, their students do not systematically 
perform better when making purely mathematical repre-
sentational changes. Such a disregard of situational rep-
resentations is not conducive to developing mathematical 
literacy in general (cf. OECD, 1999). It also fails to com-
ply with the German Educational Standards (KMK, 2004) 
and, in particular, with the educational aim that students 
should learn to connect mathematical and situational 
representations of functions in order to use functions “for 
describing and analyzing many aspects of our economic, 
physical and social environment” (Swan, 1985, p. 6).

Although tasks involving a situational representa-
tion might reduce the risk of algorithmic computation 
and result in learners using informal solution strategies, 
changing between situational and mathematical repre-
sentations can also pose specific difficulties for learners. 
With regard to the modeling cycle, Vogel (2006) explains 
that the situational representation involved addresses 
another abstraction level than a purely mathematical rep-
resentation (see also Geiger, 2019). Nitsch (2015) deduces 
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from this consideration that students’ everyday concepts 
might interfere and cause specific errors—in particular in 
the field of functions. Similarly, Bossé et al., (2011a) argue 
that representational changes involving a situational 
representation constitute the most difficult changes for 
learners.

The preceding paragraphs illustrate that different rep-
resentational changes require particular (mental) activi-
ties; moreover, the representations involved have distinct 
characteristics which might make such a representational 
change more or less difficult, from a theoretical point 
of view (cf. Bossé et  al., 2011a). It stands to reason that 
these theoretically driven considerations result in learn-
ers encountering empirical difficulties. Furthermore, 
it should be noted that—beyond task characteristics—
classroom and learner characteristics might also affect 
whether an individual successfully performs a task such 
as a representational change or if s/he encounters prob-
lems (ibid.). Such a characteristic might be, e.g., affilia-
tion to a specific school track. Therefore, the next section 
gives an overview of the curricular requirements related 
to elementary functions, with details for the different 
school tracks involved in the study.

Curricular requirements related to functions
The German Educational Standards for mathematics 
apply to Grades 5 to 10 of all German middle schools. 
Accordingly, in the area of elementary functions, the cur-
riculum focuses on their characteristics, different rep-
resentations, and representational changes as well as, 
in particular, on situational representations in order to 
solve real-world problems (KMK, 2004, pp. 11). In most 
regions of Germany and in particular in the teaching–
learning contexts of this study, a three-tier school system 
is established for middle schools. This means that stu-
dents can choose one of three different tracks (the aca-
demic, medium, and most basic track4) for middle school 
depending on the school-leaving qualification they wish 
to obtain. There are distinct curricular requirements for 
these tracks, which are based on and in line with the Ger-
man Educational Standards. A comparison of the cur-
ricular requirements related to elementary functions for 
the academic and non-academic tracks reveals that there 
are some common requirements, but also several dif-
ferences (Land Baden-Württemberg, 2016, pp. 39; see 
also Land Baden-Wuerttemberg, 2004a, 2004b, 2012). 
Students of all tracks have to learn to represent func-
tional relationships (in particular proportional, anti-
proportional, and linear relationships) using texts, tables, 

equations, and graphs. Learners in the most basic track, 
however, do not have to learn to flexibly change between 
representations. Moreover, all students should be able 
to read situation-related characteristics from different 
function representations (e.g., time points, increasing/
decreasing). Additionally, the curriculum requires all 
students, except for those in the most basic track, to be 
able to draw graphs of linear functions with a slope and 
a gradient triangle and to identify an equation for a given 
graph. Students should also be able to calculate the slope 
and y-intercept from the coordinates of two points and, 
hence, be able to determine the corresponding linear 
function equation. Furthermore, they should be able to 
interpret changes in  situational contexts, although only 
students from the academic track are taught to use the 
notion of change rate in this context. Only students in the 
academic track learn formal characteristics of functions. 
Thus, although function representations and represen-
tational changes are taught in all school tracks, there are 
differences in the levels of proficiency targeted in the par-
ticular tracks.

Textbooks that are commonly used within our teach-
ing–learning contexts (e.g., Backhaus et  al., 2017; Freu-
digmann et  al., 2016; Maroska et  al., 2006) meet these 
curricular requirements. They cover all of the mentioned 
representational changes (between graphs, equations, sit-
uations, tables). However, tables play a minor role in the 
teaching unit on linear functions and are often only used 
as intermediate representations (see also Nitsch, 2015). 
As mentioned above, our previous study (Sproesser et al., 
2020) revealed that several teachers strongly focused on 
changes between graphs and equations, in particular in 
the non-academic tracks, and tended to neglect tasks 
with situational representations (see also Bossé et  al., 
2011a; Cunningham, 2005).

The aim of this study is to analyze students’ competen-
cies in changing between representations of elementary 
functions and, in particular, to identify which changes 
(specific groups of ) students can(not) perform easily. 
Beyond investigating different school tracks as a possible 
reason for differences in competency, we will also evalu-
ate gender effects in this field, which are well documented 
for the subject of mathematics in general. Therefore, the 
next section provides an overview of gender differences 
in mathematics and, especially, gender differences in 
dealing with functions.

Gender differences in the fields of mathematics 
and functions
Various national and international studies have revealed 
significant advantages for boys in terms of general mathe-
matical competency, with mostly small effect sizes (Hyde 
et al., 1990; Köller & Klieme, 2000; Lindberg et al., 2010; 

4  Please note that there are two non-academic tracks: a medium track and the 
most basic track. The latter prepares students to enter vocational training.
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OECD, 2001, 2004, ; Schroeders et al., 2013). Despite this 
widespread evidence, there are empirical findings indi-
cating that gender differences do not exist per se. Dif-
ferences are rare or small at elementary school level and 
increase as children grow older, in particular at secondary 
school level (Beller & Gafni, 1996; Hyde et al., 1990; see 
also Winkelmann et al., 2008). Moreover, there is varia-
tion between countries regarding gender differences; i.e., 
the magnitude of gender effects differs from one country 
to another, and in some cases there is empirical evidence 
in favor of girls (Blum et al., 2004; Else-Quest et al., 2010; 
Guiso et al., 2008; OECD, 2010).

Looking at these findings, one might seek an underly-
ing reason for these gender differences in mathematics. 
Cognitive and (neuro-)biological models attribute dif-
ferences in mathematical competency mainly to vary-
ing spatial abilities between boys and girls (Maier, 1999; 
see also Büchter, 2010). However, this does not explain 
the age- or country-related variation in gender differ-
ences outlined above. In contrast, psycho-social models 
explain the differences based on gender stereotypes in 
children’s domestic environment, such as family mem-
bers considering mathematics to be a typically male 
domain. This might result in girls having a less positive 
attitude towards mathematics (Eccles et al., 1990), more 
anxiety (Chipman et  al., 1992), and lower interest and 
self-concept (Wigfield & Eccles, 1992). Consequently, 
girls perform worse in mathematics for affective or moti-
vational reasons. Models of school-related socialization 
imply that such gender stereotypes related to mathemat-
ics might also be common among teachers who therefore 
treat boys and girls differently—at least unintentionally—
and increase gender differences (Fennema et  al., 1990; 
Muntoni et  al., 2020). In this context, Chipman et  al., 
(1991) report that mathematics curricula and textbooks 
are more geared to boys than to girls. As reducing gen-
der differences in mathematics is a declared objective of 
mathematics education (Budde, 2009; Leder & Forgasz, 
2008), teachers should be aware of gender-related sociali-
zation mechanisms and, in particular, of the fact that they 
often hold mathematics-related gender stereotypes (Kel-
ler, 1998; Muntoni et al., 2020).

Empirical research on gender differences in math-
ematics indicates that the processes and content areas 
underlying tasks make a difference. At the process level, 
gender differences in favor of boys are particularly fre-
quent for complex problem-solving and modeling tasks 
which require non-standard strategies; girls, on the other 
hand, perform better on calculus-oriented tasks requir-
ing standard solution strategies (Gallagher et  al., 2000; 
Hyde et  al., 1990, 2008; Köller & Klieme, 2000). At the 
content level, boys have been found to have the biggest 
advantage in geometry and analysis, compared to fewer 

or no differences or even advantages for girls in algebra 
and arithmetics (Hyde et al., 1990; Kaiser & Steisel, 2000; 
OECD, 2009). Studies focusing on the domain of func-
tions also report that boys achieve higher competency 
scores on average (Klinger, 2018; Lichti & Roth, 2019; 
Nitsch, 2015; Schroeders et al., 2013). Moreover, the find-
ings reveal a pattern that is largely consistent with the 
findings of general mathematics-related research. Boys 
perform better on tasks that include a situational context 
and graphs, whereas girls are more proficient in execut-
ing purely mathematical tasks requiring procedural or 
calculus-oriented knowledge and tasks in the verbal form 
(Bayrhuber-Habeck, 2010; Klinger, 2018; see also Rost 
et al., 2003).

In order to optimally foster the learning of both girls 
and boys, e.g., with regard to functions, and hence to 
counteract possible gender differences, the extent of such 
gender differences needs to be empirically investigated. 
In addition, it is of interest to identify whether there 
are specific types of representational changes that are 
particularly difficult for girls or boys. This is one of the 
research focuses of the present study. We will outline the 
corresponding research questions in the next section.

Research questions
The considerations raised in the preceding sections imply 
that, although the mastery of functions is of high rele-
vance within and beyond mathematics, learners encoun-
ter various problems in this domain. This also applies to 
representational changes, which are of particular impor-
tance for the formation of function-related concepts and 
for flexible problem-solving. The goal of this study is to 
gain empirical insights into students’ competencies in 
changing between representations and to evaluate, in 
particular, which changes are especially easy or difficult 
for them. We focused on elementary functions (empirical 
and linear functions) which constitute the students’ first 
formal contact with functions in our teaching–learning 
context and therefore form the basis for further learning 
on functions.

In this perspective, we will first take a look at the whole 
sample and then consider particular subgroups. As differ-
ent tracks of middle schools are subject to varying curric-
ular requirements, we will investigate whether affiliation 
to a specific school track accounts for differences in stu-
dents’ competencies. Moreover, we will evaluate gender 
differences in our sample and clarify whether findings 
from other mathematics- or functions-related studies 
can be confirmed with our sample. The corresponding 
research questions are:

1.	 How competent are the students of our sample in 
changing representations of elementary functions? 
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Which representational changes are difficult, and 
which are easy for them?

2.	 What are the differences between students from aca-
demic and non-academic school tracks?

3.	 Are there gender differences in students’ competency 
in making representational changes?

Although several studies on function-related learn-
ing and on typical errors in this area have been con-
ducted in recent years, also in Germany (cf. Ganter, 
2013; Klinger, 2018; Lichti, 2019; Nitsch, 2015; Rolfes, 
2018), and although there are assumptions as to what 
might make representational changes more or less dif-
ficult (Bossé et al., 2011a), there are very few empirical 
insights into the above-mentioned area of research. As 
we focus on a very early stage in the formal learning of 
functions, the resulting empirical insights might serve 
as a starting point for developing specific supporting 
material or activities and, hence, might help to provide 
a sound basis for further learning on functions.

Methods
Sample
The data analyzed in this study were collected between 
2016 and 2018 from 856 students (46.0% female). The 
opportunity sample was recruited in classes whose 
teachers or schools had consented to collaborate with 
the Heidelberg University of Education. The testing 
was conducted in 17 classes from the academic track 
(thereof 15 Grade 7 and two Grade 8; altogether 447 
students; 49.6% female) and in 29 classes from the 
non-academic tracks (thereof from the medium track: 
one Grade 7 class and 22 Grade 8 classes; the most 
basic track: one Grade 9 class; a mix of the medium 
and most basic tracks: four Grade 8 classes and one 
Grade 10 class; altogether 409 students; 43.7% female). 
When they participated in the study, the learners were 
aged between 11 and 17  years (M = 13.21; SD = 0.94). 
All classes had just worked on elementary functions 
before the data were collected. The school grades 
varied because the teachers and schools in our sam-
ple opted to teach elementary functions in different 
grades.

The number of participating classes was not bal-
anced with regard to the different school tracks 
because access was limited to classes from the most 
basic school track and to classes with students from 
different non-academic tracks. As the number of stu-
dents from the most basic track was very small in our 
sample, for Research Question  2, we will differentiate 
only between academic and non-academic tracks.

Test instrument
The data presented in this paper were gathered using an 
instrument by Nitsch (2015) adapted to the age group 
of our sample. As the study by Nitsch was conducted 
in Grades 9 to 11 and focused on empirical, linear, and 
quadratic functions, not all items appeared to be feasible 
for the present sample. Therefore, items addressing quad-
ratic functions were replaced by more elementary ones. 
Two experts with long-standing school experience found 
the test items of the adapted test version to be valid with 
regard to the present curricular requirements (KMK, 
2004; Land Baden-Wuerttemberg, 2004a, 2004b, 2012, 
2016) and in line with the content of the commonly used 
textbooks (Backhaus et  al., 2017; Freudigmann et  al., 
2016; Maroska et al., 2006). Therefore, the test items were 
considered appropriate for the intended target group.

To meet the goals of the study, the test specifically 
covers competency in making representational changes 
for elementary functions. The main focus is on changes 
between situational representations, graphs, and equa-
tions as well as on conceptual knowledge on the 
parameters (see 2.2). As tables are not typical for our 
teaching–learning context, the test items do not specifi-
cally refer to tables, but these can be used as intermediate 
representations. This is in line with Nitsch (2015).

The instrument includes 22 items, thereof 12 with an 
open-ended format and 10 a single-choice format (see 
Table  1 for an overview). As implemented by Nitsch 
(2015), the distractors for the single-choice items were 
chosen on the basis of typical student errors. In the fol-
lowing, we will describe the test in more detail and pre-
sent some sample items.

Three items instruct students to find a function equa-
tion for a given situation. In the sample item (Test Item 4) 
presented in Fig. 2, students are asked to find an equation 
for the volume of water that is still in an aquarium or for 
the water that has already leaked out of it. The contexts of 
the two other test items of this type refer to the costs of 
a taxi ride and the relationship between the burning time 
and the length of a candle. These three test items resem-
ble so-called word problems that are typically used in 
common textbooks (Backhaus et al., 2017; Freudigmann 
et al., 2016; Maroska et al., 2006).

Moreover, eight test items focus on the change between 
a graph and a situation. In particular, six of them require 
a change from a graph to a situation, like in the sample 
item (Test Item 1) in Fig. 3. Students are asked to inter-
pret a given graph with the context of traveling to school. 
They can come up with various stories as long as they 
contain the information required in the task. In another 
test item, students are asked to interpret the graph of the 
speed of a racing car and therefore identify the corre-
sponding racing track (cf. OECD, 2000). In the four other 



Page 8 of 18Sproesser et al. International Journal of STEM Education            (2022) 9:33 

test items requiring a change from a graph to a situation, 
students are asked to read situation-related character-
istics from graphs such as a concrete value or the slope 
interpreted as speed (racing und running contexts). In 
two more test items, a change from a situation to a graph 
is required; i.e., students are asked to draw or identify a 
graph that depicts a given situation (contexts: filling a 
vessel, speed of a skier).

Three of the purely mathematical test items without 
a realistic context (i.e., no situational representation is 
given or required) focus on conceptual knowledge about 
the parameters, without addressing a representational 
change. These test items were included because in the 
present teaching–learning contexts, changes between 
a graph and an equation are mostly taught using con-
ceptual knowledge about the parameters (see Sect. 2.1). 
As no further activity is required of the student, we will 
label these test items as items measuring basic concep-
tual knowledge in the following. A sample item (Test 
Item 3) in which students are asked to read the slope and 
y-intercept from a given equation is displayed in Fig.  4. 
The two other test items on basic conceptual knowledge 
ask the students to read the slope and y-intercept from a 
given graph (Test Item 5), respectively, to form a function 
equation from the values for the slope and y-intercept 
(Test Item 11).

Four of the other purely mathematical tasks require a 
change from an equation to a graph (an item thereof pro-
vides the slope as a fraction), as displayed in Fig. 5 (Test 
Item 2). Four more test items ask the students to change 
the representation in the other direction—from a graph 
to an equation (one item thereof provides the slope as a 
fraction).

The above-presented items demonstrate that the test 
should be applicable both in Germany and beyond, 
although it was developed specifically for the teaching–
learning contexts of this study. The full test instrument is 
available on https://​t1p.​de/​Spr-​Proje​cts.

Analyses
In the context if this study, data coding was performed 
by three independent raters using a specific codebook. 
For several open-ended test items, such as those shown 
in Figs. 2 and 3, different solutions were coded as correct. 
Approximately 25% of the data were double-coded by 
independent raters, with satisfactory interrater reliabil-
ity values (Wirtz & Caspar, 2002; Cohens ϰ > 0.90 for 21 
test items, ϰ = 0.82 for one test item). The Cohen’s Kappa 
and reported descriptive statistics were calculated using 
SPSS 25. The effect sizes are provided as Cohen’s d.

For further analyses, we used Rasch modeling with the 
software Conquest 2.0 (Wu et al., 2007). Missing values 

were coded as zero points, as the students had enough 
time to work on the test items. We specified the mode-
ling with the PV estimator and set the constraints on the 
cases, as our analyses did not focus on single students but 
on either the whole sample or subsamples (e.g., girls and 
boys). Students’ competency was modeled using a four-
dimensional Rasch model, with the dimensions of the 
model corresponding to the representations involved in 
the representational changes required in the underlying 
test items (situation & graph; situation & equation; equa-
tion & graph; basic conceptual knowledge instead of rep-
resentational change; cf. Bayrhuber-Habeck, 2010). As 
working on such representational changes is not always 
linear, but might include several steps moving back and 
forth, we did not consider the direction of the represen-
tational changes separately; e.g., a  change from a graph 
to an equation was assigned to the same dimension as a 
change from an equation to a graph. The EAP/PV reliabil-
ity of the four dimensions ranged between 0.69 and 0.83. 
More test-related analyses such as fit statistics can be 
found in the online supplement.

Based on the Rasch modeling, we performed DIF 
analyses (Differential Item Functioning) which indicate 
whether items vary “across subsamples by more than the 
modeled error” (Bond & Fox, 2015, p. 114). Thus, DIF 
analyses identify items that are unusually easy or difficult 
for a particular group of students relative to another (e.g., 
boys compared to girls). Hence, providing that overall 
competency is controlled for (i.e., if boys were in general 
more competent in the test, this would be statistically 
controlled for), DIF analyses make it possible to investi-
gate whether particular items appear to be too difficult 
or too easy for one of the groups under investigation. As 
proposed by Bond and Fox (2015), we will report DIF val-
ues of more than 0.5 logits. The DIF analyses enabled us 
to investigate our research questions with regard to the 
relevant differences between students from particular 
school tracks or differences between boys and girls.

In the following, the results will be presented as abso-
lute values or solution frequencies (in percent), because 
they appear to be more intuitive than the corresponding 
values on the Rasch logit scale.

Results
Competency characteristics of the present sample
Research Question 1 investigated how competent the 
students of the present sample were in changing repre-
sentations of elementary functions and if particular rep-
resentational changes were especially difficult or easy for 
them. The whole sample achieved an average competency 
score of 9.54 (SD = 5.23) out of 22 points.

Table  1 displays the solution frequencies and sev-
eral other item characteristics, showing which 

https://t1p.de/Spr-Projects


Page 9 of 18Sproesser et al. International Journal of STEM Education            (2022) 9:33 	

Table 1  Overview of test items and solution frequencies

Item no. Item format Type of 
representational 
change/basic 
conc. knowledge 
about the 
parameters

Overall solution 
frequencies: 
correct/wrong/
missing

Academic 
track solution 
frequencies: 
correct/wrong/
missing

Non-academic 
track solution 
frequencies: 
correct/wrong/
missing

Girls
solution 
frequencies: 
correct/wrong/
missing

Boys
solution 
frequencies: 
correct/wrong/
missing

19 SC Graph → sit.1

(context running)
68.2%
27.2%
4.6%

83.5%
13.6%
2.9%

58.2%
36.2%
5.6%

65.5%
30.2%
4.3%

70.6%
24.7%
4.8%

6 Open Graph → sit1

(context running)
66.8%
23.5%
9.7%

79.1%
15.9%
5.0%

58.8%
28.4%
12.8%

63.7%
24.6%
11.7%

69.5%
22.5%
8.0%

11 Open Basic conc. 
knowledge4

(parameters → 
equat)

65.4%
16.0%
18.6%

72.0%
11.8%
16.2%

61.1%
18.8%
20.1%

70.1%
14.2%
15.7%

61.5%
17.5%
21.0%

9 SC Sit → equat3

(context taxi ride)
63.6%
33.3%
3.2%

79.1%
17.1%
3.8%

53.4%
43.9%
2.7%

59.4%
37.6%
3.0%

67.1%
29.7%
3.2%

22 SC Graph → sit1

(context racing)
59.0%
35.9%
5.1%

67.8%
27.7%
4.4%

53.2%
41.2%
5.6%

57.1%
37.3%
5.6%

69.6%
34.6%
4.8%

15 SC Equat → graph2 56.5%
40.9%
2.6%

60.5%
37.8%
1.8%

54.0%
42.9%
3.1%

57.1%
41.1%
1.8%

56.1%
40.7%
3.2%

12 SC Sit → equat3

(context burning 
candle)

53.9%
44.0%
2.1%

68.4%
29.5%
2.1%

44.3%
53.6%
2.1%

51.0%
46.2%
2.8%

56.3%
42.2%
1.5%

21 SC Equat → graph2 50.0%
44.5%
4.6%

58.1%
37.5%
4.4%

46.2%
49.1%
4.6%

50.8%
45.9%
3.3%

51.1%
43.3%
5.6%

2 Open Equat → graph2 49.4%
44.4%
6.2%

53.1%
42.5%
4.4%

47.0%
45.6%
7.4%

48.5%
46.2%
5.3%

50.2%
42.9%
6.9%

10 Open Graph → equat2 48.9%
39.5%
11.6%

54.6%
35.7%
9.7%

45.3%
42.0%
12.8%

48.2%
42.6%
9.1%

49.6%
36.8%
13.6%

18 SC Graph → equat2 47.3%
49.3%
3.4%

54.0%
42.8%
3.2%

42.9%
53.6%
3.5%

44.4%
52.5%
3.0%

49.8%
46.5%
3.7%

8 Open Equat → graph2 
(slope as fraction)

46.4%
38.9%
14.7%

44.2%
41.9%
13.9%

47.8%
36.9%
15.3%

49.2%
36.8%
14.0%

43.9%
40.7%
15.4%

20 SC Sit → graph1

(context skier)
46.0%
50.9%
3.0%

65.5%
32.2%
2.4%

33.3%
63.2%
3.5%

48.2%
49.2%
2.5%

44.2%
52.4%
3.5%

16 SC Graph → equat2 36.9%
59.8%
3.3%

44.0%
53.7%
2.4%

32.3%
63.8%
3.9%

35.0%
62.4%
2.5%

38.5%
57.6%
3.9%

1 Open Graph → sit1

(context traveling 
to school)

32.0%
61.0%
7.0%

48.1%
49.6%
2.4%

21.5%
68.5%
10.1%

27.9%
66.0%
6.1%

35.5%
56.7%
7.8%

4 Open Sit→ equat3 (con-
text aquarium)

31.3%
46.3%
22.4%

54.6%
36.9%
8.6%

16.1%
52.4%
31.5%

27.4%
52.5%
20.1%

34.6%
40.9%
24.5%

3 Open Basic con. 
knowledge4

(equat. → reading 
parameters)

31.1%
53.6%
15.3%

40.1%
48.4%
11.5%

25.1%
57.1%
17.8%

34.0%
52.0%
14.0%

28.6%
55.0%
16.5%
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Fig. 3  Sample test item for a change between a graph and a situation

Fig. 2  Sample test item requiring a change between a situation and an equation. Adapted and translated from Nitsch, 2015, p. 160, Fig. 18 
(adapted and translated by permission from Springer Nature Customer Service Centre GmbH: Springer, Diagnose von Lernschwierigkeiten im 
Bereich funktionaler Zusammenhänge by R. Nitsch, © 2015)

Table 1  (continued)

Item no. Item format Type of 
representational 
change/basic 
conc. knowledge 
about the 
parameters

Overall solution 
frequencies: 
correct/wrong/
missing

Academic 
track solution 
frequencies: 
correct/wrong/
missing

Non-academic 
track solution 
frequencies: 
correct/wrong/
missing

Girls
solution 
frequencies: 
correct/wrong/
missing

Boys
solution 
frequencies: 
correct/wrong/
missing

5 Open Basic conc. 
knowledge4

(graph → reading 
parameters)

24.1%
66.1%
9.8%

28.9%
64.6%
6.5%

20.9%
67.1%
12.0%

22.1%
69.0%
8.9%

25.8%
63.6%
10.6%

17 SC Graph → sit1 (con-
text racing car)

23.8%
73.0%
3.2%

40.7%
57.2%
2.1%

12.8%
83.4%
3.9%

20.1%
76.4%
3.6%

27.1%
70.1%
2.8%

14 Open Graph → equat2 
(slope as fraction)

20.1%
63.7%
16.2%

24.8%
59.3%
15.9%

17.0%
66.5%
16.4%

19.0%
66.5%
14.5%

21.0%
61.3%
17.7%

7 Open Graph → sit1 (con-
text running)

19.7%
66.5%
13.8%

33.0%
58.1%
8.8%

11.0%
72.0%
17.0%

15.7%
69.0%
15.2%

23.2%
64.3%
12.6%

13 Open Sit → graph1 (con-
text vessel)

12.4%
72.3%
15.3%

21.2%
71.4%
7.4%

6.6%
72.9%
20.5%

7.9%
76.1%
16.0%

16.2%
69.0%
14.7%

Explanation of abbreviations: Open … open-ended format; SC … single-choice format; sit … situational; equat … equation; conc. … conceptual

Explanation of superscript numbers: 1: Dimension 1 (graph & situation); 2: Dimension 2 (equation & graph); 3: Dimension 3 (situation & equation); 4: Dimension 4 
(basic conceptual knowledge of the parameters)
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representational changes were particularly difficult 
or easy for the students in our sample. The items are 
ordered from the highest to lowest solution frequency for 
the whole sample. Moreover, the solutions frequencies 
for the subsamples—school tracks and gender—are also 
displayed (see Research Questions 2 und 3).

The descriptive statistics show that the solution fre-
quencies for the whole sample ranged from 68.2% to 
12.4% and indicate that most test items were of medium 
difficulty and that only few very difficult test items were 
included. In terms of patterns regarding which tasks 
were easy and difficult for students beyond the kind of 
representational change, open-ended tasks tended to 
show more missings and were solved less frequently than 
single-choice test items by the learners. However, this 
finding was not consistent for all test items. When we 
considered the representational changes required by the 
tasks, we found that the solution frequencies for changes 
between a graph and a situation were particularly heter-
ogeneous, as they were found to be the easiest and the 

hardest items of the test. This applied in particular to 
changes from a graph to a situation, where the solution 
frequencies ranged from 68.2% to 19.7%. The two test 
items requiring a change from a situation to a graph, on 
the other hand, were of medium (46.0%) to high empiri-
cal difficulty (12.4%). The solution frequencies for tasks 
requiring a change from a situation to an equation 
ranged from 63.6% to 31.3%, indicating that these tasks 
were less difficult. Moreover, the solution frequencies 
for these tasks were less heterogeneous in our sample. 
For the purely mathematical tasks, the representational 
change between a graph and an equation was found to 
be mostly of medium difficulty, with slightly higher solu-
tion frequencies for the change from an equation to a 
graph (56.5% to 46.4%) than vice versa (48.9% to 20.1%). 
For both directions of this purely mathematical change 
between representations, the test items referring to slope 
as a fraction were solved the least frequently. Moreover, 
two of the tasks measuring basic conceptual knowledge 
also exhibited lower solution rates (31.1% and 24.1%) 
than most of the test items requiring a change between a 
graph and an equation.

Competency differences with regard to school track
Research Question 2 focused on the competency dif-
ferences between students from academic and non-
academic school tracks. We found average competency 
scores of 11.75 (SD = 4.98) for students from the aca-
demic track and 8.09 (SD = 4.87) for students from the 
non-academic tracks, corresponding to Rasch estimates 
of 0.59 (error 0.02) and of −0.59 (error 0.02), respectively. 

Fig. 4  Sample test item capturing basic conceptual knowledge 
about the parameters. Adapted and translated from Nitsch, 2015, 
p. 256, Fig. 46 (adapted and translated by permission from Springer 
Nature Customer Service Centre GmbH: Springer, Diagnose von 
Lernschwierigkeiten im Bereich funktionaler Zusammenhänge by R. 
Nitsch, © 2015)

Fig. 5  Sample test item for a change from an equation to a graph
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This difference was significant ( χ 2(1) = 888.5, p < 0.001) 
with an effect size of d = 0.75.

Taking a look at these subsamples from a descrip-
tive point of view (see Table 1), we found differences in 
the solution frequencies of students from the academic 
track compared to those from the non-academic tracks 
of up to 38.5 percentage points, mostly with advantages 
for students from the academic track. The DIF analyses 
provided more detailed information about the relevance 
of these differences. As shown in Table 2, students from 
the academic track performed considerably better on 
six tasks including situational representations, of which 
three tasks required a change from a situation to an equa-
tion. In contrast, students from the non-academic tracks 
had substantial advantages—relative to their overall com-
petency—in purely mathematical tasks, in particular for 
changes from equations to graphs.

Competency differences with regard to gender
Research Question 3 was related to competency differ-
ences induced by gender. Looking at the correspond-
ing subsamples, we found competency scores of 9.22 
(SD = 5.03) for girls and 9.82 (SD = 5.38) for boys as well 
as Rasch estimates of − 0.10 (error 0.02) for girls and of 
0.10 (error 0.02) for boys, respectively. This difference 
was significant ( χ 2(1) = 24.0, p < 0.001) with an effect size 
of Cohen’s d = 0.12.

As shown in Table  1, the differences in the solution 
frequencies of boys and girls appeared to be moderate 
for most tasks, with advantages for both subsamples 
depending on the task. The largest advantages were 12.5 
percentage points for boys and 8.6 percentage points 
for girls. The DIF analyses provided more detailed 
information about the relevance of these differences. 

Girls had a substantial advantage in two tasks requir-
ing basic conceptual knowledge about the parameters 
(see Test Items 3 and 11 in Table  3). Moreover, they 
performed considerably better on Test Item 8, which 
required a change from an equation to a graph (slope 
given as a fraction). On the other hand, boys had a sub-
stantial advantage for Test Item 13, which instructed 
students to draw a graph representing the water height 
when a vessel is filled with water.

Discussion
The goal of this study was to investigate students’ compe-
tency related to representational changes of elementary 
functions and, in particular, to acquire an insight into 

Table 2  Test items with more than 0.5 logits DIF with regard to school track

The information given in brackets provides details on the corresponding test items

SC single-choice format, open open-ended format

Items with advantages for the academic track Items with advantages for non-academic tracks

(#) Description DIF (logits) (#) Description DIF (logits)

(12) Situation → equation
(context burning candle; SC)

0.514 (5) Basic conceptual knowledge
(Graph → parameters; open)

0.536

(20) Situation → graph
(context skier; SC)

0.548 (15) Equation → graph
(SC)

0.694

(7) Graph → situation
(context running; open)

0.570 (2) Equation → graph
(open)

0.724

(9) Situation → equation
(context taxi ride; SC)

0.756 (8) Equation → graph
(slope as fraction; open)

1.418

(17) Graph → situation
(context racing car; open)

0.79

(4) Situation → equation
(context aquarium; open)

1.920

Table 3  Test items with more than 0.5 logits DIF with regard to 
gender

The information given in brackets provides details on the corresponding test 
items

SC single-choice format, open open-ended format

Items with advantages for girls Item with advantages for 
boys

(#) Description DIF (logits) (#) Description DIF (logits)

(8) Equation → graph
(slope as fraction; open)

0.574 (13) Situation 
→ graph
(context filling a 
vessel; open)

0.842

(3) Basic conceptual 
knowledge
(Equation → parameters; 
open)

0.582

(11) Basic conceptual 
knowledge
(Parameter → equation; 
open)

0.738
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which representational changes are difficult for learners 
in general and for particular subsamples. Empirical evi-
dence on these aspects could provide a starting point for 
developing specific supporting material and/or teacher 
professional development activities. We will discuss our 
findings in the order of our research questions.

With regard to Research Question 1, which investi-
gated students’ competency in changing between rep-
resentations of elementary functions, less than half of 
the maximum test score was reached on average by the 
whole sample. This finding was unexpected, as the test 
was conducted directly after the students had completed 
the teaching unit on linear functions, and all test items 
were in line with the curricular requirements (KMK, 
2004; Land Baden-Wuerttemberg, 2004a, 2004b, 2012, 
2016) and common textbooks (Backhaus et  al., 2017; 
Freudigmann et al., 2016; Maroska et al., 2006). However, 
this result supports other empirical findings according to 
which the domain of functions poses considerable diffi-
culties for students (e.g., Bossé et al., 2011a; McDermott 
et al., 1987; Moschkovich, 1999; Nitsch, 2015; Sproesser 
et al., 2020; Vogel, 2006).

Moreover, we could not identify a clear pattern regard-
ing which tasks were easy or difficult for our sample. For 
the required representational changes, we found that 
single-choice test items were easier for students than 
open-ended items in most, but not all cases. There are 
two possible explanations for this. On the one hand, the 
correct solution displayed in the single-choice test items 
might have helped students who were not sure about how 
to solve the task. On the other hand, the distractors used 
in these tasks might have irritated students as they were 
chosen on the basis of typical student errors (see Nitsch, 
2015).

Concerning the kind of representational change, 
this study demonstrates that tasks including a situ-
ational representation are not per se more difficult than 
purely mathematical tasks. Instead, they show very het-
erogeneous solution frequencies. This contradicts the 
assumptions of Bossé et  al. (2011a) and, in particular, 
the so-called symbol-precedence view of many teach-
ers, according to which students first need to be able to 
deal with purely mathematical tasks before they can work 
on tasks with a situational context (see Nathan & Koed-
inger, 2002). As suggested by Nathan and Koedinger, 
(unexpectedly) high solution frequencies for tasks with 
a situational context often can be explained by informal 
solution strategies inspired by the familiar context of 
a task. In order to effectively foster students’ learning, 
mathematics teachers should be aware of the support-
ive potential of situational contexts which might also 
help students by allowing a situational interpretation of 

a purely mathematical task (see also Bossé et al., 2011b; 
Swan, 1985; Zindel, 2019).

In the following, we will refer to the distinct kinds of 
representational changes. The solution frequencies for 
tasks with a situational context were particularly het-
erogeneous when changes between a graph and a situa-
tion were required (especially from graphs to situations), 
whereas changes from a situation to an equation were 
of medium difficulty. This difference in heterogene-
ity can be explained by the fact that all three test items 
requiring a change from a situation to an equation were 
structured rather similarly and required similar (men-
tal) activities: a particular situation was described, and 
students were asked to mathematize it using a function 
equation. In contrast, the tasks instructing students to 
change between a graph and a situation required a vari-
ety of mental activities: students were asked to interpret 
or sketch a whole graph, to read single points, or to com-
pare slopes. With regard to this representational change 
(graph and situation), the findings showed that test items 
asking students to read and interpret a certain point or 
the slope of a graph in the context of running (as required 
for Test Items 6 and 19) can be quite easy for students. 
However, the same context can pose more problems for 
learners if the concrete requirements are more demand-
ing, e.g., in terms of the item’s formulation (Test Item 7). 
In comparison, students obviously have considerable dif-
ficulty with identifying or drawing a whole graph accord-
ing to a given situation (as required for Test Items 20 and 
13).

Altogether, these findings related to changes between 
situational and mathematical representations can be 
interpreted as follows. Changes from situation descrip-
tions to function equations were solved by a medium 
proportion of our sample. This might be because the cor-
responding test items were very similar to typical word 
problems in the field of functions, as published in many 
textbooks (Backhaus et  al., 2017; Freudigmann et  al., 
2016; Maroska et al., 2006). Hence, at least some teachers 
might include such tasks regularly in their function les-
sons and give their students corresponding exercises. As 
prior research implies (Sproesser et al., 2020) and as will 
be discussed in more detail in the context of Research 
Question 2, the importance attached to tasks with situ-
ational contexts varies considerably between teachers of 
academic and non-academic tracks. This might explain 
why some students were quite competent in solving such 
tasks, whereas others had many problems. This inter-
pretation also takes into consideration the fact that the 
solution frequencies for these three test items were very 
homogeneous. Hence, for this type of task, it appears that 
the corresponding classroom practices (i.e., if teachers 
treat or do not treat comparable tasks) explain students’ 
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success in solving such test items more than the particu-
lar task or learner characteristics (e.g., whether students 
are familiar with a task context).

In contrast, for tasks requiring a change from a given 
mathematical representation to a situational representa-
tion, context knowledge or informal solution strategies 
(cf. Nathan & Koedinger, 2002) might have played a more 
relevant role, as they might have helped learners, for 
instance, to identify the slope of a time–distance graph as 
speed (e.g., as they might know speed as distance trave-
led in a certain time). If tasks did not trigger such context 
knowledge or informal solution strategies, changes from 
a graph to a situation might have been more difficult for 
the students. Considering the inverse representational 
change, namely from a situational representation to a 
graph, students generally had more problems. Based on 
this study, it is not possible to determine whether prob-
lems were caused by general difficulties in mathematizing 
given situations using graphs (e.g., as students might feel 
overchallenged by the requirement to draw a whole graph 
for a given situation) or by more particular task charac-
teristics such as the concrete context, linguistic complex-
ity, or the required mental concepts and processes (see 
for an overview of possible criteria for task complexity, 
e.g., Jordan et al., 2006).

Altogether, this study shows that representational 
changes involving situational contexts can be very easy 
for learners, but also very difficult. As mathematiz-
ing given situations using graphs mostly appeared to be 
more difficult than changing from a graph to a situation, 
teachers should be encouraged and trained to support 
their students in performing this change. As indicated 
by this study, students’ (intuitive) strategies for interpret-
ing mathematical representations with regard to specific 
situations can serve as a promising basis for meeting 
this challenge. In particular, teachers should focus on all 
representations and representational changes and not 
neglect situational representations (see Sproesser et  al., 
2020) in order to support students in building a rich 
concept of function and in flexibly solving various prob-
lems. This call is in line with the curricular requirements 
(KMK, 2004; Land Baden-Wuerttemberg, 2004a, 2004b, 
2012, 2016) and didactical considerations (Heinze et al., 
2009; Niss, 2014).

For purely mathematical tasks without situational 
contexts, the solution frequencies for changes between 
a graph and an equation were rather homogeneous in 
this study. As students had more difficulty making these 
purely mathematical changes when the slope was rep-
resented as a fraction, this homogeneity applied in par-
ticular to tasks with integers as the slope and might be 
explained by the similar task structure. Moreover, this 
result is in line with existing findings which indicate that 

tasks requiring representational changes between a graph 
and an equation often dominate in mathematics lessons 
on elementary functions (Sproesser et al., 2020; see also 
Bossé et al., 2011a). Altogether, it should be emphasized 
that the solution frequencies for changes from a graph 
to an equation were lower than for changes in the other 
direction. As this study does not provide explanations for 
this finding, further research is needed to identify possi-
ble reasons for this difference.

A remarkable further result concerning the purely 
mathematical tasks is that the learners had more dif-
ficulty with two tasks requiring basic conceptual 
knowledge about the parameters than with most tasks 
requiring a change between a graph and an equation. In 
these test items, students were asked to read the slope 
and y-intercept from a given equation (Test Item 3) and 
from a graph (Test Item 5). Lower solution frequencies 
for test items on basic conceptual knowledge compared 
to test items requiring changes between a graph and 
equation were not expected, as these representational 
changes are mostly taught by referring to the slope and 
y-intercept (e.g., Backhaus et  al., 2017; Freudigmann 
et al., 2016; Maroska et al., 2006; see also Land Baden-
Württemberg, 2016). Indeed, students are supposed to 
be able to identify the slope and y-intercept in a given 
equation or graph and use them to make a represen-
tational change. A closer look at the solutions of our 
sample indicated that almost all students directly used 
these parameters to make the representational changes 
and did not use strategies such as calculating the coor-
dinates of concrete points or applying formulas/a linear 
equation system in order to change from an equation to 
a graph or vice versa. Hence, as the solution frequen-
cies show, a considerable number of students were able 
to perform representational changes between graphs 
and equations but were not able to identify the slope 
and y-intercept in the given representation. This means 
that these learners obviously implemented the strat-
egy of using the parameters to make changes between 
graphs and equations without drawing on correspond-
ing conceptual knowledge about the parameters. It 
appears that these students had learned an algorithm 
for the representational change without understand-
ing how the graph and equation are interrelated via the 
parameters (see also Sproesser et  al., 2018; cf. Bossé 
et al., 2011a). Thus, teachers should put more emphasis 
on students’ conceptual knowledge than on procedural 
knowledge which is prone to error and more likely to 
be forgotten (cf. Rittle-Johnson et  al., 2015). As stated 
above, connecting situational contexts to purely math-
ematical tasks might help students to overcome algo-
rithmic strategies because situational contexts support 
understanding (cf. Bossé et al., 2011a; Zindel, 2019).
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Research Question 2 focuses on differences in com-
petency between students from academic and non-
academic school tracks. In our sample, students from 
academic track classes achieved significantly higher 
test scores than their peers from non-academic tracks. 
Beyond the descriptive finding that academic students 
achieved higher solution frequencies for almost all test 
items, the DIF analyses revealed that students from the 
academic track performed substantially better in six tasks 
that included a situational context, in particular when 
a change from a situation to an equation was required. 
The students in non-academic tracks showed a relative 
advantage in purely mathematical tasks, in particular for 
changes from an equation to a graph. A reason for the 
overall advantage of students from the academic track 
can be seen in their presumably higher cognitive abili-
ties, which they used when working on the test items (see 
also Brunner et  al., 2011). Another possible explanation 
for the general pattern and, in particular, the substan-
tial advantages identified by the DIF analyses might be 
the content of the mathematics lessons of the study par-
ticipants. In our previous study (Sproesser et  al., 2020), 
we found that teachers of classes in the non-academic 
tracks focus on purely mathematical tasks when teach-
ing elementary functions and tend to neglect tasks with a 
situational context (see also Bossé et al., 2011a; Cunning-
ham, 2005). In the academic track, the teaching practices 
might include a more balanced mix of tasks with and 
without a situational context. In any case, this difference 
found in the present study is not induced by the cur-
ricular requirements of the different tracks but appears 
to be caused by the teachers’ lesson planning decisions. 
Further research is needed to yield more empirical evi-
dence on this and on the reasons behind such teaching 
practices, e.g., related to the symbol-precedence view 
(Nathan & Koedinger, 2002). It should be noted that 
a biased focus on purely mathematical tasks not only 
fails to comply with the curricular requirements (KMK, 
2004; Land Baden-Württemberg, 2016) but also limits 
students’ learning opportunities. As outlined above, the 
inclusion of situational contexts might also help students 
to work on purely mathematical tasks, as situational 
representations might provide a bridge between purely 
mathematical representations and allow students to link 
mathematical knowledge and procedures to everyday 
knowledge and informal strategies. In this way, students 
might learn about functions more sustainably and be bet-
ter trained to mathematize given situations.

With respect to gender differences, this study con-
firms that boys have significant advantages, as docu-
mented in mathematics- and functions-related research 
(Klinger, 2018; Lichti & Roth, 2019; Nitsch, 2015; 
OECD, 2001, 2004, 2010, 2014; Schroeders et al., 2013). 

In the overall test, boys performed significantly better 
than girls. Although the χ2-value and effect size indi-
cate that the difference was small, it cannot be fully 
ruled out that the difference would be larger if the per-
centages of boys and girls were perfectly balanced in 
the academic and non-academic track classes of this 
study. Actually, in the non-academic track classes, there 
was a slightly higher percentage of boys (56.3%) than 
in the academic track classes (50.4%). Investigating the 
test items in more detail, the DIF analyses revealed that 
girls had a substantial advantage in three tasks. These 
were purely mathematical tasks requiring basic con-
ceptual knowledge about the parameters and a change 
from an equation to a graph with the slope given as a 
fraction. In contrast, boys performed considerably bet-
ter in the most difficult task in the test, which required 
students to draw a graph representing the process of 
filling a vessel. These item-related findings are in line 
with prior research on gender differences which indi-
cate that girls have advantages in purely mathematical 
tasks requiring procedural knowledge and boys have 
advantages in complex problem-solving and modeling 
tasks requiring non-standard solution strategies (Bay-
rhuber-Habeck, 2010; Klinger, 2018; Köller & Klieme, 
2000; Rost et  al., 2003). Whereas the general finding 
that boys had an advantage in tasks with a situational 
context could descriptively be seen in the correspond-
ing solution frequencies throughout the test, the girls’ 
advantage in purely mathematical tasks was found less 
consistently. Results from prior research which related 
gender differences in tasks with a situational context to 
the concrete task context (Chipman et  al., 1991; Rost 
et al., 2003) could not be confirmed by this study, as a 
substantial gender difference was found for only one 
test item with a situational context. Other tasks with a 
situational context that presumably might target boys 
in particular, such as a task requiring students to inter-
pret the slope as speed or the racing car task, were not 
solved substantially better by boys. In any case, this 
study once again confirms the fact that gender differ-
ences in mathematics performance exist, but that they 
are rather small and appear to be related to the specific 
strengths and weaknesses of boys and girls. In order to 
compensate for these gender differences (Budde, 2009; 
Leder & Forgasz, 2008), teachers should be aware of 
their magnitude and particularities as well as of pos-
sibly unconscious gender stereotypes (Fennema et  al., 
1990; Muntoni et al., 2020).

Limitations and further research
A shortcoming of this study is that it does not provide 
reasons for varying solution frequencies beyond the 
described task characteristics. This research gap should 
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be closed by conducting further studies with, e.g., quali-
tative approaches. In this regard, teacher or classroom 
characteristics could also be included. Moreover, our 
results could also inform an in-depth study with an 
exactly balanced item set for all directions of the intended 
representational changes in order to provide additional 
insights into students’ strengths and weaknesses.

For further studies using the test instrument presented 
in this paper, we recommend not deleting tasks with 
gender DIF as they provide the possibility to detect, for 
instance, whether specific supporting material helps 
decrease gender differences. Moreover, as there are DIF 
items with advantages for boys and girls, the overall test 
results should not be substantially biased. Of course, in 
other study contexts, researchers should decide whether 
to preserve the DIF items, depending on their research 
focus.

Summary and conclusion
The study presented in this paper has implications for 
theory and practice as it provides empirical insights 
into students’ competency in making representational 
changes for elementary functions and, in particular, into 
students’ strengths and weaknesses in this domain. A 
clear pattern of task difficulty could not be identified with 
regard to distinct representational changes. For class-
room practice, this implies that teachers should focus on 
all representations and representational changes in order 
to support their students in building a rich concept of 
function and in flexibly solving various problems. This 
is in line with the curricular requirements (KMK, 2004; 
Land Baden-Wuerttemberg, 2004a, 2004b, 2012, 2016) 
as well as with didactical considerations (Heinze et  al., 
2009; Niss, 2014). In general, students in the non-aca-
demic tracks had substantial problems with tasks involv-
ing a situational context, but produced similar or even 
better results for purely mathematical tasks. Moreover, 
girls showed advantages in tasks requiring procedural 
knowledge, whereas boys performed better on a com-
plex modeling and problem-solving task. As students 
achieved on average less than half of the maximum score, 
specific teaching activities should be carried out to sup-
port student learning. A starting point for such support-
ing activities could be the implementation of lessons on 
functions that adequately balance tasks with and without 
a situational context as well as the corresponding rep-
resentational changes. These findings should motivate 
teachers, in particular those of non-academic tracks, 
to give a more prominent role to situational contexts in 
their lessons on functions in order to foster their stu-
dents’ learning and to build a bridge between mathemat-
ics and real-world situations. More specific supporting 
activities such as teaching–learning material or teacher 

professional development courses could be designed 
based on the findings of this study.
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