
Sokolowski et al. International Journal of STEM Education  (2015) 2:8 
DOI 10.1186/s40594-015-0022-z
RESEARCH Open Access
The effects of using exploratory computerized
environments in grades 1 to 8 mathematics: a
meta-analysis of research
Andrzej Sokolowski1*, Yeping Li2† and Victor Willson3†
Abstract

Background: The process of problem solving is difficult for students; thus, mathematics educators have made
multiple attempts to seek ways of making this process more accessible to learners. The purpose of this study was
to examine the effect size statistic of utilizing exploratory computerized environments (ECEs) to support the process
of word problem solving and exploration in grades 1 to 8 mathematics using meta-analysis.

Results: The findings of 24 experimental pretest and posttest studies (24 primary effect sizes) published in
peer-reviewed journals between January 1, 2000, and December 31, 2013, revealed that exploratory computerized
environments produced a moderate effect size (effect size (ES) = 0.60, SE = 0.03) when compared to traditional
methods of instruction. A 95% confidence interval around the overall mean - Clower = 0.53 and Cupper = 0.66 - indicated
nonzero population effect and relative precision. A moderator analysis revealed differences among the effects on
student achievement between traditional problem solving approaches and ECEs, favoring the latter.

Conclusions: The findings highlight the importance of providing students with opportunities to explore applications
of mathematics concepts in classroom especially these supported by computers. A discussion of these findings and
their potential impact on improving students’ mathematical problem-solving skills, along with implications for further
research, follows.
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Background
Advancement in the capabilities of varied technologies
has meant that problem solving has become a domain of
particular interest. While researchers have examined the
use and impact of computers on presenting the content
of word problems to learners (e.g., Gerofsky 2004), com-
paratively little research has focused on learners’ use of
computers to explore the relations between given prob-
lem’s variables in the attempt to mathematize and solve it.
Despite a wide range of interest in improving students’
problem-solving skills, the rate of progress in this domain
has not been satisfactory (Forster 2006; Kim & Hannafin
2011). It is still common that ‘In typical elementary
schools worldwide, the teaching of early arithmetic is
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predominantly focused on computational proficiency’
(Greer et al. 2007, p. 97).
High interactivity of contemporary software that

allows for dynamically representing problem contents
are not utilized fully in mathematics classrooms yet and
‘The royal road to the educational use of computers,
software and communication technology within mathem-
atics teaching and learning is still to be discovered, if it
ever exists’ (Laborde & Sträßer 2010, p. 125). Although
more elements of explorations, such as measurement and
data analysis, have received substantial attention in the
newly developed common core standards (Porter et al.
2011), the process of inquiry organization in mathematics
classes is not widely researched. Modern technology pro-
vides multiple opportunities for applying mathematical
structures to quantify system changes (Arthur & Nance
2007; Pead et al. 2007). Moreover ‘what technology has
done is to return, after an absence of maybe a hundred or
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two hundred years, return mathematics back into the full
spectrum of science’ (Pollak 2007, p. 117).
It is hypothesized that by enriching the process of solv-

ing word problem by employing phases such as analysis,
model formulation, and model verification, applications of
mathematics in real-world settings will be more accessible
to students. Consequently, the shift from procedural to
conceptual teaching methods in mathematics, advocated
by research (e.g., Hiebert 2013), might be initiated.
Exploratory computerized environments (ECEs), focusing
on supporting mathematical explorations and problem
solving, share many commonalities with scientific discov-
ery. Although problem solving can integrate scientific
methods, this idea remains absent in the current research.
As in science classes, digital technology has been proven
to help students with problem-solving techniques (e.g., see
Reid et al. 2003; Stern et al. 2008); searching for ways to
induce congruent ideas in a mathematics classroom
appears to be a promising endeavor.

The role of technologies in mathematics teaching and
learning
As emphasis in teaching of mathematics is no longer
placed on the knowledge of rules and calculation routines,
but on building up mathematical competences such as
problem-solving, modeling, and concept formation, this
shift of emphasis can be significantly promoted by the use
of computers (Hußmann 2007). Technology accessed both
offline and online, encompasses a large range of devices,
such as calculators, laptops, desktop computers, and
interactive whiteboards, as well as a substantial range
of software applications, such as graphing devices, data
editors, spreadsheets, and dynamic geometry. Technol-
ogy supporting computations and representations (e.g.,
geometric figures, graphs of functions, or animations)
provides interactive tools and makes key relations for
mathematical understanding more transparent and tan-
gible. Several studies (Grouws & Cebulla 2000; Wander &
Pierce 2009) suggest that students who develop a mathem-
atical conceptual understanding develop the skills of know-
ledge transfer that enable them to perform successfully on
mathematics applications. Furthermore, technologies en-
able complex computations and dynamic modeling that
lead to more experimental forms of teaching and learning
mathematics (Joyce et al. 2009; Li & Li 2009; Passey 2012).
Learning using technology posits certain challenges for

software programmers. They must consider what needs
to be maintained as visible and how to present the key
ideas in learning sequence that will engage and challenge
the learners (Bos 2009). It is unlikely that technology per se
will affect mathematical development in any significant
way; instead, what might signify viable effects is how the
technology is designed to support learning and how the
mathematics tools within the technology connect with the
learners. Passey (2012) formulated several domains in
which technology can affect teaching and learning of
mathematics: (a) devices, ranging from interactive white-
boards, to desktop computers, to iPods and iPhones;
(b) learning activities, ranging from multiple-choice test
to interactive videos; (c) the pedagogy embedded, ran-
ging from knowledge acquisition, to finding specific
values; (d) the learning settings and interactions, ran-
ging from the teacher and learner alone, to learners in
a group or community; and (e) the type of assessment
measures used to identify the impact of a specific pro-
gram on students’ learning.

Explorations and problem solving in mathematics
This section summarizes the advantages of utilizing tech-
nology, focusing on its use to enhance students’ competen-
cies in explorations and problem solving. According to the
National Council of Teachers of Mathematics (National
Council of Teachers of Mathematics NCTM 2000), ‘Tech-
nology is essential in learning mathematics’ (p. 3). Applying
technology to enhance students’ problem-solving skills is
an ultimate area of interest. A problem’s setup and infor-
mation component expressed in word format are often
difficult for students to comprehend, analyze, and solve
(Ngu et al. 2014). Such presented problems also have a low
motivational factor, which consequently affects the degree
to which a learner engages in the solution process. The
advancement of multimedia technology has opened up
new possibilities for dynamically expressing a problem’s
contents and extending its analysis. The process can now
be externalized and amplified through digital construc-
tions, showing more explicit properties and structures that
were previously silent. Several researchers (e.g., Chen 2010;
Merrill & Gilbert 2008) have found that students’ word-
problem-solving skills can be significantly enhanced
through the integration of computer technologies.

Explorations
Exploration is defined as the act of searching with the pur-
pose of discovery of information or resources (Kuhn 2007).
Explorations give students the opportunity to appreciate
applications of mathematical tools in real-life situations
(Remillard & Bryans 2004). Explorations can take many
forms, ranging from analyzing observed phenomena to
undertaking more abstract, open-ended investigations.
English and Watters (2005) found that young children are
capable of exploring situations beyond those involving
simple processes of counts and measures. Furthermore,
researchers (e.g., English 2004; Lai & White 2012) have
recommended that children receive more exposure to situ-
ations where they explore informal notions or where they
quantify information, transform quantities, and deal with
quantities that cannot be observed. Flum and Kaplan
(2006) claimed that explorations engage the learner with



Sokolowski et al. International Journal of STEM Education  (2015) 2:8 Page 3 of 17
the environment through definite actions of gathering and
investigating information. By inducing the use of terms
that are central to scientific inquiry, like observe, identify,
and analyze (Slough & Rupley 2010), explorations promote
the transfer of knowledge, problem-solving skills, and
scientific reasoning (Kuhn 2007).
Schwarz and White (2005) advocated that learning about

the nature of scientific models and engaging learners in the
process of creating and testing models should be a central
focus of science education. It is hypothesized that by
enriching mathematics curriculum via elements of such
inquiry, students’ problem-solving skills can be strength-
ened. These shifts, however, posit certain challenges. At
the elementary school level, manipulatives or their inter-
active replicates have been extensively used to help build
conceptual understanding of abstract ideas (Jitendra et al.,
2007) and research (Kieran & Hillel 1990; Reimer & Moyer
2005) has proven their positive impact on students’ math-
ematics achievement. Since manipulatives are restricted to
geometrical objects, their exploratory character is limited
compared to explorations, which provide a far richer con-
text for inducing and practicing more sophisticated math-
ematical ideas, for instance, the concept of rate of change.
Viewed through this lens, interactive exploratory learning
environments dominate the previously applied drill-and-
practice computer applications, and their use in mathemat-
ics has gained momentum over the past decades (Neves
et al. 2011). The process of explorations usually concludes
with a formulation of a mathematical model. As such,
multifaceted cognitive goals are achieved by learners while
they undertake such activities. Bleich et al. (2006) con-
cluded that such activities expand students’ views of math-
ematics by integrating mathematics with other disciplines,
especially sciences, and engage students in the process of
mathematization of real phenomena.

Word problems and problem solving
Situations carrying open questions that challenge learners
intellectually (Blum & Niss 1991) are called word problems
or story problems. The general structure of word problems
is centered on three components: (a) a setup component,
which provides the content (for instance, the place or
story problem); (b) an information component, which pro-
vides data from which to derive a mathematical model;
and (c) a question component, which is the main task
directed to the solver (Gerofsky 2004). A setup compo-
nent of a word problem can be externalized by a static
diagram, short video, computer simulation, or physical
demonstration. With the exception of static diagrams, all
of these means, though not yet commonly used in math-
ematics classes (Kim & Hannafin 2011), assist with the
visualization of problem scenarios and thus help with
identifying patterns and formulating their symbolic de-
scription. Word problem solving is one area of mathematics
that is particularly difficult because it requires students to
analyze content, transfer it into mathematical representa-
tions, and map it into mathematical structures. Therefore,
it requires not only a retrieval of a particular problem-
solving model from learners’ long-term memory but also
the need to create a novel solution (Zheng et al. 2011).
While word problems are often considered closed tasks

that usually involve simplistic responses, problem solving
and explorations gravitate toward mathematical modeling
that require students to analyze a given situation, build
model, and verify the model before applying it. A major
contribution to the field of problem solving was made by
Polya (1957), who codified four stages of the process:
understanding the problem, devising a plan, carrying out
the plan, and looking back. Bransford and Stein (1984)
extended Polya’s approach by developing a five-stage
problem-solving model that encompassed identifying the
problem, defining goals, exploring possible stages, an-
ticipating outcomes, and looking back and learning.
Among these phases, the phase of exploration, which
leads the solver to a model formulation and validation,
is of the highest importance (Arthur & Nance 2007).
Once the model is validated, it can be used for fore-
casts, decisions, or actions determined by the problem-
question component. Francisco and Maher (2005) sug-
gested that the stage of exploration or modeling must
exist in the problem-solving process for authentic
mathematical problem solving to occur. A similar con-
clusion was previously reached by Gravemeijer and
Doorman (1999), who claimed that ‘the role of context
problems and of symbolizing and modeling are tightly
interwoven’ (p. 112). The forms of the mathematical
models depend on the problem content. At the elemen-
tary and middle school levels, they are often external-
ized by geometrical objects, ratios, and proportions
(National Council of Teachers of Mathematics NCTM
2000). Over the past 30 years, the domain on teaching and
learning mathematics applications has undergone modifi-
cations reflecting research advancements in the area, one
of which is a change in the instructional approach to prob-
lem solving: from teaching problem solving, to teaching
via problem solving (Lester et al. 1994). Some of the main
elements of teaching via problem solving include (a)
providing students with enough information to let them
establish the background of the problem, (b) encouraging
students to make generalizations about the rules or con-
cepts, and (c) reducing teachers’ role to providing guidance
during the solution process (Evan & Lappan 1994). Yimer
and Ellerton (2009) proposed an inclusion of a prelude
phase, called engagement, whose role is to increase
students’ motivation and, consequently, their success rate.
According to Kim & Hannafin (2011), these stages repre-
sent integral elements of contemporary problem-solving
methods.
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While technologies’ engaging factors in improving
student motivation have been often researched (e.g., see
Lewis et al. 1998; Niss et al. 2007), their interactive
features that enable the learner to hypothesize, make
predictions, and verify those predictions have not yet been
meta-analyzed at the elementary and middle school levels.
This study sought to examine these areas and identify
moderators that contribute to increasing effects on
students’ learning. As a result of this undertaking, we hope
to formulate suggestions for a learning environment that
will advance students’ analytic skills and consequently
improve the use of technological tools as a means of
explorations in mathematics classes.

Synthesis of findings of prior meta-analytic research
The study of problem-solving methods in the domain of
mathematics education has been frequently undertaken by
researchers and has especially influenced mathematical
practices during the past 30 years (Santos-Trigo 2007).
Tall (1986) provided an insightful analysis on how com-
puters can be used for testing mathematical concepts,
claiming that ‘computer programs can show not only
examples of concepts, but also, through dynamic actions,
they can show examples of mathematical processes’ (p. 5).
He questioned the formal approaches to mathematical
representations used in textbooks, calling them inaccessible
to students, and suggested instead using computer pro-
grams to visualize the dynamics of the processes.
Computer programs used to support problem solving

were one of the moderators in a meta-analysis on methods
of instructional improvement in algebra undertaken by
Rakes et al. (2010). Using 82 relevant studies from 1968
through 2008, these researchers extracted five categories,
of which two contained technology and computers as a
medium supporting instruction and learning. Contrasting
procedural and conceptual understanding of mathematics
ideas, these scholars found that conceptual understanding
as a separate construct, appearing initially in research in
1985, produced the highest effect size when enhanced by
computer programs. The timeline of this finding corre-
sponded with the emergence of mathematical explora-
tions, which also exemplify mathematics conceptual
understanding. In addition, Rakes et al. (2010) found that
technology tools including calculators, computer pro-
grams, and java applets produced a moderate 0.30 effect
size when compared to traditional methods of instruction.
Another systematic review of computer technology use
and its effects on K-12 students’ learning in mathematics
classes between 1990 and 2006 was undertaken by Li and
Ma (2010). Analyzing the effects of tutorials, communica-
tion media, exploratory environments, tools, and pro-
gramming language, they concluded that exploratory
environments produced the highest (ES = 1.32) learning
effect size. Li and Ma did not compute the effects of
computer technology on mathematics cognitive domains
and type of learning objectives; instead they suggested the
need for another review focusing on ‘the nature of the use
of technology’ (p. 235) on student achievement. Yet prob-
lems of implementation of pieces of (educational) soft-
ware, learning environments, and use of communication
technology are far from being solved (Laborde & Sträßer
2010), and many of the problems relate to improvement
of students’ problem-solving skills by the use of educa-
tional software. Artzt and Armour-Thomas (1992) re-
ported that students’ difficulties with problem solving are
often attributed to their failure to initiate active monitor-
ing and regulation of their own cognitive processes.
Though several potential ways of improving students’ ini-
tiation of active monitoring have already been researched
(e.g., see Grouws & Cebulla 2000; Kapa 2007), in this
study, we sought to uncover moderators that had been
silent in the previous research. We were especially
interested in learning whether extending the exploration
stage of the solution process and guiding students through
the phases of scientific inquiry could materialize as a
construct worthy of investigation. The effect of such orga-
nized support might reduce the working memory needs
and consequently free students from being overwhelmed
at the start. Hart (1996) reported that students find word
problems difficult because they lack motivation; thus,
presenting word problems in an engaging format might
increase learners’ motivation factor and drive them to
solve the problems. Furthermore, providing some guid-
ance during the solution process might improve their
productivity and decision-making (Stillman & Galbraith
1998). However, Blum and Niss (1991) cautioned that
providing guidance in the form of ready-made software in
applied problem solving may put an unintentional em-
phasis on routine and recipe-like procedures that neglect
essential phases, such as critically analyzing and compar-
ing models. Thus, closely examining how this concern is
resolved in newly developed mathematics software was an
additional focus of this meta-analysis.
Prior literature has provided many insightful conclusions

about the effectiveness of exploratory computer programs
on mathematics students’ achievement. However, it has
also led to many questions on how the content delivery
methods or problem-solving settings presented by com-
puter programs will yield the highest learning effect sizes.

Methods
A literature review can take several venues, for example:
narrative, quantitative, or meta-analytic. This study took
the form of the latter, using the systematic approach
proposed by Glass (1976), called meta-analysis, which
can further be described as an analysis of the analyses. A
statistical meta-analysis integrates empirical studies,
investigating the same outcome described as a mean
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effect size statistic. Meta-analytic techniques were se-
lected for this study because they provide tools to assess
effect size considering a pool of studies as a set of outputs
collected within prescribed criteria. There are two main
advantages of such investigations: (a) a large number of
studies that vary substantially can be integrated, and (b)
the integration is not influenced by the interpretation or
use of the findings by the reviewers (Gijbels et al. 2005).
Meta-analysis allows also for conducting a subgroup mod-
erator analysis that provides tools of identifying factors
that affect the magnitude of mean effect. A subsequent
moderator analysis is anticipated to be employed in this
study to answer additional research questions.

Key term descriptions
Treatment/instrumentation
The treatment for the study was defined as an exploratory
environment that was digitally delivered and displayed on a
computer screen or iPod that students used to formulate
and mathematize patterns or solve problems. An explora-
tory learning can be defined as a medium that engages the
learner with the environment through the definite actions
of gathering and investigating information (Flum & Kaplan
2006) and formulating a general pattern or finding a
unique solution. The treatment can include specific soft-
ware, such as Frizbi Mathematics 4, SimCalcMathWorlds,
NeoGeo, or Dynamic Geometry Environment (DGE). For
the purpose of identifying which type of treatment pro-
duces higher effect sizes, treatments were further classified
as being focused on either explorations or problem solving.

Explorations The purpose of explorations is to have
students experiment with models and search for under-
lying structures. An example of such would be having
students investigate the properties of polygons through
the underlying principles of congruency and similarity.

Problem solving The main component of problem
solving is asking the learner to find a specific numerical
solution (Gerofsky 2004). Problem solving in this meta-
analysis encompassed process associated with solving word
problems, story problems, or statement problems that
involve developing mathematical concepts and solving
mathematical equations to find a specific numerical value.

Outcome variable of the research
The outcome variable whose overall effect size was
sought in this meta-analysis was student achievement,
defined as scores on solving various mathematical tasks or
problems embedded in various mathematical structures,
such as equations, ratios, proportions, and formulas, and
measured by students’ performance on standardized or
researcher- or teacher-developed tests expressed numeric-
ally as a ratio or percent. Student achievement scores were
further expressed as effect size computed using mean
posttest scores of experimental and control groups and
coupled standard deviation using Hedges (1992) formula:

g ¼ �x1− �x2
s�

;where

�x1 represents the posttest mean score of the treatment
group
�x2 represents the posttest mean score of the control

group
s∗ represents pooled standard deviation.

Research questions
The research questions reflected the study purpose and
they were dichotomized into two groups: main and
supplementary. The main research question was the
following:

� What is the magnitude and direction of the effect
size of using computerized exploratory
environments to support the process of problem
solving and explorations when compared to
conventional learning methods?

As the main question led to computing the overall
effect size of using ECEs, additional questions were
formulated to enrich the study objective:

� Are the effect sizes of student achievement
dependent on grade level?

� Are the effect sizes of student achievement different
when problem solving is contrasted with exploration?

� Are the effect sizes of student achievement
dependent on mathematics content domain?

� How does the type of instructional support
(teacher guided or computer based) affect student
achievement when computers are used?

While the answer to the main question was assessed via
interpretation of the magnitude and direction of the
computed mean effect size statistic, the answers to the
additional research questions were based on applied sub-
group moderator analysis and interpretation of the results.

Data collection criteria and procedures
Several criteria for literature inclusion in this study were
established before the search was initiated. Despite the
fact that computer programs as a medium supporting
learning were introduced into education several decades
ago (Joyce et al. 2009), a rapid increase in this field
occurred around the year 2000, which was selected as
the initial timeframe for the search. Thus, this synthesis
intended to analyze and summarize the research pub-
lished between January 1, 2000, and December 31, 2013,
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on using computerized programs to support student ex-
plorations in elementary and middle school mathematics
classes in either public or private schools. The minimum
sample size established in this meta-analysis was ten par-
ticipants. The study included only experimental research
that provided pretest-posttest mean scores, standard de-
viation (SD), F-ratios, t-statistics, or other quantifications
necessary to compute the mean effect size. As treatment
groups used computerized exploratory environments,
the only control groups considered were those provided
with traditional instruction, meaning use of traditional
teacher-centered methods, where the students are given
problems to work and when they seek help when needed
as described by Pilli and Aksu (2013). This reduced the
confounding of effects due to hybrid treatments.
Publication bias that is a threat to any research attempt-

ing to use the published literature (Hedges 1992) was
addressed by creating funnel plot for the accumulated
studies and by applying Rosenthal fail-safe N test and
computing the fail-safe number (Rosenthal 1979). The test
addressing so-called file drawer problem estimates the
number of unpublished studies required to refute signifi-
cant meta-analytic means.
Studies investigating the effects of applying exploratory

computerized environments and satisfying the above
conditions were identified through a search of databases
of ERIC, Educational Full Text (Wilson), Professional
Development Collection, ProQuest Educational Journals,
as well as Science Direct, and Google Scholar. The
search encompassed studies conducted globally but pub-
lished in English language. Due to anticipated high range
of variation of sampling methods and study-level vari-
ance that produce additional source of random influence
(Cooper 2010), a random-effect model is anticipated to
be used to calculate the mean effect size.
Key terms were selected by the authors from the lit-

erature pertaining this study’s theoretical background
and prior research. In the process of extracting the rele-
vant literature, the following queries were used: [(‘explo-
rations’ OR ‘problem solving’ OR ‘control of variables’)
AND (‘students’ achievement’ OR ‘elementary’ OR ‘middle
school’ OR ‘computers’)], [(‘simulations’ AND ‘mathemat-
ics’)], and [‘exploratory environment’AND ‘mathematics’].
The strings were arranged in a way that allowed maximiz-
ing the search engine capabilities. Thus, for example, ex-
plorations were disjoined from problem solving but both
were combined with student achievement and various
grade levels. Respectively, simulations and exploratory en-
vironments were joined with mathematics. This search
returned 238 articles, out of which 14 satisfied the criteria
discussed above.
In order to expand the pool, a further search, including

PsycINFO and PsychARTICLES, was undertaken with
broader conceptual definitions including synonyms. For
instance, [(‘dynamic investigations’ OR ‘techniques of
problem solving’, OR ‘computerized animations’) AND
(‘learning’ OR ‘student achievement’)]. These modifica-
tions, which allowed for the adjustment of the contexts
and strengthening of the relevance of the literature
(Cooper 2010), returned 107 studies. The additional
search extracted a number of studies that, although very
informative (e.g., Chen & Liu 2007; Eysink et al. 2009;
Harter & Ku 2008), could not be included in this meta-
analysis because computers were used in both the control
and experimental groups. After further scrutiny, the pool
was enhanced by 11 additional studies. Combing all
search, the pool contained 25 primary studies and 25 cor-
responding effect sizes.
The adherence of the pool to established research cri-

teria was supported by a double scrutiny process at the
initial and the concluding stages of the selection process.
Any discrepancies were resolved.

Coding features
The coding process was conducted in a two-phase mode
reflecting the two-stage analysis. During the first stage,
general characteristics of the studies, such as research
authors, sample sizes, study dates, research design type,
and pretest-posttest scores, were extracted to describe
the study features. During the second phase, additional
scrutiny took place to more accurately reflect on the
stated research questions and seek moderators that
might influence the strength of the effect sizes. The major-
ity of the coding features, including study authors, study
publication date, locale, and research design type, were ex-
tracted to support the study validity. The formulation of
other coding, including grade level, instrumentation, and
learning type, was enacted to apply moderator analysis
that would lead to answering the supplemental research
questions.

Descriptive parameters
Descriptive parameters encompassed the following: the
grade level of the group under investigation, the locale
where the study was conducted, the sample size repre-
senting the number of participants in experimental and
control groups, the date of the study publication, and
the time span of the research expressed in a common
week metric.

Inferential parameters
Posttest mean scores of experimental and control groups
and their corresponding standard deviations were
extracted to compute study effect sizes. If these were not
provided, F-ratios or t-statistics were recorded. Although
most of the studies reported more than one effect size,
for example, Kong (2007) and Guven (2012), who also
reported on students’ change of attitude toward
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computers, this study focused only on student achieve-
ment, thus reporting one effect size per study.
The research authors
A complete list of authors whose studies were selected
was compiled in Table 1. As the analysis of the study
progressed, each research study was labeled only by the
first author and the year of research conduct.
Publication bias
All studies included in this meta-analysis were peer
reviewed and published as journal articles; thus, no add-
itional category in the summaries was created to distin-
guish the publication mode of the studies. We also
examined the authorship and author group membership
as a consideration of a possible publication bias in cer-
tain studies being over-represented, yet no publication
bias was found. Publication bias was quantified and jus-
tified through using Rosenthal fail-safe N test and by
creating and examining a funnel plot.
Table 1 General characteristics of the studies’ features

Authors Date Locale RD

Pilli & Aksu 2013 Cyprus R

Kong 2007 Hong Kong QE

Hwang & Hu 2013 Taiwan R

Lai & White 2012 USA QE

Chang, Sung, & Lin 2006 Taiwan QE

Erbas & Yenmez 2011 Turkey QE

Roschelle et al. 2010 USA R

Roschelle et al. 2010 USA R

Kapa 2007 Israel R

Papadopoulos & Dagdilelis 2008 Greece QE

Eid 2005 Kuwait QE

Huang, Liu, & Chang 2012 Taiwan QE

Lan, Sung, Tan, Lin, & Chang 2010 Taiwan R

Van Loon-Hillen, van Gog, & Brand-Gruwel 2012 Netherlands QE

Guven 2012 Turkey QE

Chen & Liu 2007 Taiwan QE

Ku & Sullivan 2002 Taiwan QE

Suh & Moyer-Packenham 2007 USA QE

Panaoura 2012 Cyprus QE

Kanive et al. 2013 USA R

Shin et al. 2013 USA R

Hwang et al. 2010 Taiwan QE

Kesan at al. 2013 Turkey R

Cakir & Simsek 2010 Turkey R

R, randomized; QE, quasi-experimental; RD, research design; EX, explorations; SS, sa
TG, teacher guided; PS, problem solving; IS, Instructional Support.
Group assignment
This categorization was supported by the way the re-
search participants were assigned to treatment and con-
trol groups, as defined by Shadish et al. (2002). During
the coding process, two main categories emerged: (a)
randomized, where the participants were randomly se-
lected and assigned to the treatment or control group,
and (b) quasi-experimental, where the participants were
assigned by the researchers.

Type of research design
Only experimental studies that provided pretest-posttest
means or other statistic parameters representing the
means were utilized in this study.

Type of instructional support
Two subcategories were identified to classify and evalu-
ate the effects of the type of instructional support: (a)
teacher-guided support, where the teacher served as a
source of providing support during student explorations
or problem solving, or (b) computer-based support,
SS Grade level RTL (in wks) Treatment approach IS

55 4th 12 EX TG

72 4th 5 EX TG

58 5th 8 PS CB

12 6th & 7th 1 EX CB

132 5th 6 PS TG

134 6th 2 EX TG

1621 7th 40 EX CB

825 8th 80 EX CB

107 8th 8 PS CB

98 5th & 6th 4 PS TG

62 5th 1 PS CB

28 2nd & 3rd 1 PS CB

28 4th 4 PS CB

45 4th 3 PS CB

68 8th 40 EX CB

165 4th 4 PS TG

136 4th 1 PS CB

36 3rd 1 PS CB

255 5th 8 PS CB

90 4th & 5th 1 EX CB

41 2nd 5 EX CB

56 6th 1 EX CB

42 7th 2 EX TG

90 7th 2 PS TG

mple size; RTL, research time length; wks, weeks; CB, computer based;
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where the primary source of support was provided by
the software and was available on the computer screen.
In both of these settings, the medium of learning was
digitally delivered by the computer.

Length of treatment
Three main categories were established for this moder-
ator: short - 2 weeks or less; intermediate - between 2
and 5 weeks inclusively; and long - more than 5 weeks.
We were initially interested in examining the magnitude

of the exploratory learning environments on improving
students’ problem-solving skills, specifically focusing on
analyzing the effects of scientific inquiry; however, we en-
countered limited research findings for extracting such
features. Thus, the effect of scientific empirical methods
on building theoretical mathematical models could not be
investigated to the scale it was intended. The objective of
the research was then augmented to focus on comparing
traditional methods of teaching problem solving and ex-
plorations to ones using digital technology as a medium
for such.

Results and discussion
Homogeneity verification and summary of data
characteristics
The data analysis in this study was initially performed
using SPSS 21 with verification of homogeneity of the
study pool as suggested by Hedges (1992). A standard-
ized mean difference effect size was calculated using
posttest means on experimental and control groups. The
Figure 1 Funnel plot for the data.
individual effect sizes were then weighted, indicated by
ES in this study, and an overall weighted mean effect
size of the study pool was calculated. In studies including
multiple independent subgroups (e.g., separate data is pre-
sented for girls and boys in the experimental and control
condition), first summary statistics for both conditions
was recreated, and then this data was used to calculate the
effect size. If different learning methods were assessed
within the same study, the effects were not combined but
instead the type of learning method that best matched the
study’s goals and research question was selected.
The homogeneity statistics (QT = 117.78, with df = 23,

p < 0.01) showed that the set of effect sizes varied statis-
tically significantly. This finding further supports the
adoption of a random-effect model for the data analysis.
If the QT had not been statistically significant, a fixed-
effect model would have been adopted for the analysis.
In order to detect potential bias due to underrepresenta-
tion of studies with small subject samples, a funnel plot
was generated (see Figure 1). The funnel plot visualizes
the position of the individual effect sizes, the mean effect
size, as well as the confidence intervals for each study
around the computed mean of the pool with 95th per-
centile confidence interval around the mean. Due to a
high range of studies populations, the magnitudes of the
populations were converted to a logarithmic scale.
The visual inspection of the funnel plot (see Figure 1)

shows that the results from smaller sample size studies
are more widely spread around the mean than the stud-
ies with larger sample size studies which according to
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Rothstein et al. (2006) minimizes the existence of publi-
cation bias in this meta-analysis. The funnel plot also
showed some of the means located outside of the area of
the funnel graph (see Figure 1), indicating a lack of
homogeneity of distributions within the pool, which was
also depicted by the significant p value (p < 0.01). As the
main purpose of a meta-analysis is to compute overall
effect size (Willson 1983), this deficiency did not under-
mine the validity of the calculated mean effect; rather, it
explicated the characteristics of the studies, revealing
that some of them, or their linear combinations, came
from different distributions. For instance, Figure 1 illus-
trates three labeled studies - one by Kong (2007), labeled
as 1; another by Erbas and Yenmez (2011), labeled as 2;
and a third by Huang et al. (2012), labeled as 3 - whose
means fell outside of the funnel graph. While Kong (2007)
investigated the effects of digitally presented explorations
on fouth grader understanding of fraction operations,
Erbas and Yenmez (2011) investigated the effects of digit-
ally presented explorations on sixth grader geometry con-
cept understanding, and Huang et al. (2012) investigated
the effects of digital explorations on second grader prob-
lem solving skills. These studies do not have specific com-
mon features though. Due to their complex study designs
and valuable research findings, all of them were included
in this meta-analysis, and thus all contributed through
their weighted effect sizes to the overall effect size.
Table 1 summarizes the extracted general characteristics

of the studies. The studies were further aggregated into
classes to reflect the objectives of the research questions.
The calculated confidence intervals (CIs) for each study

effect size (ES) consist of a range of values that act as good
estimates of the ES of an unknown population. The
selected 95% level indicates the probability that the CI
captures this true population ES given a distribution of
sample. It is to note that an ES of 17 of the studies (68%)
placed within 95% CI, indicating their high precision. The
duration of experimental treatment usually lasted for one
unit lesson (45 min) with an average application frequency
of twice a week. The majority of the studies (14, or 56%)
were conducted quasi-experimentally, while the remaining
ten (44%) were randomized. The study duration was
expressed in a common (weeks) metric scale, although
some of the studies reported the duration in months or by
semesters. The highest sample size of 1,621 students was
reported for a study conducted by Roschelle et al. (2010),
and the lowest sample size of 12 participants was reported
by Lai and White (2012). While analyzing the studies from
a grade-level point of view, students whose primary level
was grade 4 (28%) dominated the pool. Since this study
focused on gathering research on exploratory environ-
ments provided by computer programs or the Internet,
the examined studies were aggregated by their focus on
supporting either problem solving or explorations in
mathematics. For example, the study conducted by Lai
and White (2012) was classified as an exploration because
students explored the space and constructed shapes with-
out constraints, and then provided their definitions for the
various quadrilaterals. Thus, the explorations led them to
formulate general patterns and descriptions. Similarly, a
study by Kong (2007) was also classified as an exploration
because it used a general partitioning model to have stu-
dents explore the subject of common fractions and fraction
operations. In contrast, problem-solving studies, such as
the one conducted by Kapa (2007), followed the traditional
four stages of problem solving: (1) understanding the prob-
lem, (2) making a plan, (3) executing the plan and thus
finding a unique solution, and (4) reviewing the solution.
The study-highlighted characteristics were further aggre-
gated into subgroups (see Table 2) and corresponding
effect sizes were computed.
Descriptive analysis
The analysis of the data was organized deductively. It
began with a synthesis of the general features of the stud-
ies, furnished by a descriptive analysis, and then moved to
an examination of the differences of the effect sizes medi-
ated by the type of instrumentation, cognitive domain,
study duration, grade level, and content domain.
The research pool encompassed 4,256 elementary and

middle school students. The average sample size was
112 participants. Applied descriptive analysis provided
information about the frequencies of the studies per year
(see Figure 2) and the locale distribution where the studies
were conducted (see Figure 3).
The majority of the studies (17, or 71%) were conducted

within the past 5 years, which indicates a growing interest
is using ECEs to support the learning of mathematics. In
terms of research locale, Taiwan dominated the pool with
seven studies (29%), followed by the United States with
five studies (21%). The distributions show that applying
and investigating the effects of ECEs in mathematics class-
rooms has accumulated a global interest.
Inferential analysis
Quantitative inferential analysis was performed on the pri-
mary studies to find individual weighted effect size and
the mean weighted effect size of the study pool. The mean
effect size for the 24 primary studies (24 effect sizes) was
reported to have a magnitude of 0.60 (SE = 0.03) and a
positive direction, which according to Lipsey and Wilson
(2001) can be classified as of a medium size. A 95% confi-
dence interval around the overall mean - Clower = 0.53 and
Cupper = 0.66 - supported its statistical significance and its
relative precision as defined by Hunter and Schmidt
(1990). When applied to school practice, it indicated that
the score of an average student in the experimental



Table 2 Effect sizes of using ECEs in grades 1 to 8 mathematics

Study (first author) ES SE 95% CI Reliability of measure Program used, research findings, research specifications

Lower Upper

Pilli (2013) 0.76 0.24 0.05 1.09 Researcher developed,
Cronbach’s α = 0.9

Used Frizbi Mathematics 4. Explored arithmetic operations

Kong (2007) −0.33 0.27 0.12 1.15 Teacher developed Used Graphical Partitioning Model (GPM). Fraction operations were
explored. GPM has a potential for promoting collaborative learning

Hwang (2013) 0.72 0.59 0.07 1.93 Researcher developed Used virtual manipulative and 3D objects. Investigated the effect of
peer learning

Lai (2012) 0.51 0.18 0.71 0.97 California Mathematics
Standard Test

Used NeoGeo. Interactive environment helped make the applications
meaningful. Investigated a peer effect

Chang (2006) 0.77 0.18 0.26 0.96 Researcher developed Used schemata-developed problem solving. Provided teacher guidance
to support phases of problem solving

Erbas (2011) 2.36 0.05 0.26 0.71 Researcher developed Used DGE. Dynamic environment contextualized scenarios well

Roschelle (2010) 0.63 0.07 0.51 0.75 Researcher developed Used SimCalcMathWorlds. Explored the concepts of change

Kapa (2007) 0.68 0.20 0.20 1.00 Ministry of Education
guided

Used three-step problem-solving and open-ended scenarios

Papadopoulos
(2008)

0.34 0.21 0.22 1.02 Researcher developed Used computers to help explore hypotheses and verify the solutions

Eid (2005) 0.20 0.16 0.19 0.92 Standardized Contrasted students’ performance using computerized scenarios and
traditional representations

Huang (2012) 3.27 0.26 0.29 1.13 Researcher designed Used onscreen presented solutions to walk students through the
course of thinking

Lan (2010) 0.18 0.40 0.09 0.42 CEA assessment Used Group Scribbles (GS) platform that enhances collaboration.
Developed stages of problem solving

Van Loon-Hillen
(2012)

−0.01 0.39 0.20 1.40 Researcher developed Worked examples to help with following procedures

Guven (2012) 0.61 0.32 0.19 1.22 Researcher developed Used dynamic geometry software (DGS). Developed four stages of
difficulty: recognition, analysis, deductive, and rigorous

Chen (2010) 0.71 0.34 0.01 1.30 Teacher developed Incorporated personal contexts that helped students relate
mathematics concepts with their experience

Ku (2002) 0.23 0.18 0.26 0.96 Teacher developed Used personalized context to help students with mathematics concept
understanding

Suh (2007) 0.14 0.34 0.09 1.30 Researcher developed Incorporated principle of balance scale to model linear equations

Panaoura (2012) 0.37 0.13 0.34 0.85 Researcher developed Developed program that divided problem into stages that focused the
students’ attention of cognitive processes

Kanive (2013) 0.36 0.27 0.05 1.14 Researcher developed Computer program provides intermediate feedback

Shin (2013) 0.39 0.31 −0.04 1.23 Researcher developed Computer program provided a game-like environment

Hwang (2010) 0.57 0.27 0.03 1.14 Teacher developed Used computer programs to provide students with tasks descriptions

Kesan (2013) 0.71 0.32 −0.04 1.25 Researcher developed Used Sketchpad geometry software

Cakir (2010) 0.69 0.22 0.17 1.03 Used PISA test bank Used computer program to personalized and scaffold tasks

ES, effect size; SE, standard error; PISA, Program for International Student Assessment; DGE, Dynamic Geometry Environment.
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groups, who learned using ECEs, was 0.60 of standard
deviation above the score of an average student in the
control groups, who was taught using traditional methods
of instruction. In order to quantify publication bias,
Rosenthal’s fail-safe procedure was used. The test has
showed that an additional 480 unpublished null-effect
studies would be required to bring the p level beyond the
0.05 threshold of significance. Further calculations show
that only 130 unpublished research papers are needed for
this study to nullify the mean of 0.6 below 0.05 level.
Combining the results of both tests, the inspection of the
funnel plot (see Figure 1) and procedure of fail-safe, we
claim that the publication bias has minimal effects of the
mean effect size calculations in this study. Further
examination of the computed effect size and incorpor-
ation of the U3 effect size matrix (Cooper 2010) led to
the conclusion that the average pupil who learned
mathematical structures using exploratory environ-
ments scored higher on unit tests than 70% of students
who learned the same concepts using traditional text-
book materials. It can thus be deduced that using ex-
ploratory environments as a medium of support in the
teaching of mathematics has a significant impact on
students’ mathematics concept understanding when
compared to conventional methods of teaching. Table 2
provides a summary of the individual effect sizes of the
meta-analyzed studies along with their confidence in-
tervals. The table also contains qualitative research find-
ings, the computer programs used as the instruments, and
the reliability of measures used to compute the individ-
ual mean scores, expressed by indicating whether the
test was researcher developed or standardized. Where it
was available, Cronbach’s alpha (α) was also listed,
along with additional information provided by the pri-
mary researchers that distinguish the given study within
the pool.
The majority of the studies (16, or 84%) used

researcher- or teacher-developed evaluation instruments,
and only one (Pilli & Aksu 2013) reported a Cronbach’s α
coefficient of reliability measure. In addition, the majority
of the studies (17, or 89%) reported positive effect sizes
when an exploratory environment was used as a medium
of learning. Only two studies - one conducted by Van
Loon-Hillen et al. (2012) and one conducted by Kong
(2007) - reported negative effect sizes favoring traditional
instruction, illustrating that exploratory environments
cannot replace good teaching and that some concepts, like
operations on fractions (Kong 2007), require the in-
structor to deliver the concept and its stages and to
suggest ways of overcoming obstacles that students may
face. Exploratory environments seemed to produce high
effect sizes in cases where students applied already-
learned mathematics concepts in new situations (e.g.,
Chang et al., 2006; Guven, 2012; Roschelle et al., 2010) but
not when students simultaneously explored new concepts
and applied them. The highest effect size on explorations
was reported by Erbas and Yenmez (2011; ES = 2.36), who
examined the effect of open-ended geometry investiga-
tions, and the highest effect size on problem solving was
noted by Huang and colleagues (2012; ES = 3.27), who
investigated the effect of embedded support during the
process of problem solving. Although an influx of
onscreen instructional support might work well in many
classroom settings, we believe that the elements of math-
ematical explorations induced in the study by Erbas and
Yenmez (2011) more accurately supported the objectives
of this study.

Possible moderators and analysis of their effects
Just as a mean effect size provides certain evidence for
potential duplications of the study findings, subgroup
analysis allows for uncovering moderators that optimize
the effect. Since student mathematical achievement was
the main construct under investigation, during the process
of moderator formulation, attention was directed toward
formulating and extracting the study features that could
affect achievement when ECEs were utilized. We antici-
pated that through identifying such features, an optimum
learning environment would emerge. By analyzing the set-
tings of the primary research, a set of five moderators was



Table 3 Summary of subgroups’ weighted effect sizes

Moderator and subgroups N ES SE 95% CI

Lower Upper

Grade level

Lower elementary: 1 through 3 3 0.61 0.03 0.54 0.67

Upper elementary: 4 to 5 12 0.41 0.07 0.27 0.54

Middle school: 6 to 8 9 0.65 0.04 0.57 0.73

Instrumentation

Problem solving 12 0.54 0.07 0.41 0.67

Explorations 12 0.62 0.03 0.54 0.69

Treatment duration

Short 8 0.47 0.14 0.11 0.74

Intermediate 9 0.63 0.09 0.45 0.81

Long 7 0.62 0.04 0.55 0.70

Content domain

Geometry 9 0.67 0.22 −0.07 0.79

Arithmetic and algebra 15 0.61 0.03 0.43 0.56

Type of instructional support

Teacher guided 8 0.75 0.08 0.59 0.92

Computer based 16 0.56 0.04 0.49 0.63

N, sample size; ES, effect size; SE, standard error.
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identified: grade level, instrumentation, treatment dur-
ation, content domain, and type of learning setting. This
categorization resulted in 12 subgroups whose effects
were individually computed. The moderator analyses were
performed for random-effects model because this meta-
analysis sought also to reveal the relative effectiveness of
ECE due to formulated moderators, and hence it did not
assume that the effect size will be the same for all studies.
The computations of effect sizes followed Cooper (2010),
who suggested giving more weight to effect sizes with lar-
ger sample populations (w = inverse of the variance in the
effect calculations). Along with calculating subgroup
effects, corresponding confidence intervals and standard
errors were also computed. Table 3 displays the effect
sizes according to the formulated moderators and the
subgroups. In order to provide a common metric for the
subgroup effect magnitude comparisons, the effect sizes
were weighted by the sample sizes. Although we realized
that the effects of using ECEs might be strongly influenced
by the degree of interactivity of the educational programs
used and the applied scaffolding necessary to have stu-
dents assimilate tasks presented in contexts, such extrac-
tions were not feasible due to the limited information
provided in this regard by the primary researchers.
All of the magnitudes of the calculated effect sizes

place within their confidence intervals, which proves the
significance of the effect sizes and their relative precision
(Hunter & Schmidt, 1990). Furthermore, considering,
for example, teacher-guided support during explorations
(ES = 0.75), one can conclude that the practitioners
using such an approach can be 95% confident that the
effect size of students’ achievement will be 60% to 93%
higher than when compared to traditional level of in-
struction. The categorization into subgroups and the
descriptive analysis provided a more insightful picture
about the effects of ECEs on the achievement of
students in grades 1 to 8 mathematics classes and
helped answer the research questions of this study, as
discussed next.

Are the effect sizes of student achievement dependent on
grade level?
A block of grade level was created to answer this question.
Following NCTM (2000), three subgroup levels were for-
mulated: lower elementary, which included grades 1 to 3;
upper elementary, which included grades 4 and 5; and
middle school, which encompassed grades 6 to 8. The
computed effect size showed differences across grade
levels, with middle school producing the highest effect size
(ES = 0.65), which according to Lipsey and Wilson (2001)
can be classified as moderate followed by lower elem-
entary school (ES = 0.61) and upper elementary (ES =
0.41). It is inferred that this result can be attributed to
the fact that students at the middle school level often
use manipulatives to support their mathematics con-
cept understanding (e.g., see Jitendra et al., 2007); thus,
these students’ transition to ECEs occurs more spon-
taneously, resulting in the highest score gain. The effect
sizes in the other grades also showed a moderate
magnitude.

Are the effect sizes of student achievement different when
problem solving is compared to exploration?
The moderator category of instrumentation was used to
conclude whether ECEs affect student achievement differ-
ently through supporting problem solving or exploration.
As explorations have often led students to pattern formula-
tions (e.g., see Panaoura, 2012; Suh & Moyer-Packenham,
2007), problem solving was usually constructed within
defined stages, leading students toward finding numerical
answers or unique solutions to the stated problems (e.g.,
see Chen & Liu, 2007; Hwang & Hu, 2013). When con-
trasted with problem solving, learning supported by explo-
rations produced a higher effect size of ES = 0.62 (as
opposed to ES = 0.54 for problem solving). This finding
generated several conjectures. As the process of explora-
tions resonates better with students’ natural curiosity
(Stokoe, 2012) and their prior experiences, working on ex-
plorations might ignite a higher student’s motivation level,
thus their higher achievement. Despite the fact that ef-
forts to help students understand the solution process
are multidimensional, ranging from creating schemas
(Kapa, 2007) to inducing personalization (Chen & Liu,
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2007; Ku & Sullivan, 2002), attempts at helping
students learn the process of problem solving by em-
bedding explorations in some of the transitioning stages
are rare. With exceptions of researches conducted by
Roschelle et al. (2010) and Panaoura (2012), an inquiry
process is not emphasized in the accumulated pool of
studies on problem solving despite a strong support by
other researchers (e.g., see English, 2004). The current
research on problem solving gravitates toward creating
and examining the effects of cognitive support or show-
ing worked-out solutions that students can follow (e.g.,
see Van Loon-Hillen et al., 2012). As illustrated by the
computed effect sizes, all of these attempts seem to
produce desirable positive results; however, by concen-
trating on simplifying or following the mechanics of the
problem-solving process, the meaning of the context
embedded in the problems is diminished. The question
that arises here is How to convert word problems to
explorations? Bonotto (2007) suggested ‘Change the
type of activity aimed at creating interplay between the
real world and mathematics towards more realistic and
less stereotyped problem situations’ (p. 86) and ‘change
classroom culture by establishing new classroom socio-
mathematical norms’ (p. 86). (Greer et al. 2007) pro-
posed to ‘Valorize forms of answer other than single,
exact numerical answers’ (p. 92).

Are the effect sizes dependent on the mathematics
content domain?
Two mathematics content domains dominated in this
study pool: geometry and algebra. Geometry, tradition-
ally supported by visualization, showed a higher effect
size (ES = 0.67) compared to algebra (ES = 0.61). As
geometric objects can also be easily externalized by their
real embodiments, more effort should be placed on
contextualization and visualization of other, more ab-
stract mathematical structures such as functions. Teach-
ing algebraic structures via exploratory environments is
being practiced and researched, yet embodying algebraic
structures by context-driven scenarios seems to be a
challenge, which is reflected by locating only eight (33%)
such studies.

How does the type of instructional support (teacher guided
or computer based) affect student achievement when
computers are used?
There were two main categories of instructional support
provided to the students in the study pool: computer-
based support displayed on the computer screen or
teacher-centered support provided by the instructor.
Computer-based instructional support dominated the
study pool (16, or 67%) compared to teacher-based in-
struction (8, or 33%). When compared by learning effects,
teacher-centered support produced a higher effect (ES =
0.75) than computer-based support (ES = 0.56). This re-
sult signifies the importance of the teacher’s role in devel-
oping students’ understanding of mathematics structures
and helping them apply the structures to solve problems,
and it corresponds with Li and Li’s (2009) finding who
claimed that ‘teacher transfers the knowledge development
and justification responsibilities to students’ (p. 275). A par-
ticular instance that needs further investigation is transi-
tioning from verifying to explaining (Hähkiöniemi &
Leppäaho, 2012). Merchant et al. (2014) claimed that ‘It is
essential that teachers are made knowledgeable about the
features and situations that make feedback effective’ (p. 37).
Programmed tips are important and readily available

to students, yet the expertise, encouragement, and sup-
port from a live person appear to have a higher impact
on students’ learning. Further research contrasting learn-
ing effect sizes by using as a moderator, for example, the
frequency of seeking help available on the computer
screen versus frequency of seeking help from the teacher
along with quality of answers sought, would likely shed
more light on the cause of the differences.
In addition to analyzing the effects of moderators that

reflected the research questions, the effect of treatment
length was also computed. The analysis showed that the
treatment of length between 2 and 5 weeks, called inter-
mediate herein, produced the highest effect size of (ES =
0.63). A similar conclusion was reached in a meta-
analysis by Xin et al. (2005), who also proved that longer
treatment results in higher student achievement. The
student needs to be acquainted with the mechanics of
the new learning medium; thus, it is important that the
first contact and experience with an ECE be absorbed
into a learner’s working memory. It is hypothesized that
longer and more frequent exposure to the new environ-
ment allows a higher focus on task-driven objectives re-
lated to the content analysis, which consequently results
in better context understanding and higher learning
effects. However, as Guven (2012) and Roschelle et al.
(2010) found, there is an achievement saturation level,
which perhaps suggests that in order to further increase
learning effects, ECEs need to mediate with other
factors, not necessarily related to content knowledge, for
instance different forms of analysis, synthesis, or evalu-
ation as suggested by Anderson and Krathwohl (2001).
When linking the subgroups with the highest learning

effects, it appears that month-long geometry explora-
tions in grades 1 to 3 mathematics classes, guided by the
teacher, would produce the highest learning effects.

Conclusions
While this study found a moderate positive effect size
(ES = 0.59) associated with ECE, this finding does not di-
minish the importance of good teaching. Several studies
(Christmann et al. 1997; Clark, 1994; Povey & Ransom,
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2000) found that using computers purely as a method of
instruction does not improve students’ mathematics un-
derstanding. Hence, although computers have been used
in mathematics classrooms for several decades now, the
question regarding to what extent they can impact the
teaching and learning of mathematics seems to be open
for further investigations. This meta-analysis of up-to-date
literature allowed for formulations of some inferences
based on implementations of technology; however, many
new questions emerged, such as the following: How do
exploratory environments help students with the transfer
of mathematics concepts to new situations? How can we
assure that the methods of quantitative scientific modeling
that students apply in their science classes are coherent
with the ones used in mathematics, and vice versa? Math-
ematics provides tools for phenomena quantifications;
thus, unifications of the techniques of modeling seem to
benefit the transition of knowledge between mathematics
and science and consequently affect the learners’ perception
of mathematics as a subject with a high applicability range.
Will such unification prompt students to increase their
engagement in mathematics? More detailed studies in these
domains are worthy of consideration, and the availability of
ECEs will be very helpful in organizing such studies.

The impact of ECEs on students’ problem-solving
techniques
Problem-solving techniques are developed on the basis of
understanding the context through identifying the princi-
ples of the system’s behavior. However, it is a highly inter-
twined process that might include verbal and syntactic
processing, special representation storage and retrieval in
short- and long-term memory, algorithmic learning, and
its most complex element - conceptual understanding
(Goldin, 1992). Computerized programs offering a basis
for investigation offer a great potential for improving con-
ceptual understanding of problems; however, this study
shows that this area is not yet fully explored, and taking
full advantage of such learning environments to examine
their impact on student achievement is a possible exten-
sion of this undertaking. More specifically, enriching the
problem analysis through explorations to focus learners’
attention more on the underpinning principles emerges as
a possible objective of such studies. Higher student
achievement on explorations (ES = 0.62), compared to
problem solving (ES = 0.54), encourages designs of more
comprehensive research about inducing an exploratory
approach to problem solving also to solving standard text-
book problems as opposed to current schemata-driven
methods. Would giving students more ownership in ex-
ploring a given system’s behavior, hypothesizing a solution,
testing, and proving or disproving their hypothesis be a
possible moderator affecting learning? Will these types of
activities help solidify a notion and belief in the power of
mathematics as sense-making subject? There also seems
to be more work needed to evaluate how learners link
mathematics concepts with principles embedded in given
context and how they initiate applications of the procedures
that they select. ‘Only an analysis of the instrument, i.e., the
interaction of the artifact and the utilization schemes of its
users (teachers and students), the analysis of its instrumen-
tal genesis will help in the implementation of computers,
software and communication technology in the mathemat-
ics classroom’ (Laborde and Sträßer 2010, p. 131).

Limitations and suggestions for future research
This meta-analytic research has certain limitations, primar-
ily because this study could not be conducted in an experi-
mental fashion where ECEs constituted instrumentation
provided by computer programs and a direct contrast be-
tween two different modes of learning - digital and trad-
itional - were exploited. Furthermore, the limited count of
studies available to be meta-analyzed affected the study
generalizability. Although sensitivity to smaller sample
sizes was restored by the process of weighing, the impact
of the mean effect would validate the replication of the
findings more significantly by being computed over a larger
study pool.
The other factor affecting validity of the computed ef-

fect sizes is the high span of interactivity of the software
used in the primary studies and their exploratory nature,
ranging from linear equation exploration supported by
an interactive balance scale (Suh & Moyer-Packenham,
2007) to investigation of rate of change supported by the
SimCalcMathWorlds program (Roschelle et al. 2010). A
metric for incorporating this moderator to effect size
calculations could have been furnished by evaluating the
designs of the interventions through the lens of the multi-
media principles defined by Clark and Mayer (2011). This
task, however, was not possible to accomplish due to the
lack of the software detailed descriptions.
The validity of the research would have been higher if

the calculated homogeneity statistics were not statisti-
cally significant. In this meta-analysis, QT = 117.78, with
df = 23, p < 0.01), which implied a random-effect model
for the data analysis instead of a more precise fixed-
effect model.
Another factor limiting the study findings involves the

widely varied student assessment methods, ranging from
traditional multiple-choice questions mostly locally devel-
oped to new assessment techniques such as standardized-
based assessments. Although one of the studies (Pilli &
Aksu, 2013) reported a Cronbach’s alpha reliability coeffi-
cient, most did not, thereby decreasing the reliability of
the measuring instrument. The degree of diversity further
extends due to obvious differences in mathematics curric-
ula, objectives, and expectation levels in the nine countries
whose research studies were represented herein. Even
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though control groups in the extracted pool of studies
were taught traditionally, the term traditional teaching
might have been interpreted differently depending on the
country. For example, Lan et al. (2010)) defined traditional
instruction as being without the support of technological
devices, whereas Papadopoulos and Dagdilelis (2008)
defined traditional teaching as a paper-and-pencil envir-
onment. Both descriptions imply that technology was not
being used, but the treatment applied in the control
groups might have varied in terms of degree of representa-
tions and method used, or teacher qualifications, which
potentially could have mediated with the control groups’
posttest scores. We concluded, however, that these fluctu-
ations did not affect the overall effect size in a manner
that would question the validity of the computed overall
effect size.
Though at first we intended to examine the effects of

embedded scientific inquiry methods in exploratory envi-
ronments on students’ problem-solving skills, we encoun-
tered a limited number of research studies addressing this
domain. Thus, we modified the study focus. We realized
that exploratory environments used in both types of inter-
ventions - explorations and problem solving - contained,
to a certain degree, some elements of scientific inquiry
and affected students’ problem-solving skills, not just stu-
dents’ problem-solving performance as measured by test-
ing. Further studies focusing primarily on the effects of
inducing scientific inquiry processes in mathematical
modeling and problem solving would serve to extend this
paper. Technology has encouraged researchers to consider
not only how to best adapt tools to the learning of math-
ematics but also how to adapt the content of mathematics
in light of new, tool-rich possibilities to enable learners to
perform tasks that would not previously have been pos-
sible (Hoyles & Noss, 2009). The task of explorations
seems to provide basis for inducing such adaptations.
This meta-analysis, to a certain extent, exposed the

focus of the existing primary studies on the effects of ex-
ploratory environments on problem solving in mathemat-
ics education. We advocate for searching and formulating
more constructs to quantify students’ problem-solving
techniques with ECEs as a medium of context.
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